Abstract
C8H12N2O6, monoclinic, P21/n (no. 14), a = 3.8391(8) Å, b = 8.8332(18) Å, c = 14.487(3) Å, β = 95.62(3)°, V = 488.92(18) Å3, Z = 2, Rgt(F) = 0.0327, wR ref (F2) = 0.0949, T = 293 K.
The molecular structure is shown in the figure. Table 1 contains the crystallographic data and the list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Data collection and handling.
Crystal: | Brown block |
Size: | 0.41 × 0.31 × 0.23 mm |
Wavelength: | Mo Kα radiation (0.71073 Å) |
μ: | 0.14 mm−1 |
Diffractometer, scan mode: | Rigaku R-AXIobsS RAPIobsD, ω scans |
θmax, completeness: | 24.9°, 99 % |
N(hkl)measured, N(hkl)unique, Rint: | 3649, 840, 0.041 |
Criterion for Iobs, N(hkl)gt: | Iobs > 2 σ(Iobs), 737 |
N(param)refined: | 90 |
Programs: | Rigaku 1 , SHELX 2 , 3 |
1 Source of materials
2,5-Dihydroxyterephthalic acid (99 mg, 0.5 mmol) was dissolved in a mixed solvent of ethyl alcohol-water (v:v = 1:1), followed by the addition of aqueous ammonia (2 mL, 25–28 %). After vigorous stirring, the solution was filtered and allowed to stand undisturbed at room temperature. Brown block-shaped crystals were obtained after 3 days by slow evaporation.
2 Experimental details
The structure was solved by Direct Methods with the SHELXS program. All H-atoms from C atoms were positioned with idealized geometry and refined isotropically (Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms, respectively), using a riding model with C–H = 0.93 Å or 0.96 Å. H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O–H distances fixed as initially found and with Uiso(H) values set at 1.5Ueq(O).
3 Comment
Noncovalent interactions, including ionic bonds, hydrogen bonds, and van der Waals forces, play important roles in molecular recognition, crystal engineering, and supramolecular assembly.
4
,
5
,
6
,
7
,
8
Among these, ammonium carboxylate systems (
Single-crystal X-ray diffraction analysis revealed that title compound crystallizes in the monoclinic system with the space group P21/n The asymmetric unit of title compound consists of one ammonium cation and half of a 2,5-dihydroxyterephthalate anion. The N–H bond lengths in the
Acknowledgments
This work was supported by the Ningbo Natural Science Foundation (no. 2019A610150).
References
1. Rigaku. RAPID-AUTO; Rigaku Corporation: Tokyo, Japan, 1998.Search in Google Scholar
2. Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8. https://doi.org/10.1107/S2053273314026370.Search in Google Scholar PubMed PubMed Central
3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central
4. Mahmudov, K. T.; Kopylovich, M. N.; De Silva, M. C. G.; Pombeiro, A. J. L. Non-Covalent Interactions in the Synthesis of Coordination Compounds: Recent Advances. Coord. Chem. Rev. 2017, 345, 54–72. https://doi.org/10.1016/j.ccr.2017.04.004.Search in Google Scholar PubMed PubMed Central
5. Mahadevi, A. S.; Sastry, G. N. Cooperativity in Noncovalent Interactions. Chem. Rev. 2016, 116, 2775–2825. https://doi.org/10.1021/acs.chemrev.5b00597.Search in Google Scholar PubMed PubMed Central
6. Haque, A.; Alenezi, K. M.; Khan, M. S.; Wong, W. Y.; Raithby, P. R. Non-Covalent Interactions (NCIs) in π-Conjugated Functional Materials: Advances and Perspectives. Chem. Soc. Rev. 2023, 52, 454–472. https://doi.org/10.1039/D2CS00232K.Search in Google Scholar
7. Loh, C. C. J. Exploiting Non-Covalent Interactions in Selective Carbohydrate Synthesis. Nat. Rev. Chem. 2021, 5, 792–815. https://doi.org/10.1038/s41570–021–00324-y.10.1038/s41570-021-00324-ySearch in Google Scholar PubMed
8. Shu, W. T.; Shi, W. Y.; Xie, H. X.; Wang, S. Y.; Zhang, Q.; Ouyang, K. F.; Xiao, F. J.; Zhao, Q. Non-Covalent Interaction of Rice Protein and Polyphenols: The Effects on Their Emulsions. Food Chem. 2025, 479, 143732. https://doi.org/10.1016/j.Search in Google Scholar
9. Bastida, G. A.; Aguado, R. J.; Delgado-Aguilar, M.; Zanuttini, M. A.; Galván, M. V.; Tarrés, Q. CO2 Adsorption on Cellulose Nanofiber-Polyethyleneimine Functionalized Membranes. J. Clean. Prod. 2025, 486, 144428. https://doi.org/10.1016/j.jclepro.2025.144428.Search in Google Scholar
10. Odendal, J. A.; Bruce, J. C.; Koch, K. R.; Haynes, D. A. Packing Motifs in Organicammoniumcarboxylate Salts: Extension of the Ring-Stacking and Ring-Laddering Concepts. CrystEngComm 2010, 12, 2398–2408. https://doi.org/10.1039/C003995G.Search in Google Scholar
11. Lemmerer, A.; Bourne, S. A.; Fernandes, M. A. Robust Supramolecular Heterosynthons in Chiral Ammonium Carboxylate Salts. Cryst. Growth Des. 2008, 8, 1106–1109. https://doi.org/10.1021/cg700797h.Search in Google Scholar
12. Rosa, J. M. L.; Lima, P. S. V.; Bonacorso, H. G.; Zanatta, N.; Martins, M. A. Ammonium Carboxylate Salts: The Additivity of Intermolecular Interaction Energies in Charged Organic Compounds. CrystEngComm 2024, 26, 796–808. https://doi.org/10.1039/D3CE01157A.Search in Google Scholar
13. Ding, X. J.; Luo, Y. L.; Wang, W.; Hu, T. Y.; Chen, J.; Ye, G. Charge-Assisted Hydrogen-Bonded Organic Frameworks with Inorganic Ammonium Regulated Switchable Open Polar Sites. Small 2023, 19, 2207771. https://doi.org/10.1002/smll.202207771.Search in Google Scholar PubMed
14. Sahoo, P.; Chakraborty, I.; Bandyopadhyay, A. Designing Supramolecular Pheromone Containers by Crystal Engineering for Replacing Pesticides. Eng. Sci. 2022, 20, 125–133. https://doi.org/10.30919/es8d741.Search in Google Scholar
15. Singh, A. P.; Baruah, J. B. Facts and Reality of Multi-Component Organic Ionic-Cocrystals of Di-Topic Acid-Base Conjugates. CrystEngComm 2025, 27, 1701–1706. https://doi.org/10.1039/D4CE01672K.Search in Google Scholar
16. Reisinger, D.; Kriehuber, M. U.; Bender, M.; Bautista-Anguís, D.; Rieger, B.; Schlögl, S. Thermally Latent Bases in Dynamic Covalent Polymer Networks and Their Emerging Applications. Adv. Mater. 2023, 35, 2300830. https://doi.org/10.1002/adma.202300830.Search in Google Scholar PubMed
17. Asada, Y.; Kobayashi, A.; Ueda, M.; Ban, H.; Kimura, M.; Naito, M.; Tokunaga, Y. Entropy-Driven Formation of a Self-Assembled Molecular Capsule Through Release of Amine from Ammonium Carboxylate Salt. Chem. Lett. 2024, 53, upae210. https://doi.org/10.1093/chemle/upae210.Search in Google Scholar
18. Kaduk, J. A. Terephthalate Salts: Salts of Monopositive Cations. Acta Crystallogr. 2000, B56, 474–485. https://doi.org/10.1107/S0108768100002234.Search in Google Scholar
19. Dutkiewicz, G.; Borowiak, T.; Pietrazkiewicz, M.; Pietraszkiewicz, O. Tetraammonium Benzene-1,2,4,5-Tetracarboxylate Dihydrate. Acta Crystallogr. 2007, E63, o4101. https://doi.org/10.1107/S1600536807043982.Search in Google Scholar
20. Cheng, Z. C.; Shi, H. F.; Ma, H. L.; Bian, L. F.; Wu, Q.; Gu, L.; Cai, S. Z.; Wang, X.; Xiong, W. W.; An, Z. F.; Huang, W. Ultralong Phosphorescence from Organic Ionic Crystals Under Ambient Conditions. Angew. Chem., Int. Ed. 2018, 57, 678–682. https://doi.org/10.1002/anie.201710017.Search in Google Scholar PubMed
21. Shustova, N. B.; Cozzolino, A. F.; Reineke, S.; Baldo, M.; Dincǎ, M. Selective Turn-On Ammonia Sensing Enabled by High-Temperature Fluorescence in Metal-Organic Frameworks with Open Metal Sites. J. Am. Chem. Soc. 2013, 135, 13326–13329. https://doi.org/10.1021/ja407778a.Search in Google Scholar PubMed
22. Wang, X. S.; Tang, Y.-Z.; Huang, X.-F. Hierarchical Assembly of a 2D Layered Hydrogen-Bonded Framework via π-Stacking and Charge-Assisted H-Bonds. Cryst. Growth Des. 2017, 17, 2119–2125. https://doi.org/10.1021/acs.cgd.6b01845.Search in Google Scholar
23. Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Metal Azolate Frameworks: From Crystal Engineering to Functional Materials. Chem. Rev. 2012, 112, 1001–1033. https://doi.org/10.1021/cr200139g.Search in Google Scholar PubMed
24. Chang, Xin-Hong. “Crystal structure of bis(acridin-10-ium) 2,5-dihydroxyterephthalate – 2,5-dihydroxyterephthalic acid (1/1), C21H15NO6”. Kristallogr. - N. Cryst. Struct. 2019, 234, 1253–1254. https://doi.org/10.1515/ncrs-2019-0377.Search in Google Scholar
© 2025 the author(s), published by De Gruyter, Berlin/Boston
This work is licensed under the Creative Commons Attribution 4.0 International License.