Startseite Naturwissenschaften Crystal structure of 4,7-diphenyl-1,10-phenanthroline-κ2N,N′)-bis(2,4-di(fluorine)-1-phenylpyridine-κ2C,N)-iridium(III) hexafluorophosphate–dichloromethane (1/1), C47H30Cl2F10IrN4P
Artikel Open Access

Crystal structure of 4,7-diphenyl-1,10-phenanthroline-κ2N,N′)-bis(2,4-di(fluorine)-1-phenylpyridine-κ2C,N)-iridium(III) hexafluorophosphate–dichloromethane (1/1), C47H30Cl2F10IrN4P

  • Jun Qian ORCID logo EMAIL logo , Yida Wang und Xueyi Cao
Veröffentlicht/Copyright: 16. September 2025

Abstract

C47H30Cl2F10IrN4P, monoclinic, P21/n (no. 14), a = 14.4048(8) Å, b = 19.8150(10) Å, c = 15.5151(8) Å, β = 106.018(2)°, V = 4256.6(4) Å3, Z = 4, R gt (F) = 0.0451, wR ref (F2) = 0.0921, T = 150(2) K.

CCDC no.: 2484923

The molecular structure is shown in the figure. Table 1 contains the crystallographic data and the list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Yellow block
Size: 0.28 × 0.25 × 0.20 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 3.39 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω scans
θmax, completeness: 25.1°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 66477, 7514, 0.064
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 5,960
N(param)refined: 586
Programs: Bruker, 1 Olex2, 2 SHELX 3 , 4

1 Source of materials

All the reagents were A. R. grade commercially available and used as received without any further purification. The cyclometalated chloro-bridged iridium(III) dimer, [(fpyd)2Ir(μ–Cl)]2 (fpyd = 2,4-di(fluorine)-1-phenylpyridine), was synthesized following the reported literature procedures 5 by heating IrCl3·3H2O (1 equiv) and 2,4-di(fluorine)-1-phenylpyridin (2 equiv) in a mixed solution of water and ethylene glycol ether (v/v = 1/5) at 135 °C under nitrogen atmosphere. 1,10-Phenanthroline-5,6-dione (1 equiv), salicylaldehyde (2 equiv) and ammonium acetate (5 equiv) were added into glacial acetic acid with strong stirring at 140 °C to obtain the 4,7-diphenyl-1,10-phenanthroline (Ph2Phen) ligand after 3 h. The above iridium(III) dimer [(fpyd)2Ir(μ–Cl)]2 (1 equiv) and the pure ligand Ph2Phen (2 equiv), as well as potassium hexafluorophosphate (1 equiv) were added together in a mixed solvent containing dichloromethane and methanol (v/v = 4/1). Next the mixture was refluxed at 85 °C in a dark N2 atmosphere for 24 h. Subsequently, the reaction mixture was filtered, washed with the mixed solution of dichloromethane and ethanol, and then dryed with rotary evaporator. The obtained solid product (155.0 mg, 0.1366 mmol) was dissolved in dichloromethane (1 mL), after filtration, after that 1 mL of buffer layer (Vdichloromethane/Vn-hexane = 1/1) was added, and finally 3 mL of n-hexane was added. And then yellow block crystals were obtained after one week at room temperature in dark with a yield of 74.4079 mg (48 % based Ir). Anal. Calcd. for C47H30Cl2F10IrN4P: C, 49.70 %; H, 2.64 %; N, 4.93 %. Found C, 49.23 %; H, 2.54 %; N, 4.81 %.

2 Experimental details

The crystal structure determination was carried on a Bruker APEX–II diffractometer. The structure was solved by Direct Methods and refined using the SHELX software. 3 All the non-hydrogen atoms were determined with anisotropic thermal displacement coefficients. All of the hydrogen atoms were added by theoretical method and isotropic displacement parameters were given (Uiso = 1.2 Ueq, Ueq is the equivalent isotropic displacement parameter of the parent atom). 6

3 Comment

Due to the unique luminescent properties, cyclometalated iridium(III) complexes have potential applications in several fields, such as organic light-emitting diodes (OLEDs), light-emitting electro-chemical cells (LECs), biosensing, photocatalysis, and nonlinear optics. 5 , 7 , 8 These findings greatly expand the boundaries of the application of cyclometalated iridium(III) complexes. It is known that the incorporation of different substituents on the chelating ligands and/or auxiliary ligands of cyclometalated iridium(III) complexes, could efficiently modify their properties and applications. 9 , 10 , 11 Previous research revealed that the π orbitals of C N chelating ligands and the d orbitals of Ir(III) centers mainly affect the highest occupied molecular orbital (HOMO) of the complexes. 12 Therefore, the introduction of electron withdrawing groups on the chelating ligand will lower the HOMO energy level of the system. In addition, the modification of conjugation via the auxiliary N N ligands helps to elaborate the influences of electron effects on the photophysical properties of the corresponding cyclometalated iridium(III) complexes. 13 , 14 , 15 Herein, Ph2Phen with large π-conjugation structure has been employed as the auxiliary N N ligand to synthesize cyclometalated iridium(III) complexes, while F substituents were introduced as electron withdrawing group of chelating ligand fpyd.

The synthesized iridium(III) complex crystallizes in the monoclinic crystal system. The asymmetric unit of the title structure is composed of one Ir3+ cation, one Ph2Phen ligand, two fpyd ligands, one PF6 anion, and one dichloromethane solvent molecule (see the Figure). The Ir(III) center is 6-coordinated by four nitrogen atoms and two carbon atoms from the pyridine rings of both C N and N N ligands, forming an octahedral spatial configuration. The Ir–C bond lengths are 2.005(7) Å and 2.010(6) Å, while the distances of Ir–N range from 2.024(6) Å to 2.138(4) Å, which are comparable with similar structures. 16 The cationic main structures are further extended into a three-dimensional supramolecular structure by intermolecular hydrogen bonding, where the hydrogen bonds are formed by the H atoms on the chelating ligands fpyd with the F atoms of the PF6 anions.


Corresponding author: Jun Qian, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P.R. China, E-mail:

Acknowledgments

This work was funded by the funding for this research was provided by: National Natural Science Foundation of China (grant No. 51602130).

References

1. BRUKER. Saint, Apex2 and Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Suche in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. Olex2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. Shelxt–Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

4. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Yang, X.; Xu, S.; Zhang, Y.; Zhu, C. Y.; Cui, L. S.; Zhou, G. J.; Chen, Z.; Sun, Y. H. Narrowband Pure Near-Infrared (NIR) Ir(III) Complexes for Solution-Processed Organic Light-Emitting Diode (OLED) with External Quantum Efficiency Over 16%. Angew. Chem. Int. Edit. 2023, 62, e202309739.10.1002/anie.202309739Suche in Google Scholar PubMed

6. Spek, A. L. Single-Crystal Structure Validation with the Program Platon. J. Appl. Crystallogr. 2003, 36, 7–13; https://doi.org/10.1107/s0021889802022112.Suche in Google Scholar

7. Li, Z. Q.; Gong, Z. L.; Liang, T.; Bernhard, S.; Zhong, Y. W.; Yao, J. Circularly Polarized Phosphorescence and Photon Transport of Micro/Nanocrystals of Ruthenium and Iridium Complexes with Chiral Anions. Angew. Chem. Int. Edit. 2023, 62, e202302160.10.1007/s11426-023-1723-7Suche in Google Scholar

8. Juliá, F. Ligand-to-Metal Charge Transfer (LMCT) Photochemistry at 3d-Metal Complexes: An Emerging Tool for Sustainable Organic Synthesis. ChemCatChem 2022, 14, e202200916; https://doi.org/10.1002/cctc.202200916.Suche in Google Scholar

9. Vasilopoulou, M.; Fakharuddin, A.; Pelayo García de Arquer, F.; Georgiadou, D. G.; Kim, H.; Yusoff, A. R. B. M.; Gao, F.; Nazeeruddin, M. K.; Bolink, H. J.; Sargent, E. H. Advances in Solution-Processed Near-Infrared Light-Emitting Diodes. Nat. Photonics. 2021, 15, 656–669.10.1038/s41566-021-00855-2Suche in Google Scholar

10. Ma, D. L.; Lin, S.; Wang, W.; Yang, C.; Leung, C. H. Luminescent Chemosensors by Using Cyclometalated Iridium(III) Complexes and Their Applications. Chem. Sci. 2017, 8, 878–889; https://doi.org/10.1039/c6sc04175b.Suche in Google Scholar PubMed PubMed Central

11. Chen, Y.; Liu, C.; Wang, L. Effects of Fluorine Substituent on Properties of Cyclometalated Iridium(III) Complexes with a 2,2′-Bipyridine Ancillary Ligand. Tetrahedron. 2019, 75, 130686; https://doi.org/10.1016/j.tet.2019.130686.Suche in Google Scholar

12. Liu, B. Q.; Lystrom, L.; Brown, S. L.; Hobbie, E. K.; Kilina, S.; Sun, W. F. Impact of Benzannulation Site at the Diimine (NN) Ligand on the Excited-State Properties and Reverse Saturable Absorption of Biscyclometalated Iridium(III) Complexes. Inorg. Chem. 2019, 58, 5483–5493; https://doi.org/10.1021/acs.inorgchem.8b03162.Suche in Google Scholar PubMed

13. Abbas, S.; Din, I.Ud.; Raheel, A.; Din, A. T. Ud. Cyclometalated Iridium(III) Complexes: Recent Advances in Phosphorescence Bioimaging and Sensing Applications. Appl. Organometal. Chem. 2019, 33, 1001–1015.10.1002/aoc.5413Suche in Google Scholar

14. Hatanaka, M.; Kato, H.; Sakai, M.; Kariya, K.; Nakatani, S.; Yoshimura, T.; Inagaki, T. Insights into the Luminescence Quantum Yields of Cyclometalated Iridium(III) Complexes: A Density Functional Theory and Machine Learning Approach. J. Phys. Chem. A. 2023, 127, 7630–7637; https://doi.org/10.1021/acs.jpca.3c02179.Suche in Google Scholar PubMed

15. Stonelake, T. M.; Phillips, K. A.; Otaif, H. Y.; Edwardson, Z. C.; Horton, P. N.; Coles, S. J.; Beames, J. M.; Pope, S. J. A. Spectroscopic and Theoretical Investigation of Color Tuning in Deep-Red Luminescent Iridium(III) Complexes. Inorg. Chem. 2020, 59, 2266–2277; https://doi.org/10.1021/acs.inorgchem.9b02991.Suche in Google Scholar PubMed PubMed Central

16. Qian, J.; Ma, L.; Wang, Y. D. Crystal Structure of μ23,6-di(2-pyridyl)-4-phenylamino pyridazine-κ2N,N′)-bis(μ22-(p-toluene) pyridine-κ2C,N)-Iridium(III) Hexafluorophosphate Dichloromethane Solvate, C45H37Cl2F6IrN7P. Z. Kristallogr. N. Cryst. Struct. 2024, 240, 55–58; https://doi.org/10.1515/ncrs-2024-0356.Suche in Google Scholar

Received: 2025-07-11
Accepted: 2025-09-04
Published Online: 2025-09-16
Published in Print: 2025-12-17

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of (1Z, 2Z)-3-phenyl-2-propenal 2-(4-bromo-2-fluorophenyl)hydrazone, C15H12BrFN2
  4. Refinement of crystal structure of 2-(2,3-dihydro-3-oxo-1 H -inden-1-ylidene)-1 H -indene-1,3(2 H )-dione C18H10O3
  5. The crystal structure of 3-(1-fluoro-2-(naphthalen-2-yl)-2-oxoethyl)-2-methoxy-3,4-dihydroisoquinolin-1(2H)-one, C22H18FNO3
  6. Crystal structure of the dinuclear copper(II) complex bis(μ2-2,2′ -{[1,3-phenylenebis-(methylene)]bis(oxy)}dibenzoaot-κ4O,O′:O′′,O′′′)-bis(dimethylformamide-κ1O)dicopper(II), C50H44Cu2N2O14
  7. Crystal structure of poly[triaqua-(μ9-biphenyl-3,3′,5,5′-tetracarboxylic-κ8 O,O:O,O′: O,O″:O,O‴)samarium(III)sodium(I)], C16H12NaSmO11
  8. The crystal structure of 5-benzyl-1-(4-fluorobenzyl)-4-((4-fluorobenzyl)oxy)-1,5-dihydro-2H-pyrrol-2-one, C25H21F2NO2
  9. The crystal structure of diammonium 2,5-dihydroxyterephthalate, C8H12N2O6
  10. Crystal structure of (E)-4-(4-(1H-1,2,4-triazol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[b]oxepin-5(2H)-one, C21H19N3O4
  11. Crystal structure of poly[oktakis(μ2-oxido-κ2O:O)-tetrakis(oxido-κ1O)-bis(μ2-1,1′-[1,4-phenylenebis(methylene)]di(1H-imidazole-κ2N:N′))-tetravanadium(V)-dizinc(II)] monohydrate, C28H30Zn2N8O13V4
  12. Crystal structure of acotiamide hydrochloride dimethylacetamide solvate (1/1), C25H40ClN5O6S
  13. Crystal structure of catena-poly[monoaqua (u2-(3-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic-k4O:O′:O″:N)zinc(II))] monohydrate, C15H11NO10Zn
  14. Crystal structure of dichlorido{2,6-bis(3,5-diisopropyl-N-pyrazolyl)pyridine}zinc(II), C23H33Cl2N5Zn
  15. Crystal structure of nitrato-κ2O,O′-[hydridotris(3,5-diethylpyrazol-1-yl)borato-κ3N,N′,N″]copper(II), C21H34BCuN7O3
  16. Crystal structure of 2,7-bis(3,5-diethyl-1H-pyrazol-4-yl)-benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone, C28H26N6O4
  17. Crystal structure of 2-(4-chlorophenyl)benzothiazole, C13H8ClNS
  18. Synthesis and crystal structure (3R,4′S)-4′-(3,5-dibromophenyl)-1′-methyl-2H-dispiro [benzofuran-3,3′-pyrrolidine-2′,2″-indene]-1″,2,3″-trione, C26H17Br2NO4
  19. Crystal structure of bis(((3a,7a-dihydro-1H-benzo[d][1,2,3]triazol-1-yl)methyl) triphenylphosphonium) tetrachloridomanganate(II), C50H42Cl4MnN6P2
  20. The crystal structure of 4,9-bis(4-chlorophenyl)-1,6-bis(2-cyanobenzyl)-2,4a,5,6,7,7a-hexahydro-1H-2,7,5-(epiprop[2]ene[1,1,3]triyl)pyrrolo[3,4-b]pyridine-3,10-dicarbonitrile, C40H26Cl2N6
  21. The crystal structure of poly((μ2-3-(3-nitro-4-carboxylphenyl)benzoate-κ3O, O′:O″)-μ2-1,4-bis(1-imidazolyl)benzene-κ2N:N′-cadmium(II)), C26H17N5O6Cd
  22. The crystal structure of 6-hydroxy-5H-pyrrolo[3,4-b]pyridine-5,7(6H)-dione monohydrate, C7H6N2O4
  23. Crystal structure of 4-((cyclohexylsulfonyl)methyl)-1,2,3,4-tetrahydrobenzo [4,5]imidazo[1,2-a]pyridine, C18H24N2O2S
  24. Crystal structure of 4,7-diphenyl-1,10-phenanthroline-κ2N,N′)-bis(2,4-di(fluorine)-1-phenylpyridine-κ2C,N)-iridium(III) hexafluorophosphate–dichloromethane (1/1), C47H30Cl2F10IrN4P
  25. Crystal structure of (4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)boronic acid, C19H15BN2O2
  26. The crystal structure of (E)-(2-((pyridin-2-ylmethylene)amino)phenyl)arsonic acid, C12H11AsN2O3
  27. The crystal structure of N(benzyl(phenyl)carbomothioyl)benzamide, C21H18N2OS
  28. The crystal structure of bis(2-picolinium) hexachlorostannate dichloromethane monosolvate, C13H18Cl8N2Sn
  29. Crystal structure of poly[tetraaqua-bis(μ4-3–1-(carboxylatomethyl)-1H-1,2,4-triazole-3-carboxylato)-κ4O:O′,O″,N)zinc(II)], C5H7N3O6Zn
  30. The crystal structure of the co-crystal isonicotinamide – 2-(nitrophenyl)methanol (1/1), C6H6N2O·C7H7NO3
  31. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2-fluorobenzoate hydrate, C23H25F2N3O6
  32. Crystal structure of [diaqua-{1H-benzo[d]imidazol-3-ium-5,6-dicarboxylato-κ2O,O′}magnesium(II)] C18H14MgN4O10
  33. Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl) (2-iodo-5-methoxyphenyl)methanone, C20H20INO5
  34. The crystal structure of 3,7,11-trimethylbenzo[5,6][1,4]thiazino[2,3,4-kl]phenothiazine 5,5,9,9-tetraoxide, C21H17NO4S2
  35. Crystal structure of tris(piperazine-1,4-diium)bis(2-hydroxy-1,2,3-propane-tricarboxylate) pentahydrate, C24H56N6O19
  36. Crystal structure of 2-chloro-5-((5-isopropyl-2-methylphenoxy)methyl)pyridine, C16H18ClNO
  37. Crystal structure of (E)-4-(4-(1H-pyrrol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[(b)]oxepin-5(2H)-one, C23H21NO4
  38. Crystal structure of (E)-N′-(3,4-dichlorobenzylidene)-3,4,5-trimethoxybenzohydrazide, C17H16Cl2N2O4
  39. The crystal structure of 2-(2-hydroxyphenyl)-3-(pyridin-2-yl)-2,3- dihydroquinazolin-4(1H)-one, C19H15N3O2
  40. Crystal structure of 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-8-methylchroman-4-one, C17H16O5
  41. Crystal structure of bis[(3,4-dimethoxybenzyl)triphenylphosphonium]di-μ2-bromido-dibromidodicopper(I)
  42. Crystal structure of bis [(1,3-dioxolan-2-ylmethyl)triphenylphosphonium] tetrabromidodicopper(I), C22H22Br2CuO2P
  43. Crystal structure of [1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid], C12H8N2O5
  44. The crystal structure of one-dimensional cooridnation polymer bis(thiocyanato)-bis((1E,2E)-1,2-bis(1-(pyridin-3-yl)ethylidene)-hydrazine κ2N:N)iron(II), (C30H28N10S2Fe)n
  45. Crystal structure of ((4-acetamidophenyl)sulfonyl)-l-alanine, C11H14N2O5S
  46. Crystal structure of [(1-naphthalen-1-yl-methyl)triphenylphosphonium] dichloridocopper(I), [C29H24P]+[CuCl2]
  47. RbTm3S5: the first rubidium lanthanoid(III) sulfide with CsEr3Se5-type crystal structure
  48. Crystal structure of 2,2′-((ethane-1,2-diylbis(methylammoniumdiyl))bis(methylene))bis(pyridin-1-ium) diiodido-tris(μ2-iodido-κ2I:I)dicopper(II) chloride dihydrate, C16H30Cu2I6N4O2
  49. The crystal structure of 4-(trifluoromethyl)pyridine-2-carboxylic acid, C7H4F3NO2
  50. The crystal structure of (E)-2-ethoxy-1-methoxy-4-(2-(methylsulfonyl)vinyl)benzene, C12H16O4S
  51. Crystal structure of potassium 1H,1H,2H,2H-perfluorooctanesulfonate, C8H4O3F13SK
  52. Crystal structure of 4-(4-(quinolin-8-yloxy)-1,2,5-thiadiazol-3-yl)morpholine, C15H14O2N4S
  53. The crystal structure of 1,4-bis(bromomethyl)-2,5-dimethylbenzene, C10H12Br2
  54. The crystal structure of imidazo[4,5-e][1,3]diazepine-4,6,8-triamine methanol solvate, C7H11N7O
  55. The crystal structure of chlorido-bis(1,10-phenantroline-κ2N,N′)-(2-formylphenoxyacetato-κ2O,O) lead(II), C33H23N4O4ClPb
  56. Crystal structure of pyridinium tetrakis(1,1,1-trifluoro-2,4-pentadionato-κ2O,O′)yttrium(III) C20F12H16YO8C5H6N
Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0312/html
Button zum nach oben scrollen