Home Physical Sciences The crystal structure of diammonium 2,5-dihydroxyterephthalate, C8H12N2O6
Article Open Access

The crystal structure of diammonium 2,5-dihydroxyterephthalate, C8H12N2O6

  • Zhenxiu Si ORCID logo EMAIL logo , Yanyu Lv , Yingying Xu and Lingyun Jiang
Published/Copyright: September 17, 2025

Abstract

C8H12N2O6, monoclinic, P21/n (no. 14), a = 3.8391(8) Å, b = 8.8332(18) Å, c = 14.487(3) Å, β = 95.62(3)°, V = 488.92(18) Å3, Z = 2, Rgt(F) = 0.0327, wR ref (F2) = 0.0949, T = 293 K.

CCDC no.: 2450201

The molecular structure is shown in the figure. Table 1 contains the crystallographic data and the list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Brown block
Size: 0.41 × 0.31 × 0.23 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.14 mm−1
Diffractometer, scan mode: Rigaku R-AXIobsS RAPIobsD, ω scans
θmax, completeness: 24.9°, 99 %
N(hkl)measured, N(hkl)unique, Rint: 3649, 840, 0.041
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 737
N(param)refined: 90
Programs: Rigaku 1 , SHELX 2 , 3

1 Source of materials

2,5-Dihydroxyterephthalic acid (99 mg, 0.5 mmol) was dissolved in a mixed solvent of ethyl alcohol-water (v:v = 1:1), followed by the addition of aqueous ammonia (2 mL, 25–28 %). After vigorous stirring, the solution was filtered and allowed to stand undisturbed at room temperature. Brown block-shaped crystals were obtained after 3 days by slow evaporation.

2 Experimental details

The structure was solved by Direct Methods with the SHELXS program. All H-atoms from C atoms were positioned with idealized geometry and refined isotropically (Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms, respectively), using a riding model with C–H = 0.93 Å or 0.96 Å. H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O–H distances fixed as initially found and with Uiso(H) values set at 1.5Ueq(O).

3 Comment

Noncovalent interactions, including ionic bonds, hydrogen bonds, and van der Waals forces, play important roles in molecular recognition, crystal engineering, and supramolecular assembly. 4 , 5 , 6 , 7 , 8 Among these, ammonium carboxylate systems ( NH 4 + ⋯RCOO) serve as ideal models for investigating the interplay of electrostatic attraction and hydrogen bonding, as they exhibit robust and tunable interactions. 9 , 10 , 11 , 12 The ammonium ion ( NH 4 + ) can form multiple hydrogen bonds with carboxylate groups (RCOO), while the aromatic backbone introduces additional ππ stacking and van der Waals contributions. Understanding such cooperative interactions is crucial for designing functional materials and elucidating biological processes, such as enzyme-substrate binding or ion transport. 13 , 14 , 15 , 16 Recent studies have explored ammonium carboxylate salts to decipher the balance between ionic and hydrogen-bonding forces in crystalline frameworks. 17 For instance, systems like ammonium terephthalate or formate have demonstrated how NH 4 + ⋯RCOO motifs direct lattice packing. 18 , 19 , 20 However, most studies focus on simple carboxylates, neglecting the role of auxiliary functional groups (e.g., hydroxyls) that could enhance hydrogen-bond networks or introduce steric effects. 21

Single-crystal X-ray diffraction analysis revealed that title compound crystallizes in the monoclinic system with the space group P21/n The asymmetric unit of title compound consists of one ammonium cation and half of a 2,5-dihydroxyterephthalate anion. The N–H bond lengths in the NH 4 + ion range from 0.889(2) to 0.911(2) Å, with bond angles between 106.97(2)° and 114.3(2)°, indicating a slightly distorted tetrahedral configuration. The carboxylate group of the 2,5-dihydroxyterephthalate forms a dihedral angle of 1.2(1)° with the benzene ring plane, demonstrating good coplanarity. Intramolecular hydrogen bonding is observed within the carboxylate group (d(O3⋯O2i) = 2.515 Å and O–H⋯O = 147°; symmetry code: i = −x + 2, –y + 1, −z + 1). The hydroxyl groups form intermolecular hydrogen bonds with adjacent 2,5-dihydroxyterephthalate ions, generating an infinite one-dimensional chain extending along the [010] direction. 22 These chains further assemble into a two-dimensional layered structure parallel to the (001) plane via ππ stacking interactions between benzene rings, the mean interplanar distance between the neighboring benzene rings is 3.48(2) Å. Finally, the layers are interconnected through intermolecular hydrogen bonds between the hydrogen atoms of NH 4 + and the carboxylate/hydroxyl oxygen atoms of 2,5-dihydroxyterephthalate, completing a three-dimensional supramolecular framework (d(N⋯O) = 2.804–3.042 Å and N–H⋯O = 149°–171°). 23 , 24


Corresponding author: Zhenxiu Si, Department of Pharmaceutical Engineering, Shandong Drug and Food Vocational College, Weihai 262400, People’s Republic of China, E-mail:

Acknowledgments

This work was supported by the Ningbo Natural Science Foundation (no. 2019A610150).

References

1. Rigaku. RAPID-AUTO; Rigaku Corporation: Tokyo, Japan, 1998.Search in Google Scholar

2. Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8. https://doi.org/10.1107/S2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central

4. Mahmudov, K. T.; Kopylovich, M. N.; De Silva, M. C. G.; Pombeiro, A. J. L. Non-Covalent Interactions in the Synthesis of Coordination Compounds: Recent Advances. Coord. Chem. Rev. 2017, 345, 54–72. https://doi.org/10.1016/j.ccr.2017.04.004.Search in Google Scholar PubMed PubMed Central

5. Mahadevi, A. S.; Sastry, G. N. Cooperativity in Noncovalent Interactions. Chem. Rev. 2016, 116, 2775–2825. https://doi.org/10.1021/acs.chemrev.5b00597.Search in Google Scholar PubMed PubMed Central

6. Haque, A.; Alenezi, K. M.; Khan, M. S.; Wong, W. Y.; Raithby, P. R. Non-Covalent Interactions (NCIs) in π-Conjugated Functional Materials: Advances and Perspectives. Chem. Soc. Rev. 2023, 52, 454–472. https://doi.org/10.1039/D2CS00232K.Search in Google Scholar

7. Loh, C. C. J. Exploiting Non-Covalent Interactions in Selective Carbohydrate Synthesis. Nat. Rev. Chem. 2021, 5, 792–815. https://doi.org/10.1038/s41570–021–00324-y.10.1038/s41570-021-00324-ySearch in Google Scholar PubMed

8. Shu, W. T.; Shi, W. Y.; Xie, H. X.; Wang, S. Y.; Zhang, Q.; Ouyang, K. F.; Xiao, F. J.; Zhao, Q. Non-Covalent Interaction of Rice Protein and Polyphenols: The Effects on Their Emulsions. Food Chem. 2025, 479, 143732. https://doi.org/10.1016/j.Search in Google Scholar

9. Bastida, G. A.; Aguado, R. J.; Delgado-Aguilar, M.; Zanuttini, M. A.; Galván, M. V.; Tarrés, Q. CO2 Adsorption on Cellulose Nanofiber-Polyethyleneimine Functionalized Membranes. J. Clean. Prod. 2025, 486, 144428. https://doi.org/10.1016/j.jclepro.2025.144428.Search in Google Scholar

10. Odendal, J. A.; Bruce, J. C.; Koch, K. R.; Haynes, D. A. Packing Motifs in Organicammoniumcarboxylate Salts: Extension of the Ring-Stacking and Ring-Laddering Concepts. CrystEngComm 2010, 12, 2398–2408. https://doi.org/10.1039/C003995G.Search in Google Scholar

11. Lemmerer, A.; Bourne, S. A.; Fernandes, M. A. Robust Supramolecular Heterosynthons in Chiral Ammonium Carboxylate Salts. Cryst. Growth Des. 2008, 8, 1106–1109. https://doi.org/10.1021/cg700797h.Search in Google Scholar

12. Rosa, J. M. L.; Lima, P. S. V.; Bonacorso, H. G.; Zanatta, N.; Martins, M. A. Ammonium Carboxylate Salts: The Additivity of Intermolecular Interaction Energies in Charged Organic Compounds. CrystEngComm 2024, 26, 796–808. https://doi.org/10.1039/D3CE01157A.Search in Google Scholar

13. Ding, X. J.; Luo, Y. L.; Wang, W.; Hu, T. Y.; Chen, J.; Ye, G. Charge-Assisted Hydrogen-Bonded Organic Frameworks with Inorganic Ammonium Regulated Switchable Open Polar Sites. Small 2023, 19, 2207771. https://doi.org/10.1002/smll.202207771.Search in Google Scholar PubMed

14. Sahoo, P.; Chakraborty, I.; Bandyopadhyay, A. Designing Supramolecular Pheromone Containers by Crystal Engineering for Replacing Pesticides. Eng. Sci. 2022, 20, 125–133. https://doi.org/10.30919/es8d741.Search in Google Scholar

15. Singh, A. P.; Baruah, J. B. Facts and Reality of Multi-Component Organic Ionic-Cocrystals of Di-Topic Acid-Base Conjugates. CrystEngComm 2025, 27, 1701–1706. https://doi.org/10.1039/D4CE01672K.Search in Google Scholar

16. Reisinger, D.; Kriehuber, M. U.; Bender, M.; Bautista-Anguís, D.; Rieger, B.; Schlögl, S. Thermally Latent Bases in Dynamic Covalent Polymer Networks and Their Emerging Applications. Adv. Mater. 2023, 35, 2300830. https://doi.org/10.1002/adma.202300830.Search in Google Scholar PubMed

17. Asada, Y.; Kobayashi, A.; Ueda, M.; Ban, H.; Kimura, M.; Naito, M.; Tokunaga, Y. Entropy-Driven Formation of a Self-Assembled Molecular Capsule Through Release of Amine from Ammonium Carboxylate Salt. Chem. Lett. 2024, 53, upae210. https://doi.org/10.1093/chemle/upae210.Search in Google Scholar

18. Kaduk, J. A. Terephthalate Salts: Salts of Monopositive Cations. Acta Crystallogr. 2000, B56, 474–485. https://doi.org/10.1107/S0108768100002234.Search in Google Scholar

19. Dutkiewicz, G.; Borowiak, T.; Pietrazkiewicz, M.; Pietraszkiewicz, O. Tetraammonium Benzene-1,2,4,5-Tetracarboxylate Dihydrate. Acta Crystallogr. 2007, E63, o4101. https://doi.org/10.1107/S1600536807043982.Search in Google Scholar

20. Cheng, Z. C.; Shi, H. F.; Ma, H. L.; Bian, L. F.; Wu, Q.; Gu, L.; Cai, S. Z.; Wang, X.; Xiong, W. W.; An, Z. F.; Huang, W. Ultralong Phosphorescence from Organic Ionic Crystals Under Ambient Conditions. Angew. Chem., Int. Ed. 2018, 57, 678–682. https://doi.org/10.1002/anie.201710017.Search in Google Scholar PubMed

21. Shustova, N. B.; Cozzolino, A. F.; Reineke, S.; Baldo, M.; Dincǎ, M. Selective Turn-On Ammonia Sensing Enabled by High-Temperature Fluorescence in Metal-Organic Frameworks with Open Metal Sites. J. Am. Chem. Soc. 2013, 135, 13326–13329. https://doi.org/10.1021/ja407778a.Search in Google Scholar PubMed

22. Wang, X. S.; Tang, Y.-Z.; Huang, X.-F. Hierarchical Assembly of a 2D Layered Hydrogen-Bonded Framework via π-Stacking and Charge-Assisted H-Bonds. Cryst. Growth Des. 2017, 17, 2119–2125. https://doi.org/10.1021/acs.cgd.6b01845.Search in Google Scholar

23. Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Metal Azolate Frameworks: From Crystal Engineering to Functional Materials. Chem. Rev. 2012, 112, 1001–1033. https://doi.org/10.1021/cr200139g.Search in Google Scholar PubMed

24. Chang, Xin-Hong. “Crystal structure of bis(acridin-10-ium) 2,5-dihydroxyterephthalate – 2,5-dihydroxyterephthalic acid (1/1), C21H15NO6”. Kristallogr. - N. Cryst. Struct. 2019, 234, 1253–1254. https://doi.org/10.1515/ncrs-2019-0377.Search in Google Scholar

Received: 2025-06-16
Accepted: 2025-07-21
Published Online: 2025-09-17
Published in Print: 2025-12-17

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of (1Z, 2Z)-3-phenyl-2-propenal 2-(4-bromo-2-fluorophenyl)hydrazone, C15H12BrFN2
  4. Refinement of crystal structure of 2-(2,3-dihydro-3-oxo-1 H -inden-1-ylidene)-1 H -indene-1,3(2 H )-dione C18H10O3
  5. The crystal structure of 3-(1-fluoro-2-(naphthalen-2-yl)-2-oxoethyl)-2-methoxy-3,4-dihydroisoquinolin-1(2H)-one, C22H18FNO3
  6. Crystal structure of the dinuclear copper(II) complex bis(μ2-2,2′ -{[1,3-phenylenebis-(methylene)]bis(oxy)}dibenzoaot-κ4O,O′:O′′,O′′′)-bis(dimethylformamide-κ1O)dicopper(II), C50H44Cu2N2O14
  7. Crystal structure of poly[triaqua-(μ9-biphenyl-3,3′,5,5′-tetracarboxylic-κ8 O,O:O,O′: O,O″:O,O‴)samarium(III)sodium(I)], C16H12NaSmO11
  8. The crystal structure of 5-benzyl-1-(4-fluorobenzyl)-4-((4-fluorobenzyl)oxy)-1,5-dihydro-2H-pyrrol-2-one, C25H21F2NO2
  9. The crystal structure of diammonium 2,5-dihydroxyterephthalate, C8H12N2O6
  10. Crystal structure of (E)-4-(4-(1H-1,2,4-triazol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[b]oxepin-5(2H)-one, C21H19N3O4
  11. Crystal structure of poly[oktakis(μ2-oxido-κ2O:O)-tetrakis(oxido-κ1O)-bis(μ2-1,1′-[1,4-phenylenebis(methylene)]di(1H-imidazole-κ2N:N′))-tetravanadium(V)-dizinc(II)] monohydrate, C28H30Zn2N8O13V4
  12. Crystal structure of acotiamide hydrochloride dimethylacetamide solvate (1/1), C25H40ClN5O6S
  13. Crystal structure of catena-poly[monoaqua (u2-(3-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic-k4O:O′:O″:N)zinc(II))] monohydrate, C15H11NO10Zn
  14. Crystal structure of dichlorido{2,6-bis(3,5-diisopropyl-N-pyrazolyl)pyridine}zinc(II), C23H33Cl2N5Zn
  15. Crystal structure of nitrato-κ2O,O′-[hydridotris(3,5-diethylpyrazol-1-yl)borato-κ3N,N′,N″]copper(II), C21H34BCuN7O3
  16. Crystal structure of 2,7-bis(3,5-diethyl-1H-pyrazol-4-yl)-benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone, C28H26N6O4
  17. Crystal structure of 2-(4-chlorophenyl)benzothiazole, C13H8ClNS
  18. Synthesis and crystal structure (3R,4′S)-4′-(3,5-dibromophenyl)-1′-methyl-2H-dispiro [benzofuran-3,3′-pyrrolidine-2′,2″-indene]-1″,2,3″-trione, C26H17Br2NO4
  19. Crystal structure of bis(((3a,7a-dihydro-1H-benzo[d][1,2,3]triazol-1-yl)methyl) triphenylphosphonium) tetrachloridomanganate(II), C50H42Cl4MnN6P2
  20. The crystal structure of 4,9-bis(4-chlorophenyl)-1,6-bis(2-cyanobenzyl)-2,4a,5,6,7,7a-hexahydro-1H-2,7,5-(epiprop[2]ene[1,1,3]triyl)pyrrolo[3,4-b]pyridine-3,10-dicarbonitrile, C40H26Cl2N6
  21. The crystal structure of poly((μ2-3-(3-nitro-4-carboxylphenyl)benzoate-κ3O, O′:O″)-μ2-1,4-bis(1-imidazolyl)benzene-κ2N:N′-cadmium(II)), C26H17N5O6Cd
  22. The crystal structure of 6-hydroxy-5H-pyrrolo[3,4-b]pyridine-5,7(6H)-dione monohydrate, C7H6N2O4
  23. Crystal structure of 4-((cyclohexylsulfonyl)methyl)-1,2,3,4-tetrahydrobenzo [4,5]imidazo[1,2-a]pyridine, C18H24N2O2S
  24. Crystal structure of 4,7-diphenyl-1,10-phenanthroline-κ2N,N′)-bis(2,4-di(fluorine)-1-phenylpyridine-κ2C,N)-iridium(III) hexafluorophosphate–dichloromethane (1/1), C47H30Cl2F10IrN4P
  25. Crystal structure of (4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)boronic acid, C19H15BN2O2
  26. The crystal structure of (E)-(2-((pyridin-2-ylmethylene)amino)phenyl)arsonic acid, C12H11AsN2O3
  27. The crystal structure of N(benzyl(phenyl)carbomothioyl)benzamide, C21H18N2OS
  28. The crystal structure of bis(2-picolinium) hexachlorostannate dichloromethane monosolvate, C13H18Cl8N2Sn
  29. Crystal structure of poly[tetraaqua-bis(μ4-3–1-(carboxylatomethyl)-1H-1,2,4-triazole-3-carboxylato)-κ4O:O′,O″,N)zinc(II)], C5H7N3O6Zn
  30. The crystal structure of the co-crystal isonicotinamide – 2-(nitrophenyl)methanol (1/1), C6H6N2O·C7H7NO3
  31. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2-fluorobenzoate hydrate, C23H25F2N3O6
  32. Crystal structure of [diaqua-{1H-benzo[d]imidazol-3-ium-5,6-dicarboxylato-κ2O,O′}magnesium(II)] C18H14MgN4O10
  33. Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl) (2-iodo-5-methoxyphenyl)methanone, C20H20INO5
  34. The crystal structure of 3,7,11-trimethylbenzo[5,6][1,4]thiazino[2,3,4-kl]phenothiazine 5,5,9,9-tetraoxide, C21H17NO4S2
  35. Crystal structure of tris(piperazine-1,4-diium)bis(2-hydroxy-1,2,3-propane-tricarboxylate) pentahydrate, C24H56N6O19
  36. Crystal structure of 2-chloro-5-((5-isopropyl-2-methylphenoxy)methyl)pyridine, C16H18ClNO
  37. Crystal structure of (E)-4-(4-(1H-pyrrol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[(b)]oxepin-5(2H)-one, C23H21NO4
  38. Crystal structure of (E)-N′-(3,4-dichlorobenzylidene)-3,4,5-trimethoxybenzohydrazide, C17H16Cl2N2O4
  39. The crystal structure of 2-(2-hydroxyphenyl)-3-(pyridin-2-yl)-2,3- dihydroquinazolin-4(1H)-one, C19H15N3O2
  40. Crystal structure of 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-8-methylchroman-4-one, C17H16O5
  41. Crystal structure of bis[(3,4-dimethoxybenzyl)triphenylphosphonium]di-μ2-bromido-dibromidodicopper(I)
  42. Crystal structure of bis [(1,3-dioxolan-2-ylmethyl)triphenylphosphonium] tetrabromidodicopper(I), C22H22Br2CuO2P
  43. Crystal structure of [1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid], C12H8N2O5
  44. The crystal structure of one-dimensional cooridnation polymer bis(thiocyanato)-bis((1E,2E)-1,2-bis(1-(pyridin-3-yl)ethylidene)-hydrazine κ2N:N)iron(II), (C30H28N10S2Fe)n
  45. Crystal structure of ((4-acetamidophenyl)sulfonyl)-l-alanine, C11H14N2O5S
  46. Crystal structure of [(1-naphthalen-1-yl-methyl)triphenylphosphonium] dichloridocopper(I), [C29H24P]+[CuCl2]
  47. RbTm3S5: the first rubidium lanthanoid(III) sulfide with CsEr3Se5-type crystal structure
  48. Crystal structure of 2,2′-((ethane-1,2-diylbis(methylammoniumdiyl))bis(methylene))bis(pyridin-1-ium) diiodido-tris(μ2-iodido-κ2I:I)dicopper(II) chloride dihydrate, C16H30Cu2I6N4O2
  49. The crystal structure of 4-(trifluoromethyl)pyridine-2-carboxylic acid, C7H4F3NO2
  50. The crystal structure of (E)-2-ethoxy-1-methoxy-4-(2-(methylsulfonyl)vinyl)benzene, C12H16O4S
  51. Crystal structure of potassium 1H,1H,2H,2H-perfluorooctanesulfonate, C8H4O3F13SK
  52. Crystal structure of 4-(4-(quinolin-8-yloxy)-1,2,5-thiadiazol-3-yl)morpholine, C15H14O2N4S
  53. The crystal structure of 1,4-bis(bromomethyl)-2,5-dimethylbenzene, C10H12Br2
  54. The crystal structure of imidazo[4,5-e][1,3]diazepine-4,6,8-triamine methanol solvate, C7H11N7O
  55. The crystal structure of chlorido-bis(1,10-phenantroline-κ2N,N′)-(2-formylphenoxyacetato-κ2O,O) lead(II), C33H23N4O4ClPb
  56. Crystal structure of pyridinium tetrakis(1,1,1-trifluoro-2,4-pentadionato-κ2O,O′)yttrium(III) C20F12H16YO8C5H6N
Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0275/html
Scroll to top button