Home Physical Sciences The crystal structure of N(benzyl(phenyl)carbomothioyl)benzamide, C21H18N2OS
Article Open Access

The crystal structure of N(benzyl(phenyl)carbomothioyl)benzamide, C21H18N2OS

  • Luleka Makhakhayi , Frederick P. Malan , Comfort M. Nkambule , Vuyelwa J. Tembu and Amanda-Lee E. Manicum EMAIL logo
Published/Copyright: October 23, 2025

Abstract

C21H18N2OS, monoclinic, P21/c, a = 8.4888(2) Å, b = 10.2133(3) Å, c = 19.9581(6) Å, β = 97.015(2)°, V = 1717.39(8) Å3, Z = 4, T = 150(2) K, R gt (F) = 0.0361, wR ref (F2) = 0.0913.

CCDC no.: 2492569

Thermal ellipsoids are plotted at a 50 % probability level in the figure. All hydrogen atoms are omitted for clarity. Table 1 contains the crystallographic data, and the list of the atoms, including atomic coordinates and displacement parameters, can be found in the CIF-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Colourless blade
Size: 0.35 × 0.19 × 0.09 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.20 mm−1
Diffractometer, scan mode: XtaLAB Synergy R, ω scans
θmax, completeness: 31.1°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 28370, 4474, 0.036
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3,714
N(param)refined: 226
Programs: Rigaku, 1 Olex2, 2 SHELX 3 , 4

1 Source of materials

To ammonium thiocyanate (17 mmol) that was dissolved in hot acetone (10 mL), benzoyl chloride (17 mmol) was added dropwise, continuously stirring for 20 min and followed by the filtration of the resultant mixture. The carbonyl isothiocyanate filtrate was collected and heated at 65 °C for 30 min, followed by the slow addition of N-benzylaniline, with stirring for 30 min at ambient temperature. 5  On completion, as confirmed by TLC, the thiourea ligand was precipitated with distilled water, filtered, and rinsed with water successfully. The final product was recrystallized from n-hexane and ethyl acetate solution (9:1) with obtained yields of 80 %. 6  IR (KBr, cm −1 ): 3252 (C–H), 2955 (C–Hasy), 2876 (C–Hsym), 1692 (C=O), 1149 (C=S). UV–vis (solvent: CH3OH): ε (λmax 230 nm) 1065.7 M−1cm−1HRMS (ES + ): 347.1224 [M+H]+ (found), 347.1218 (calcd), mp:153.4–154.9 °C.

2 Experimental details

All the hydrogen atoms were positioned geometrically and refined discernibly using a riding model with fixed C–HAromatic = 0.97 Å. The H atoms isotropic displacement parameters were fixed; Uiso(H) = 1.2Ueq (C) for aromatic, allowing them to ride on the parent atom. The graphics were obtained by using the DIAMOND program with 50 % probability ellipsoids.

3 Comment

Thiourea, often known as thiocarbamide, is an organosulfur molecule with the chemical formula SC(NH2)2. Thioureas are chelating agents and have been widely utilized in analytical chemistry and medicine. 7 , 8 , 9 Their compounds have demonstrated exceptional versatility in various academic, medical, industrial, biological, commercial, and agricultural applications. 10 , 11 The unique characteristics of these compounds facilitate their effective modification as binding agents, greatly improving their biological activity. These compounds demonstrate a diverse array of biological roles, including their application as anesthetic agents, 12 anticarcinogens, 13 , 14 anticonvulsants, 15 and antitubercular agents. 16 The thiourea moiety’s bond lengths and angles represent thiourea derivatives. 17 , 18 The bond lengths between C1 and O1, as well as C2 and S1, display the properties typical of a double bond, with measured distances of 1.219(1) Å and 1.670(1) Å, respectively. The lengths of C–N bonds show a notable reduction, with specific measurements recorded as follows: 1.345(1) Å for C2–N1, 1.446(1) Å for C3–N1, 1.382(2) Å for C1–N2, and 1.404(2) Å for C2–N2. This data indicates the likely existence of partial double-bond character in these bonds. The elongation of the C2–N2 bond relative to the C2–N1 bond is a phenomenon that has been extensively documented in various thiourea derivatives. 5 , 6 , 19 , 20 , 21 The observed elongation can be explained by the electron-withdrawing influence on the carbonyl group. 22 , 23 The compound in question exhibits three intermolecular hydrogen bonds, C11–H11⋯N1 exhibits a bond length of 2.8718(15) Å, C9–H9A…O1 has a bond length of 3.1714(14) Å and C9–H9B⋯S1 with the bond length of 3.0041(12) Å.


Corresponding author: Amanda-Lee E. Manicum, Department of Chemistry, Tshwane University of Technology, Pretoria, 0001, South Africa, E-mail:

Funding source: National Research Foundation of South Africa

Award Identifier / Grant number: 129468

Funding source: Tshwane University of Technology

Funding source: The University of Pretoria

Acknowledgements

We would like to thank the National Research Foundation of South Africa (Grant No. 129468), Tshwane University of Technology, and the University of Pretoria for institutional and financial support. The authors would like to express their gratitude towards NCP Chlorchem for financial assistance.

References

1. System, C. S. Rigaku Oxford Diffraction; CrysAlisPRO Software System Yarnton: UK, 2022.Search in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339–341.10.1107/S0021889808042726Search in Google Scholar

3. Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

5. Douglass, I. B.; Dains, F. B. Some Derivatives of Benzoyl and Furoyl Isothiocyanates and their use in Synthesizing Heterocyclic Compounds. J. Am. Chem. Soc 1934, 56, 719–721; https://doi.org/10.1021/ja01318a057.Search in Google Scholar

6. Adam, F.; Fatihah, F.; Ameram, N. N.; Subramaniam, N.; Mubarrakh, S. A. The Synthesis and Characterization of 2-methyl-N-((4-methylpyridine-2yl) Carbamothioyl) Benzamide: Its Preparation with Antibacterial Study. J. Phys. Sci. 2016, 27 (2), 83–101; https://doi.org/10.21315/jps2016.27.2.7.Search in Google Scholar

7. Arslan, A.; Duran, N.; Borekci, G.; Ozer, C. K.; Akbay, C. Antimicrobial Activity of Some Thiourea Derivatives and Their Nickel and Copper Complexes. Molecule 2009, 14, 519–527; https://doi.org/10.3390/molecules14010519.Search in Google Scholar PubMed PubMed Central

8. Makhakhayi, L.; Malan, F. P.; Tembu, V. J.; Nkambule, C. M.; Manicum, A. The Crystal Structure of Fac-tricarbonyl(N-benzoyl-N,N-cyclohexylmethylcarbamimidothioato-κ2S,O)-(pyridine-κN)rhenium(I), C23H24N3O4ReS. Z. Kristallogr. New Cryst. Struct. 2023, 238 (4), 697–699; https://doi.org/10.1515/ncrs-2023-0157.Search in Google Scholar

9. Komane, W. K.; Mokolokolo, P.; Vatsha, B.; Manicum, A. The Crystal Structure of Fac-tricarbonyl (N′-benzoyl-N,N-diphenylcarbamimidothioato-κ2S,O)-(pyrazole-κN) rhenium(I)-methanol(1/1) C26H23O4N4SRe. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 767–769; https://doi.org/10.1515/ncrs-2021-0046.Search in Google Scholar

10. Khan, E.; Khan, S.; Gul, Z.; Muhammad, M. Medicinal Importance, Coordination Chemistry with Selected Metals (Cu, Ag, Au) and Chemosensing of Thiourea Derivatives. A Review. Crit. Rev. Anal. Chem. 2021, 51 (8), 812–834; https://doi.org/10.1080/10408347.2020.1777523.Search in Google Scholar PubMed

11. Mohapatra, R. K.; Das, P. K.; Pradhan, M. K.; El–Ajaily, M. M.; Das, D.; Salem, H. F.; E–Zahan, M. K.; Badhei, G.; Parhi, P. K.; Maihub, A. A.; -E-Zahan, M. K. Recent Advances in Urea-and Thiourea-based Metal Complexes: Biological, Sensor, Optical, and Corrosion Inhibition Studies. Comm. Inorg. Chem. 2019, 39 (3), 127–187; https://doi.org/10.1080/02603594.2019.1594204.Search in Google Scholar

12. Citi, V.; Martelli, A.; Bucci, M.; Piragine, E.; Testai, L.; Vellecco, V.; Calderone, V. Searching for Novel Hydrogen Sulfide Donors: the Vascular Effects of Two Thiourea Derivatives. Pharmacol. Res. 2020, 159, 105039–105047; https://doi.org/10.1016/j.phrs.2020.105039.Search in Google Scholar PubMed

13. Arafa, W. A. A.; Ghoneim, A. A.; Mourad, A. K. N-Naphthoyl Thiourea Derivatives: an Efficient Ultrasonic-Assisted Synthesis, Reaction, and In-vitro Anticancer Evaluations. ACS Omega 2022, 7 (7), 6210–6222; https://doi.org/10.1021/acsomega.1c06718.Search in Google Scholar PubMed PubMed Central

14. Makhakhayi, L.; Malan, F. P.; Senzani, S.; Tukulula, M.; Davison, C.; de la Mare, J. A.; Nkambule, C. M.; Tembu, V. J.; Manicum, A. Synthesis, Characterisation, X-ray Diffraction and Biological Evaluation of New Thiourea Derivatives Against Mycobacterium Tuberculosis and Cervical Cancer. J. Mol. Struct. 2024, 1314, 138818–138825; https://doi.org/10.1016/j.molstruc.2024.138818.Search in Google Scholar

15. Ozbek, O.; Gurdere, M. B. A Review on the Synthesis and Applications of Molecules as Anticonvulsant Drug Agent Candidates. Med. Chem. Res. 2020, 29 (9), 1553–1578; https://doi.org/10.1007/s00044-020-02595-4.Search in Google Scholar

16. Tapera, M.; Kekeçmuhammed, H.; Sahin, K.; Krishna, V. S.; Lherbet, C.; Homberset, H.; Sarıpınar, E. Synthesis, Characterization, Anti-tuberculosis Activity and Molecular Modeling Studies of Thiourea Derivatives Bearing Aminoguanidine Moiety. J. Mol. Struct. 2022, 1270, 133899–133943.10.1016/j.molstruc.2022.133899Search in Google Scholar

17. Allen, F. H.; Motherwell, W. D. S. Applications of the Cambridge Structural Database in Organic Chemistry and Crystal Chemistry. Acta Crystallogr. 2002, B58, 407–422; https://doi.org/10.1107/s0108768102004895.Search in Google Scholar PubMed

18. Yusof, M. S. M.; Hamid, M. A.; Ramli, R. M. H. R.; Yamin, B. M. Synthesis and Characterisation a Series of N-(3,4-dichlorophenyl)-N′-(2,3 and 4-methylbenzoyl)thiourea Derivatives. J. Mol. Struct. 2010, 975 (1), 280–284.10.1016/j.molstruc.2010.04.037Search in Google Scholar

19. Xian, L. N-(3-Methyl-phen-yl)-N′-(4-nitro-benzo-yl)thio-urea. Acta Crystallogr. 2008, E64, o1969; https://doi.org/10.1107/s1600536808029425.Search in Google Scholar

20. Yamin, B. M. 1-(2-Methyl­benzo­yl)-3-m-tolyl­thio­urea. Acta Crystallogr. 2008, E64, o1227–o1227; https://doi.org/10.1107/s1600536808012300.Search in Google Scholar PubMed PubMed Central

21. Jusoh, R. H.; Khairul, W. M.; Yusof, M. S. M.; Kadir, M. A.; Yamin, B. M. Structural and Spectroscopic Studies of Novel Methylbenzoylthiourea Derivatives. MJAS 2011, 15 (1), 70–80.Search in Google Scholar

22. Yusof, M. S. M.; Soh, S. K. C.; Ngah, N.; Yamin, B. M. 1-Benzoyl-3-(6-methylpyridin-2-yl)thiourea. Acta Crystallogr. 2006, E62, o1446–o1448; https://doi.org/10.1107/s1600536806009366.Search in Google Scholar

23. Dillen, J.; Woldu, K. R. N,N-(Heptane-2,6-diyl)-N′-(3,4,5-methoxybenzoyl)thiourea. Acta. Crystallogr. 2006, E62, o5225–o5227; https://doi.org/10.1107/s1600536806043054..Search in Google Scholar

Received: 2025-07-15
Accepted: 2025-10-02
Published Online: 2025-10-23
Published in Print: 2025-12-17

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of (1Z, 2Z)-3-phenyl-2-propenal 2-(4-bromo-2-fluorophenyl)hydrazone, C15H12BrFN2
  4. Refinement of crystal structure of 2-(2,3-dihydro-3-oxo-1 H -inden-1-ylidene)-1 H -indene-1,3(2 H )-dione C18H10O3
  5. The crystal structure of 3-(1-fluoro-2-(naphthalen-2-yl)-2-oxoethyl)-2-methoxy-3,4-dihydroisoquinolin-1(2H)-one, C22H18FNO3
  6. Crystal structure of the dinuclear copper(II) complex bis(μ2-2,2′ -{[1,3-phenylenebis-(methylene)]bis(oxy)}dibenzoaot-κ4O,O′:O′′,O′′′)-bis(dimethylformamide-κ1O)dicopper(II), C50H44Cu2N2O14
  7. Crystal structure of poly[triaqua-(μ9-biphenyl-3,3′,5,5′-tetracarboxylic-κ8 O,O:O,O′: O,O″:O,O‴)samarium(III)sodium(I)], C16H12NaSmO11
  8. The crystal structure of 5-benzyl-1-(4-fluorobenzyl)-4-((4-fluorobenzyl)oxy)-1,5-dihydro-2H-pyrrol-2-one, C25H21F2NO2
  9. The crystal structure of diammonium 2,5-dihydroxyterephthalate, C8H12N2O6
  10. Crystal structure of (E)-4-(4-(1H-1,2,4-triazol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[b]oxepin-5(2H)-one, C21H19N3O4
  11. Crystal structure of poly[oktakis(μ2-oxido-κ2O:O)-tetrakis(oxido-κ1O)-bis(μ2-1,1′-[1,4-phenylenebis(methylene)]di(1H-imidazole-κ2N:N′))-tetravanadium(V)-dizinc(II)] monohydrate, C28H30Zn2N8O13V4
  12. Crystal structure of acotiamide hydrochloride dimethylacetamide solvate (1/1), C25H40ClN5O6S
  13. Crystal structure of catena-poly[monoaqua (u2-(3-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic-k4O:O′:O″:N)zinc(II))] monohydrate, C15H11NO10Zn
  14. Crystal structure of dichlorido{2,6-bis(3,5-diisopropyl-N-pyrazolyl)pyridine}zinc(II), C23H33Cl2N5Zn
  15. Crystal structure of nitrato-κ2O,O′-[hydridotris(3,5-diethylpyrazol-1-yl)borato-κ3N,N′,N″]copper(II), C21H34BCuN7O3
  16. Crystal structure of 2,7-bis(3,5-diethyl-1H-pyrazol-4-yl)-benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone, C28H26N6O4
  17. Crystal structure of 2-(4-chlorophenyl)benzothiazole, C13H8ClNS
  18. Synthesis and crystal structure (3R,4′S)-4′-(3,5-dibromophenyl)-1′-methyl-2H-dispiro [benzofuran-3,3′-pyrrolidine-2′,2″-indene]-1″,2,3″-trione, C26H17Br2NO4
  19. Crystal structure of bis(((3a,7a-dihydro-1H-benzo[d][1,2,3]triazol-1-yl)methyl) triphenylphosphonium) tetrachloridomanganate(II), C50H42Cl4MnN6P2
  20. The crystal structure of 4,9-bis(4-chlorophenyl)-1,6-bis(2-cyanobenzyl)-2,4a,5,6,7,7a-hexahydro-1H-2,7,5-(epiprop[2]ene[1,1,3]triyl)pyrrolo[3,4-b]pyridine-3,10-dicarbonitrile, C40H26Cl2N6
  21. The crystal structure of poly((μ2-3-(3-nitro-4-carboxylphenyl)benzoate-κ3O, O′:O″)-μ2-1,4-bis(1-imidazolyl)benzene-κ2N:N′-cadmium(II)), C26H17N5O6Cd
  22. The crystal structure of 6-hydroxy-5H-pyrrolo[3,4-b]pyridine-5,7(6H)-dione monohydrate, C7H6N2O4
  23. Crystal structure of 4-((cyclohexylsulfonyl)methyl)-1,2,3,4-tetrahydrobenzo [4,5]imidazo[1,2-a]pyridine, C18H24N2O2S
  24. Crystal structure of 4,7-diphenyl-1,10-phenanthroline-κ2N,N′)-bis(2,4-di(fluorine)-1-phenylpyridine-κ2C,N)-iridium(III) hexafluorophosphate–dichloromethane (1/1), C47H30Cl2F10IrN4P
  25. Crystal structure of (4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)boronic acid, C19H15BN2O2
  26. The crystal structure of (E)-(2-((pyridin-2-ylmethylene)amino)phenyl)arsonic acid, C12H11AsN2O3
  27. The crystal structure of N(benzyl(phenyl)carbomothioyl)benzamide, C21H18N2OS
  28. The crystal structure of bis(2-picolinium) hexachlorostannate dichloromethane monosolvate, C13H18Cl8N2Sn
  29. Crystal structure of poly[tetraaqua-bis(μ4-3–1-(carboxylatomethyl)-1H-1,2,4-triazole-3-carboxylato)-κ4O:O′,O″,N)zinc(II)], C5H7N3O6Zn
  30. The crystal structure of the co-crystal isonicotinamide – 2-(nitrophenyl)methanol (1/1), C6H6N2O·C7H7NO3
  31. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2-fluorobenzoate hydrate, C23H25F2N3O6
  32. Crystal structure of [diaqua-{1H-benzo[d]imidazol-3-ium-5,6-dicarboxylato-κ2O,O′}magnesium(II)] C18H14MgN4O10
  33. Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl) (2-iodo-5-methoxyphenyl)methanone, C20H20INO5
  34. The crystal structure of 3,7,11-trimethylbenzo[5,6][1,4]thiazino[2,3,4-kl]phenothiazine 5,5,9,9-tetraoxide, C21H17NO4S2
  35. Crystal structure of tris(piperazine-1,4-diium)bis(2-hydroxy-1,2,3-propane-tricarboxylate) pentahydrate, C24H56N6O19
  36. Crystal structure of 2-chloro-5-((5-isopropyl-2-methylphenoxy)methyl)pyridine, C16H18ClNO
  37. Crystal structure of (E)-4-(4-(1H-pyrrol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[(b)]oxepin-5(2H)-one, C23H21NO4
  38. Crystal structure of (E)-N′-(3,4-dichlorobenzylidene)-3,4,5-trimethoxybenzohydrazide, C17H16Cl2N2O4
  39. The crystal structure of 2-(2-hydroxyphenyl)-3-(pyridin-2-yl)-2,3- dihydroquinazolin-4(1H)-one, C19H15N3O2
  40. Crystal structure of 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-8-methylchroman-4-one, C17H16O5
  41. Crystal structure of bis[(3,4-dimethoxybenzyl)triphenylphosphonium]di-μ2-bromido-dibromidodicopper(I)
  42. Crystal structure of bis [(1,3-dioxolan-2-ylmethyl)triphenylphosphonium] tetrabromidodicopper(I), C22H22Br2CuO2P
  43. Crystal structure of [1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid], C12H8N2O5
  44. The crystal structure of one-dimensional cooridnation polymer bis(thiocyanato)-bis((1E,2E)-1,2-bis(1-(pyridin-3-yl)ethylidene)-hydrazine κ2N:N)iron(II), (C30H28N10S2Fe)n
  45. Crystal structure of ((4-acetamidophenyl)sulfonyl)-l-alanine, C11H14N2O5S
  46. Crystal structure of [(1-naphthalen-1-yl-methyl)triphenylphosphonium] dichloridocopper(I), [C29H24P]+[CuCl2]
  47. RbTm3S5: the first rubidium lanthanoid(III) sulfide with CsEr3Se5-type crystal structure
  48. Crystal structure of 2,2′-((ethane-1,2-diylbis(methylammoniumdiyl))bis(methylene))bis(pyridin-1-ium) diiodido-tris(μ2-iodido-κ2I:I)dicopper(II) chloride dihydrate, C16H30Cu2I6N4O2
  49. The crystal structure of 4-(trifluoromethyl)pyridine-2-carboxylic acid, C7H4F3NO2
  50. The crystal structure of (E)-2-ethoxy-1-methoxy-4-(2-(methylsulfonyl)vinyl)benzene, C12H16O4S
  51. Crystal structure of potassium 1H,1H,2H,2H-perfluorooctanesulfonate, C8H4O3F13SK
  52. Crystal structure of 4-(4-(quinolin-8-yloxy)-1,2,5-thiadiazol-3-yl)morpholine, C15H14O2N4S
  53. The crystal structure of 1,4-bis(bromomethyl)-2,5-dimethylbenzene, C10H12Br2
  54. The crystal structure of imidazo[4,5-e][1,3]diazepine-4,6,8-triamine methanol solvate, C7H11N7O
  55. The crystal structure of chlorido-bis(1,10-phenantroline-κ2N,N′)-(2-formylphenoxyacetato-κ2O,O) lead(II), C33H23N4O4ClPb
  56. Crystal structure of pyridinium tetrakis(1,1,1-trifluoro-2,4-pentadionato-κ2O,O′)yttrium(III) C20F12H16YO8C5H6N
Downloaded on 10.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0316/html
Scroll to top button