Startseite Crystal structure of poly[tetraaqua-bis(μ4-3–1-(carboxylatomethyl)-1H-1,2,4-triazole-3-carboxylato)-κ4O:O′,O″,N)zinc(II)], C5H7N3O6Zn
Artikel Open Access

Crystal structure of poly[tetraaqua-bis(μ4-3–1-(carboxylatomethyl)-1H-1,2,4-triazole-3-carboxylato)-κ4O:O′,O″,N)zinc(II)], C5H7N3O6Zn

Veröffentlicht/Copyright: 17. September 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

C5H7N3O6Zn, triclinic, P 1 (no. 2), a = 4.7459(12) Å, b = 6.7043(17) Å, c = 13.648(3) Å, α = 98.303(4)°, β = 98.134(4)°, γ = 103.303(3)°, V = 411.22(18) Å3, Z = 2, Rgt(F) = 0.0244, wRref(F2) = 0.0862, T = 296(2) K.

CCDC no.: 2484514

The molecular structure is shown in the figure. Table 1 contains the crystallographic data and the list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.23 × 0.20 × 0.18 mm
Wavelength: MoKα radiation (0.71073 Å)
μ: 3.00 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω scans
θmax, completeness: 25.0°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 2104, 1439, 0.016
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 1,285
N(param)refined: 155
Programs: Bruker, 1 Shelx 2

1 Source of material

The mixture of Zn(NO3)2⋅6H2O (1 mmol, 297.5 mg), 1-(carboxymethyl)-1H-1,2,4-triazole-3-carboxylic acid (H2cta) (1 mmol, 171.0 mg), dimethylformamide (3 mL) and H2O (1 mL) were placed in a 25 mL Teflon-lined autoclave at 363 K for 72 h. After cooling to room temperature, colorless block crystals were obtained.

2 Experimental details

The OH– distances were restraint at 0.85(1) Å by DFIX commands. The H atoms bound to C atoms were placed in calculated positions and constrained to ride on their parent atoms, with d(C–H) = 0.93 Å (aromatic) and d(C–H) = 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C).

3 Discussion

The rational design and synthesis of coordination polymers have long been a key focus in research in the last decades. 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 In this context, organic ligands usually play an extremely important role in the construction of coordination polymers. Among the various organic ligands, triazole-based ligands are important class of organic ligands, which have nitrogen atoms in variable positions and strong metal-coordinating capabilities, are able to provide a variety of coordination sites. 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 As a triazole-based ligand, 1-(carboxymethyl)-1H-1,2,4-triazole-3-carboxylic acid (H2 cta) contains a triazole ring and two carboxylic acid groups, which endow the corresponding deprotonated anions with excellent coordination ability in the formation of coordination polymers. With the expansion of the research scope of coordination polymers based on H2 cta, a Zn(II) coordination polymer based on cta2− was synthesized, which can be potentially used as a fluorescence detector by fluorescence. 21 , 22 , 23

X-ray crystallographic analysis reveals that the title compound is isostructural with its analogous compound Mn(II) coordination polymer based on cta2−. 17 The asymmetric unit of the title structure contains two half Zn2+, one cta2− ligand and two coordinated water molecules (see the figure). The two Zn(II) cations exhibit similar coordination mode which exhibit distorted octahedral geometry. The six atoms that coordinate with Zn1 cation come from two carboxyl oxygen atoms and two nitrogen atoms of two symmetry related cta2− ligands and two symmetry related coordinated water oxygen atoms. Meanwhile, the Zn2 cation is coordinated by four carboxyl oxygen atoms from for symmetry related cta2− ligands and two symmetry related coordinated water oxygen atoms.

The Zn–O lengths (2.0474(19)–2.1733(19) Å) and Zn–N length (2.069(2) Å) are all in normal ranges. The cta2− ligands linked the Zn cations to form a two-dimensional structure. In the crystal packing, the adjacent networks are linked into three-dimensional frameworks by O–H⋯O and O–H⋯N hydrogen bonds from coordinated water molecules and carboxylate and triazole groups of cta2− ligands. Furthermore, intramolecular O–H⋯O hydrogen bonds from coordinated water molecules and carboxylate groups of cta2− ligands could further consolidate the whole structure.


Corresponding author: Fan Fan, Investigation Department, Hebei Public Security Police Vocational College, 050091, Shijiazhuang, Hebei, People’s Republic of China, E-mail:

Funding source: Hebei Public Security Police Vocational College

  1. Research funding: This work was financial supported by Hebei Public Security Police Vocational College.

References

1. Bruker. Apex2, Saint and Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.Suche in Google Scholar

2. Sheldrick, G. M. A Short History of Shelx. Acta Crystallogr. 2008, A64, 112–122. https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

3. Zhao, X.; Miao, X. Metal-Organic Framework Constructed by Flexible Ligands: A Versatile Platform Towards Efficient Fluorescence Sensing, Adsorption Separation and Heterogeneous Catalysis. Coord. Chem. Rev. 2024, 502, 215611. https://doi.org/10.1016/j.ccr.2023.215611.Suche in Google Scholar

4. Zhou, J.; Li, J.; Kan, L.; Zhang, L.; Huang, Q.; Yan, Y.; Chen, Y.; Liu, J.; Li, S. L.; Lan, Y. Q. Linking Oxidative and Reductive Clusters to Prepare Crystalline Porous Catalysts for Photocatalytic CO2 Reduction with H2O. Nat. Commun. 2022, 13, 4681. https://doi.org/10.1038/s41467-022-32449-z.Suche in Google Scholar PubMed PubMed Central

5. Li, H.; Li, X.; Dai, J.; Zheng, S. Ion Exchange in Metal-Organic Frameworks and Their Derivatives: A Facile Strategy for Enhanced Water Splitting. Mater. Today Energy 2024, 44, 101595. https://doi.org/10.1016/j.mtener.2024.101595.Suche in Google Scholar

6. Xiao, C.; Tian, J.; Chen, Q.; Hong, M. Water-Stable Metal-Organic Frameworks (MOFs): Rational Construction and Carbon Dioxide Capture. Chem. Sci. 2024, 15, 1570–1610. https://doi.org/10.1039/d3sc06076d.Suche in Google Scholar PubMed PubMed Central

7. Li, X.-S.; He, Y.-J.; Chen, J.; Li, Q.-Q.; Liu, P.; Li, J.-L. Recent Advances in Rational Design, Synthesis and Application of Metal-Organic Frameworks as Visible-Light-Driven Photocatalysts. Inorg. Chem. Front. 2024, 11, 6794–6852. https://doi.org/10.1039/d4qi01449a.Suche in Google Scholar

8. Jin, H.-G.; Zhao, P.-C.; Qian, Y.; Xiao, J.-D.; Chao, Z.-S.; Jiang, H.-L. Metal-Organic Frameworks for Organic Transformations by Photocatalysis and Photothermal Catalysis. Chem. Soc. Rev. 2024, 53, 9378–9418. https://doi.org/10.1039/d4cs00095a.Suche in Google Scholar PubMed

9. Shi, Z.-Q.; Ji, N.-N.; Hu, H.-L. Luminescent Triphenylamine-Based Metal-Organic Frameworks: Recent Advances in Nitroaromatics Detection. Dalton Trans. 2020, 49, 12929–12939. https://doi.org/10.1039/d0dt02213f.Suche in Google Scholar PubMed

10. Chen, J.; Kirlikovali, K. O.; Shi, L.; Farha, O. K. Rational Design of Stable Functional Metal-Organic Frameworks. Mater. Horiz. 2023, 10, 3257–3268. https://doi.org/10.1039/d3mh00541k.Suche in Google Scholar PubMed

11. Xu, Z.-W.; Yang, Y.-Q.; Li, W.; Li, C.-H. Hydrothermal Synthesis, Crystal Structure of Bis(3-chloro-benzoato-κ1O)-bis(μ2-3-(pyridin-2-yl)-1,2,4-triazol-1-ido-κ3N,N′:N″)dinickel(II). Z. Kristallogr. N. Cryst. Struct. 2025, 240, 549–551. https://doi.org/10.1515/ncrs-2024-0362.Suche in Google Scholar

12. Li, J.; Han, H.; Dong, Y.; Qiu, M.; Pei, X. Crystal Structure of Dichlorido-tetrakis{3-((1H-1,2,4-triazol-1-yl)methyl)-1-(4-chlorophenyl)-4,4-dimethylpentan-3-ol-κ1N}cobalt(II), C64H88O4N12Cl6Co. Z. Kristallogr. N. Cryst. Struct. 2025, 240, 653–655. https://doi.org/10.1515/ncrs-2025-0168.Suche in Google Scholar

13. Yao, X.-T.; Cai, J.; Liu, Y.; Chen, M.-S. Crystal Structure of poly[(μ3-5-Bromoisophthalato-κ4O, O′:O″,O‴)-(μ2-1,2-bis(1,2,4-triazole-1-ylmethyl)benzene-κ2N:N′)cobalt(II)], C20H15BrCoN6O4. Z. Kristallogr. N. Cryst. Struct. 2024, 239, 653–655. https://doi.org/10.1515/ncrs-2024-0126.Suche in Google Scholar

14. Wang, Q.; Gao, J.-H.; Zhang, S.-R.; Gao, Y.-H.; Lu, J.-F. Crystal structure of poly[μ2-aqua-aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)-(μ2-4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ2 O:O′)-(μ4-4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ5 O,O′:O″:O′″:O′″)dicobalt(II)] – water – dimethylformamide (1/1/1) C44H43N11O12Co2. Z. Kristallogr. N. Cryst. Struct. 2022, 237 (5), 869–872; https://doi.org/10.1515/ncrs-2022-0215.Suche in Google Scholar

15. Yang, F.; Xu, F.; Wang, p.; Lin, Q.; Lu, M. Oxygen-Enriched Metal-Organic Frameworks Based on 1-(Trinitromethyl)-1H-1,2,4-triazole-3-carboxylic acid and Their Thermal Decomposition and Effects on the Decomposition of Ammonium Perchlorate. ACS Appl. Mater. Interfaces 2021, 13, 21516–21526. https://doi.org/10.1021/acsami.1c03110.Suche in Google Scholar PubMed

16. Petrenko, Y. P.; Vynohradov, O. S.; Khomenko, D. M.; Doroshchuk, R. O.; Raspertova, I. V.; Shova, S.; Lampeka, R. D. Crystal Structure and Hirshfeld-Surface Analysis of Diaquabis (5-methyl-1H-1,2,4-triazole-3-carboxylato)copper(II). Acta Crystallogr. 2024, E80, 54–57. https://doi.org/10.1107/s2056989023010770.Suche in Google Scholar

17. Hao, Y.; Yue, C.; Jin, B.; lv, Y.; Zhang, Q.; Li, J.; Liu, Z.; Hou, H. Syntheses, Structures, Luminescent Properties and Antibacterial Activities of Seven Polymers Based on an Asymmetric Triazole Dicarboxylate Ligand. Polyhedron 2018, 139, 296–307. https://doi.org/10.1016/j.poly.2017.11.006.Suche in Google Scholar

18. Li, C. H.; Li, W.; Tan, X. W.; Li, Y. L. Hydrothermal Synthesis, Crystal Structure and Properties of One Tetranuclear Nickel(II) Complex with 3-(2-Pyridiyl)-1H-1,2,4-triazole (Hpt). Chin. J. Struct. Chem. 2018, 37, 1004–1008.Suche in Google Scholar

19. Zhu, X.; Sun, P.-P.; Ding, J.-G.; Li, B.-L.; Li, H.-Y. Tuning Cobalt Coordination Architectures by Bis(1,2,4-triazol-1-ylmethyl) benzene Position Isomers and 5-Nitroisophthalate. Cryst. Growth Des. 2012, 12, 3992–3997. https://doi.org/10.1021/cg300465r.Suche in Google Scholar

20. Aromí, G.; Barrios, L. A.; Roubeau, O.; Gamez, P. Triazoles and Tetrazoles: Prime Ligands to Generate Remarkable Coordination Materials. Coord. Chem. Rev. 2011, 255, 485–546. https://doi.org/10.1016/j.ccr.2010.10.038.Suche in Google Scholar

21. Fan, F. Crystal Structure of poly[Bis(4-(4-(pyridin-4-yl)phenyl)pyridin-1-ium-κ1N)-(μ-4-benzene-1,2,4,5-tetracarboxylate-κ5O:O′: O″:O‴:O⁗)-(μ-2-2,5-dicarboxyterephthalate-κ2O:O′)dizinc(II)], C52H32N4O16Zn2. Z. Kristallogr. N. Cryst. Struct. 2024, 239, 861–864. https://doi.org/10.1515/ncrs-2024-0196.Suche in Google Scholar

22. Dong, X.-X.; Chen, T.-L.; Kong, X.-J.; Wu, S.; Kong, F.-F.; Xiao, Q. A Facile Fluorescence Eu MOF Sensor for Ascorbic Acid and Ascorbate Oxidase Detection. Anal. Methods 2024, 16, 704–708. https://doi.org/10.1039/d3ay01978k.Suche in Google Scholar PubMed

23. Zhao, B.; Yang, Q.; Wang, J.-S.; Xie, F.-Y.; Yu, H.-Y.; Li, Y.; Ma, Y.-X.; Ruan, W.-J. An Anionic-Ligand Installed Pyrene-Based MOF for the Fluorescence Detection of Paraquat. New J. Chem. 2021, 45, 4401–4407. https://doi.org/10.1039/d0nj05866a.Suche in Google Scholar

Received: 2025-07-16
Accepted: 2025-09-04
Published Online: 2025-09-17

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0319/html
Button zum nach oben scrollen