Home Mathematics Some estimates for commutators of bilinear pseudo-differential operators
Article Open Access

Some estimates for commutators of bilinear pseudo-differential operators

  • Yanqi Yang EMAIL logo and Shuangping Tao
Published/Copyright: October 28, 2022

Abstract

We obtain a class of commutators of bilinear pseudo-differential operators on products of Hardy spaces by applying the accurate estimates of the Hörmander class. And we also prove another version of these types of commutators on Herz-type spaces.

MSC 2010: 42B20; 42B25; 47G30

1 Introduction and main results

Let T be a linear operator. Given a function b , the commutator [ T , b ] is defined by

[ T , b ] ( f ) T ( b f ) b T ( f ) .

It is very interesting that T is a pseudo-differential operator because its theory plays an important role in many aspects of harmonic analysis and it has had quite a success in a linear setting. As one of the most meaningful branches, the study of bilinear pseudo-differential operators was motivated not only as generalizations of the theory of linear ones but also its natural appearance in Harmonic. This topic is continuous to attract many researchers.

Let b be a Lipschitz function and 1 < p < . The estimates of the form

(1.1) [ T , b ] ( f ) L p b Lip 1 f L p , for all f L p ( R n )

have been studied extensively. In particular, Calderón proved that (1.1) holds when T is a pseudo-differential operator whose kernel is homogeneous of degree of n 1 in [1]. Coifman and Meyer showed (1.1) when T = T σ and σ is a symbol in the Hörmander class S 1 , 0 1 in [2,3], and this result was later extended by Auscher and Taylor in [4] to σ S 1 , 1 1 , where the class S 1 , 1 1 , which contains S 1 , 0 1 modulo symbols associated with smoothing operators, consists of symbols whose Fourier transforms in the first n -dimensional variable are appropriately compactly supported. The method in the proofs of [2,3] mainly showed that, for each Lipschitz continuous function b on R n , [ T , b ] is a Calderón-Zygmund singular integral whose kernel constants are controlled by b Lip 1 . For another thing, Auscher and Taylor proved (1.1) in two different ways: one method is based on the paraproducts while another is based on the Calderón-Zygmund singular integral operator approach that relies on the T ( 1 ) theorem. For a more systematic study of these (and even more general) spaces, we refer the readers to [5,6].

Given a bilinear operator T and a function b , the following two kinds of commutators are, respectively, defined by

[ T , b ] 1 ( f , g ) = T ( b f , g ) b T ( f , g )

and

[ T , b ] 2 ( f , g ) = T ( f , b g ) b T ( f , g ) .

In 2014, Bényi and Oh proved that (1.1) is also valid for this bilinear setting in [7]. More precisely, given a bilinear pseudo-differential operator T σ with σ in the bilinear Hörmander class BS 1.0 1 and a Lipschitz function b on R n , it was proved in [7, Theorem 1] that [ T , b ] 1 and [ T , b ] 2 are bilinear Calderón-Zygmund operators. The main aim of this article is to study (1.1) of [ T σ , b ] j ( j = 1 , 2 ) on the products of Hardy spaces and Herz-type spaces with σ BS 1.1 1 . Before stating our main results, we need to recall some definitions and notations.

We say that a function b defined on R n is Lipschitz continuous if

b Lip 1 sup x , y R n b ( x ) b ( y ) x y < .

Let δ 0 , ρ > 0 and m R . An infinitely differentiable function σ : R n × R n × R n C belongs to the bilinear Hörmander class BS ρ , δ m if for all multi-indices α , β , γ N 0 n there exists a positive constant C α , β , γ such that

x α ξ β η γ σ ( x , ξ , η ) C ( 1 + ξ + η ) m + δ α ρ ( β + γ ) .

Given a σ ( x , ξ , η ) BS ρ , δ m , the bilinear pseudo-differential operator associated with σ is defined by

T σ ( f , g ) ( x ) = R n R n σ ( x , ξ , η ) f ˆ ( ξ ) g ˆ ( η ) e 2 π i x ( ξ + η ) d ξ d η , for all x R n , f , g S ( R n ) .

In 1980, Meyer [8] first introduced the linear BS 1 , 1 m , and corresponding boundedness of [ T σ , a ] j ( j = 1 , 2 ) is obtained by Bényi and Oh in [7], that is given m R and r > 0 , an infinitely differentiable function σ : R n × R n × R n C belongs to r BS 1.1 m if

σ B S 1 , 1 m , supp ( σ ˆ 1 ) { ( τ , ξ , η ) R 3 n : τ r ( ξ + η ) } ,

where σ ˆ 1 denotes the Fourier transform of σ with respect to its first variable in R n , that is, σ ˆ 1 ( τ , ξ , η ) = σ ( , ξ , η ) ^ ( τ ) . for all τ , ξ , η R n . The class BS 1.1 m is defined as

BS 1 , 1 m = r ( 0 , 1 7 ) r BS 1 , 1 m .

Recently, many authors are interested in bilinear operators, which is a natural generalization of linear case. With further research, Bényi and Naibo proved the boundedness for the commutators of bilinear pseudo-differential operators and Lipschitz functions with σ BS 1.1 1 on the Lebesgue spaces in [9]. In 2018, Tao and Li proved that the boundedness of the commutators of bilinear pseudo-differential operators was also true on the classical and generalized Morrey spaces in [10]. Motivated by the results mentioned above, a natural and interesting problem is to consider whether or not (1.1) is true on the products of Hardy spaces and Herz-type spaces with σ BS 1.1 1 . The purpose of this article is to give a surely an answer. Our proofs are based on the pointwise estimates of the sharp maximal function proved in the next section.

Suppose that σ BS 1 , 1 1 . Let K and K j denote the kernel of T σ and [ T σ , b ] j ( j = 1 , 2 ) , respectively. We have

K ( x , y , z ) = e i ξ ( x y ) e i η ( x z ) σ ( x , ξ , η ) d ξ d η , K 1 ( x , y , z ) = ( b ( y ) b ( x ) ) K ( x , y , z ) , K 2 ( x , y , z ) = ( b ( z ) b ( x ) ) K ( x , y , z ) .

Then the following consequences are true.

Theorem A

[7, Lemma 3] If x y or x z , then we have

  1. x α y β z γ K ( x , y , z ) C α , β , γ ( x y + x z ) 2 n 1 α β γ ,

  2. K j ( x , y , z ) b Lip 1 ( x y + x z + y z ) 2 n .

Let m 1 be a positive integer and K ( x , y 1 , , y m ) be a locally integrable function defined away from the diagonal x = y 1 = = y m in ( R n ) m + 1 and C be a positive constant. We say that K is a multilinear Calderón-Zygmund kernel if it satisfies the size condition that for all ( x , y 1 , , y m ) ( R m ) m + 1 with x y s for some 1 s m ,

K ( x , y 1 , , y m ) C ( x y 1 + + x y m ) m n

and satisfies the regularity condition that

K ( x , y 1 , , y m ) K ( x , y 1 , , y m ) C x x ( x y 1 + + x y m ) m n 1

whenever max 1 k m x y k 2 x x , and also that for each fixed k with 1 k m ,

(1.2) K ( x , y 1 , , y k 1 , y k , y k + 1 , , y m ) K ( x , y 1 , , y k 1 , y k , y k + 1 , , y m ) C x x ( x y 1 + + x y m ) m n 1

whenever max 1 s m x y s 2 y k y k .

The statements of our main theorems are presented as follows.

Theorem 1.1

Let σ BS 1 , 1 1 and b be a Lipschitz function on R n . Suppose that for all bounded functions a i supported on some cubes in R n with R n a i ( x ) d x = 0 for i = 1 , 2 ,

R m [ T σ , b ] j ( a 1 , a 2 ) ( x ) x α d x = 0

for every multi-index α with α n , where α = ( α 1 , , α n ) ( N { 0 } ) n and α = i = 1 n α i . Then [ T σ , b ] j ( j = 1 , 2 ) extends boundedly from H p 1 ( R n ) × H p 2 ( R n ) into H p ( R n ) for p 1 , p 2 n / ( n + 1 ) , 1 and p with 1 / p = 1 / p 1 + 1 / p 2 and n ( 1 / p 1 ) = m , where s for any s R denotes the integer not greater than s .

Theorem 1.2

Let σ BS 1 , 1 1 and b be a Lipschitz function on R n . Suppose 0 p 1 , p 2 1 , 1 < q 1 , q 2 < , 1 / p = 1 / p 1 + 1 / p 2 , 1 / q = 1 / q 1 + 1 / q 2 . If [ T σ , b ] j ( j = 1 , 2 ) is bounded from L q 1 × L q 2 into L q , with controlled by a Lip 1 , then [ T σ , b ] j ( j = 1 , 2 ) is bounded from K ˙ q 1 n ( 1 1 / q 1 ) , p 1 ( R n ) × K ˙ q 2 n ( 1 1 / q 2 ) , p 2 ( R n ) into W K ˙ q 2 n ( 2 1 / q ) , p ( R n ) .

Throughout this article, for 1 p , p is the conjugate index of p , that is, 1 / p + 1 / p = 1 . B ( x , R ) denotes the ball centered at x with radius R > 0 and f B = 1 B ( x , R ) B ( x , R ) f ( y ) d y . The boundedness of commutators on product of Hardy spaces is presented in Section 2. The boundedness of commutators on product of Herz-type spaces is given in Section 3.

2 Boundedness on product of Hardy spaces

Definition 2.1

[11] Let p ( 0 , 1 ] . The Hardy space H p ( R n ) is defined by

H p ( R n ) { f S ( R n ) : φ + ( f ) sup t > 0 φ t f L p ( R n ) } ,

where φ S ( R n ) with R n φ ( x ) d x = 1 , and for any y R n and t ( 0 , ) , φ t ( y ) = t n φ ( y / t ) . Moreover, define

f H p ( R n ) φ + ( f ) L p ( R n ) .

It is known that the definition of Hardy space H p ( R n ) does not depend on the choice of φ (see [11]).

Definition 2.2

[12] Let p ( 0 , 1 ] and q [ 1 , ] with p q . For s Z satisfying s n ( 1 / p 1 ) , a real-valued function a ( x ) is called a ( p , q , s ) -atom centered at x 0 if

  1. a L q ( R n ) and is supported in a cube Q centered at x 0 ;

  2. a L q ( R n ) Q 1 / q 1 / p ;

  3. R n a ( x ) x α d x = 0 for every multi-index α with α s .

Let H fin p , q , s ( R n ) be the set of all finite linear combinations of ( p , q , s ) -atoms. For any f H fin p , q , s ( R n ) , define

f H fin p , q , s ( R n ) i = 1 k λ i p 1 / p : f = i = 1 k λ i a i , k N , { a i } i = 1 k are ( p , q , s ) -atoms .

Denote by C ( R n ) the set of all continuous. Meda et al. proved the following result in [13], which ensures that a bounded linear operator on H fin p , q , s ( R n ) with q < or H fin p , q , s ( R n ) C ( R n ) can be extended to be a bounded operator on H p ( R n ) .

Lemma 2.1

[13] Let p ( 0 , 1 ] , q [ 1 , ] with p q and s Z satisfying s n ( 1 / p 1 ) . The quasi-norms H fin p , q , s ( R n ) and H p ( R n ) are equivalent on H fin p , q , s ( R n ) where q < and on H fin p , q , s ( R n ) C ( R n ) when q = .

To prove Theorem 1.2, we need the boundedness of [ T σ , a ] j ( j = 1 , 2 ) on products of Lebesgue spaces.

Lemma 2.2

[9] If σ BS 1 , 1 m and b is a Lipschitz function on R n , then the commutators [ T σ , b ] j ( j = 1 , 2 ) are bilinear Calderón-Zygmund operators. In particular, [ T σ , b ] j , j = 1 , 2 are bounded from L p 1 × L p 2 into L p for 1 p = 1 p 1 + 1 p 2 and 1 < p 1 , p 2 < and verify appropriate end-point boundedness properties. Moreover, the corresponding norms of the operators are controlled by b Lip 1 .

Lemma 2.3

Let σ BS 1 , 1 1 and b be a Lipschitz function on R n . Suppose that a 1 is a ( p 1 , , 0 ) -atom supported on Q 1 and a 2 be a ( p 2 , , 0 ) -atom supported on Q 2 , with p 1 , p 2 ( n / n + 1 , 1 ] . Then

  1. for any y ( 2 Q 1 ) c ,

    [ T σ , b ] j ( a 1 , a 2 ) ( y ) b Lip 1 Q 2 1 p 2 Q 1 1 + 1 n 1 p 1 y x Q 1 n + 1 ,

    while for any y ( 2 Q 2 ) c ,

    [ T σ , b ] j ( a 1 , a 2 ) ( y ) b Lip 1 Q 1 1 p 2 Q 2 1 + 1 n 1 p 1 y x Q 2 n + 1 ;

  2. for any y ( 2 Q 1 ) c y ( 2 Q 2 ) c ,

    [ T σ , b ] j ( a 1 , a 2 ) ( y ) b Lip 1 min Q 1 1 + 1 n 1 p 1 Q 2 1 1 p 2 ( y x Q 1 + y x Q 2 ) 2 n + 1 , Q 2 1 + 1 n 1 p 2 Q 1 1 1 p 1 ( y x Q 1 + y x Q 2 ) 2 n + 1 ;

  3. for any cube R R n

    R φ + [ T σ , b ] j ( a 1 , a 2 ) ( x ) d x b Lip 1 R 1 2 min Q 1 1 2 1 p 1 Q 2 1 p 2 , Q 1 1 p 2 Q 2 1 2 1 p 1 .

Proof of Lemma 2.3

To obtain the conclusion of Lemma 2.3, we only prove (ii) and (iii). Together with (1.2), Theorem A and the vanishing moment of a 1 , it follows that for any y ( 2 Q 1 ) c y ( 2 Q 2 ) c ,

[ T σ , b ] j ( a 1 , a 2 ) ( y ) ( R n ) 2 K j ( y , z 1 , z 2 ) K j ( y , x Q 1 , z 2 ) a 1 ( z 1 ) a 2 ( z 2 ) d z 1 d z 2 b Lip 1 ( R n ) 2 z 1 x Q 1 ( y z 1 + y z 2 ) 2 n + 1 a 1 ( z 1 ) a 2 ( z 2 ) d z 1 d z 2 b Lip 1 l ( Q 1 ) ( y x Q 1 + y x Q 2 ) 2 n + 1 k = 1 2 a k L 1 ( R n ) b Lip 1 Q 1 1 + 1 n 1 p 1 Q 2 1 1 p 2 ( y x Q 1 + y x Q 2 ) 2 n + 1 .

Similarly, applying the vanishing moment of a 2 , we obtain

[ T σ , b ] j ( a 1 , a 2 ) ( y ) b Lip 1 Q 2 1 + 1 n 1 p 2 Q 1 1 1 p 1 ( y x Q 1 + y x Q 2 ) 2 n + 1 ,

and conclusion (ii) follows directly.

To prove conclusion (iii), we first observe that for any g L loc 1 ( R n ) and x R n ,

φ + ( g ) ( x ) M ( g ) ( x ) ,

where M is the Hardy-Littlewood maximal operator. By Hölder’s inequality, the fact φ + is bounded on L 2 ( R n ) , Lemma 2.1 and the size condition of a 1 and a 2 , we have

R φ + [ T σ , b ] j ( a 1 , a 2 ) ( x ) d x R 1 2 φ + [ T σ , b ] j ( a 1 , a 2 ) L 2 ( R n ) b Lip 1 R 1 2 a 1 L 2 ( R n ) a 1 L ( R n ) b Lip 1 R 1 2 Q 1 1 2 1 p 1 Q 2 1 p 2 ,

and similarly,

R φ + [ T σ , b ] j ( a 1 , a 2 ) ( x ) d b Lip 1 R 1 2 Q 1 1 p 1 Q 2 1 2 1 p 2 .

This leads conclusion (iii) and completes the proof of Lemma 2.3.□

Lemma 2.4

[14] Let p ( 0 , 1 ] . Then there exists a positive constant C p such that for all finite collections of cubes { Q k } k = 1 K in R n and all nonnegative integrable functions g k with supp ( g k ) Q k ,

k = 1 K g k L p ( R n ) C p k = 1 K 1 Q k Q k g k ( x ) d x χ Q k L p ( R n ) ,

where Q k denotes the cube with the same center as Q k and 2 n its side-length.

Proof of Theorem 1.1

By Lemma 2.1 and a density argument, it suffices to prove that [ T σ , b ] j ( j = 1 , 2 ) is bounded from ( H fin p 1 , , 0 ( R n ) C ( R n ) ) × ( H fin p 2 , , 0 ( R n ) C ( R n ) ) into H p ( R n ) , i = 1 , 2 , we decompose f i as

f i ( x ) = k i λ i , k i a i , k i ( x ) ,

where a i , k i are ( p i , , 0 ) -atoms in Definition 2.2. This means that a i , k i are functions supported in cubes Q i , k i and satisfy the properties a i , k i L ( R n ) Q i , k i 1 / p i and Q i , k i a i , k i d x = 0 . Without loss of generality, we may assume that for fixed Q 1 , k 1 and Q 2 , k 2 , l ( Q 1 , k 1 ) l ( Q 2 , k 2 ) . It is easy to see that there exists a cube R k 1 , k 2 such that

( Q 1 , k 1 Q 2 , k 2 ) R k 1 , k 2 R k 1 , k 2 ( Q 1 , k 1 Q 2 , k 2 )

and R k 1 , k 2 C 1 Q 1 , k 1 , where C 1 ( 0 , 1 ) is a constant independent of R k 1 , k 2 and Q i , k i with i = 1 , 2 . Our purpose is to show

(2.1) k 1 k 2 λ 1 , k 1 λ 2 , k 2 φ + [ [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ] L p ( R n ) b Lip 1 i = 1 2 k i λ i , k i p i 1 / p i .

For this goal, we write

k 1 k 2 λ 1 , k 1 λ 2 , k 2 φ + [ [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ] L p ( R n ) k 1 k 2 λ 1 , k 1 λ 2 , k 2 φ + [ [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ] χ Q 1 , k 1 Q 2 , k 2 L p ( R n ) + k 1 k 2 λ 1 , k 1 λ 2 , k 2 φ + [ [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ] χ ( Q 1 , k 1 ) c ( Q 2 , k 2 ) c L p ( R n ) + k 1 k 2 λ 1 , k 1 λ 2 , k 2 φ + [ [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ] χ ( Q 1 , k 1 ) c Q 2 , k 2 L p ( R n ) + k 1 k 2 λ 1 , k 1 λ 2 , k 2 φ + [ [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ] χ Q 1 , k 1 ( Q 2 , k 2 ) c L p ( R n ) i = 1 4 E i .

It follows from Lemma 2.4, (iii) of Lemma 2.3 and Hölder’s inequality that

E 1 k 1 k 2 λ 1 , k 1 λ 2 , k 2 1 R k 1 , k 2 R k 1 , k 2 φ + [ [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ] ( x ) d x χ R k 1 , k 2 L p ( R n ) b Lip 1 k 1 k 2 λ 1 , k 1 λ 2 , k 2 1 R k 1 , k 2 1 / 2 Q 1 , k 1 1 2 1 p 1 Q 2 , k 2 1 p 2 χ R k 1 , k 2 L p ( R n ) b Lip 1 i = 1 2 k i λ i , k i Q i , k i i / p i χ Q i , k i b Lip 1 i = 1 2 k i λ i , k i p i 1 / p i .

We now turn to estimate E 2 . Since [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) has vanishing moment up to order n , we can subtract the Taylor polynomial P n of the function φ ( x y ) at the point ( x x Q 1 , k 1 ) with x ( Q 1 , k 1 ) c ( Q 2 , k 2 ) c and y R n . Set

Δ ( t , x , y ) φ t ( x , y ) P t n ( x x Q 1 , k 1 ) ,

and for all x ( Q 1 , k 1 ) c ( Q 2 , k 2 ) c , write

φ + [ [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ] ( x ) sup t > 0 2 Q 1 , k 1 2 Q 2 , k 2 Δ ( t , x , y ) [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y

+ sup t > 0 ( 2 Q 1 , k 1 ) c ( 2 Q 2 , k 2 ) c Δ ( t , x , y ) [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y + sup t > 0 ( 2 Q 1 , k 1 ) c 2 Q 2 , k 2 Δ ( t , x , y ) [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y + sup t > 0 2 Q 1 , k 1 ( 2 Q 2 , k 2 ) c Δ ( t , x , y ) [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y i = 1 4 Φ i ( a 1 , k 1 , a 2 , k 2 ) ( x ) .

Thus,

E 2 i = 1 4 k 1 k 2 λ 1 , k 1 λ 2 , k 2 Φ i ( a 1 , k 1 , a 2 , k 2 ) χ ( Q 1 , k 1 ) c ( Q 2 , k 2 ) c L p ( R n ) E 2 i .

Our assumption p 1 , p 2 ( n / ( n + 1 ) , 1 ] and 1 / p = 1 / p 1 + 1 / p 2 with n ( 1 / p 1 ) = n guarantee that we can choose θ ( 0 , 1 ) such that p 1 > n ( n + θ ) and p 2 > n ( n + 1 θ ) . On the other hand, we can verify that for all x ( Q 1 , k 1 ) c ( Q 2 , k 2 ) c and y 2 Q 1 , k 1 2 Q 1 , k 1 , x x Q 1 , k 1 x y x x Q 2 , k 2 , and then for all t ( 0 , ) ,

Δ ( t , x , y ) y x Q 1 , k 1 n + 1 x x Q 1 , k 1 2 n + 1 Q 1 , k 1 1 2 + θ n x x Q 1 , k 1 n + θ Q 1 , k 1 1 2 + 1 n θ n x x Q 1 , k 1 n + 1 θ ,

since we assume that l ( Q 1 , k 1 ) l ( Q 2 , k 2 ) . This, together with Lemma 2.2 and Hölder’s inequality, tells us that

E 21 R n k 1 k 2 λ 1 , k 1 λ 2 , k 2 Q 1 , k 1 1 2 + θ n x x Q 1 , k 1 n + θ Q 2 , k 2 1 2 + 1 n θ n x x Q 2 , k 2 n + 1 θ × 2 Q 1 , k 1 2 Q 2 , k 2 [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y χ ( Q 1 , k 1 ) c ( Q 2 , k 2 ) c ( x ) p d x 1 p R n k 1 k 2 λ 1 , k 1 λ 2 , k 2 Q 1 , k 1 1 2 + θ n x x Q 1 , k 1 n + θ Q 2 , k 2 1 2 + 1 n θ n x x Q 2 , k 2 n + 1 θ × b Lip 1 a 1 , k 1 L 2 ( R n ) a 2 , k 2 L 2 ( R n ) χ ( Q 1 , k 1 ) c ( Q 2 , k 2 ) c ( x ) ] p d x } 1 p a 1 , k 1 L 2 ( R n ) k 1 λ 1 , k 1 p 1 ( Q 1 , k 1 ) c Q 1 , k 1 ( 1 + θ n 1 p 1 ) p 1 x x Q 1 , k 1 ( n + θ ) p 1 d x 1 / p 1 × b Lip 1 a 1 , k 1 L 2 ( R n ) k 2 λ 2 , k 2 p 2 ( Q 2 , k 2 ) c Q 2 , k 2 ( 1 + 1 n θ n 1 p 2 ) p 1 x x Q 2 , k 2 ( n + 1 θ ) p 2 d x 1 / p 2 b Lip 1 i = 1 2 k i λ i , k i p i 1 / p i .

The estimate for E 22 is cumbersome but straightforward. For i , s = 0 , 1 , , let

I i s ( 2 i + 1 Q 1 , k 1 \ 2 i Q 1 , k 1 ) ( 2 s + 1 Q 2 , k 2 \ 2 s Q 2 , k 2 ) .

For simplicity, we may assume that 2 Q 1 , k 1 1 2 Q 1 , k 1 and 2 Q 2 , k 2 1 2 Q 2 , k 2 . Otherwise, for any i , s = 0 , 1 , , replace 2 i 1 Q 1 , k 1 and 2 i 1 Q 2 , k 2 by max { 2 i 1 Q 1 , k 1 , 2 Q 1 , k 1 } and max { 2 i 1 Q 2 , k 2 , 2 Q 2 , k 2 } , respectively, in the remaining part of the proof. For all x I i s with i , s = 0 , 1 , , write

Φ 2 ( a 1 , k 1 , a 2 , k 2 ) ( x ) sup t > 0 ( 2 i 1 Q 1 , k 1 ) c ( 2 s 1 Q 2 , k 2 ) c Δ ( t , x , y ) [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y + sup t > 0 ( 2 i 1 Q 1 , k 1 \ 2 Q 1 , k 1 ) ( 2 s 1 Q 2 , k 2 ) c Δ ( t , x , y ) [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y + sup t > 0 ( 2 i 1 Q 1 , k 1 ) c ( 2 s 1 Q 2 , k 2 \ 2 Q 2 , k 2 ) 2 Δ ( t , x , y ) [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y + sup t > 0 ( 2 i 1 Q 1 , k 1 \ 2 Q 1 , k 1 ) ( 2 s 1 Q 2 , k 2 \ 2 Q 2 , k 2 ) 2 Δ ( t , x , y ) [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y k = 1 4 Φ 2 k ( a 1 , k 1 , a 2 , k 2 ) ( x ) .

Consequently,

E 22 k = 1 4 i = 0 s = 0 R n [ λ 1 , k 1 λ 2 , k 2 Φ 2 k ( a 1 , k 1 , a 2 , k 2 ) ( x ) χ I i s ( x ) ] p d x 1 / p = k = 1 4 E 22 k .

To estimate E 11 1 , we further decompose that for all x I i s with i , s = 0 , 1 , ,

Φ 21 ( a 1 , k 1 , a 2 , k 2 ) ( x ) sup t > 0 ( 2 i 1 Q 1 , k 1 ) c ( 2 s 1 Q 2 , k 2 ) c φ t ( x y ) [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y + sup t > 0 ( 2 i 1 Q 1 , k 1 ) c ( 2 s 1 Q 2 , k 2 ) c P t n ( x x 1 , Q 1 ) [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y φ + [ [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) χ ( 2 i 1 Q 1 , k 1 ) c ( 2 s 1 Q 2 , k 2 ) c ] ( x ) + 1 x x Q 1 , k 1 n ( 2 i 1 Q 1 , k 1 ) c ( 2 s 1 Q 2 , k 2 ) c [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y = Λ 1 ( a 1 , k 1 , a 2 , k 2 ) ( x ) + Λ 2 ( a 1 , k 1 , a 2 , k 2 ) ( x ) ,

and also

E 22 1 k = 1 2 i = 0 s = 0 R n k 1 k 2 Λ k ( a 1 , k 1 , a 2 , k 2 ) ( x ) χ I i s ( x ) p d x 1 / p = k = 1 2 F k .

Note that there exists some cube R i s such that

( 2 i + 1 Q 1 , k 1 ) ( 2 s + 1 Q 2 , k 2 ) R i s R i s [ ( 2 i + 1 Q 1 , k 1 ) ( 2 s + 1 Q 2 , k 2 ) ] ,

and R i s C 1 2 i + 1 Q 1 , k 1 . Thus, by Hölder’s inequality, the fact that φ + is bounded on L 2 ( R n ) , (ii) of Lemma 2.3, and the assumption l ( Q 1 , k 1 ) l ( Q 2 , k 2 ) , then we have that

R i s φ + [ [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) χ ( 2 i 1 Q 1 , k 1 ) c ( 2 s 1 Q 2 , k 2 ) c ] ( x ) d x R i s 1 / 2 ( 2 i 1 Q 1 , k 1 ) c ( 2 s 1 Q 2 , k 2 ) c [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( x ) 2 d x 1 / 2 b Lip 1 Q 1 , k 1 1 + θ n 1 p 1 Q 2 , k 2 1 + 1 n θ n 1 p 2 2 i Q 1 , k 1 1 + θ n 2 s Q 2 , k 2 1 + 1 n θ n R i s ,

which, along with Lemma 2.4, implies that

F 1 i = 0 s = 0 λ 1 , k 1 λ 2 , k 2 1 R i s R s φ + [ [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( x ) χ ( 2 i 1 Q 1 , k 1 ) c ( 2 s 1 Q 2 , k 2 ) c ] ( x ) χ R i s L p ( R n ) p 1 / p b Lip 1 i = 0 s = 0 λ 1 , k 1 λ 2 , k 2 Q 1 , k 1 1 + θ n 1 p 1 Q 2 , k 2 1 + 1 n θ n 1 p 2 2 i Q 1 , k 1 1 + θ n 2 s Q 2 , k 2 1 + 1 n θ n λ R i s L p ( R n ) p 1 / p b Lip 1 i = 1 2 k i λ i , k i p i 1 p i .

On the other hand, a trivial computation states that

( 2 i 1 Q 1 , k 1 ) c ( 2 s 1 Q 2 , k 2 ) c 1 ( y x Q 1 , k 1 + y x Q 2 , k 2 ) 2 n + 1 d y 1 2 i Q 1 , k 1 θ n 2 s Q 2 , k 2 1 + 1 n θ n .

Thus, by (ii) of Lemma 2.3 and the assumption l ( Q 1 , k 1 ) l ( Q 2 , k 2 ) , we obtain that for all x I i s with i , s = 0 , 1 , ,

Λ 2 ( a 1 , k 1 , a 2 , k 2 ) ( x ) b Lip 1 1 x x Q 1 , k 1 n ( 2 i 1 Q 1 , k 1 ) c ( 2 s 1 Q 2 , k 2 ) c Q 1 , k 1 1 + 1 n 1 p 1 Q 2 , k 2 1 1 p 2 ( y x Q 1 , k 1 + y x Q 2 , k 2 ) 2 n + 1 d y b Lip 1 Q 1 , k 1 1 + θ n 1 p 1 Q 2 , k 2 1 + 1 n θ n 1 p 2 2 i Q 1 , k 1 1 + θ n 2 s Q 2 , k 2 1 + 1 n θ n .

Therefore,

F 2 i = 0 s = 0 λ 1 , k 1 λ 2 , k 2 b Lip 1 Q 1 , k 1 1 + θ n 1 p 1 Q 2 , k 2 1 + 1 n θ n 1 p 2 2 i Q 1 , k 1 1 + θ n 2 s Q 2 , k 2 1 + 1 n θ n p I i s 1 / p b Lip 1 i = 0 λ 1 , k 1 p 1 Q 1 , k 1 1 + θ n 1 p 1 2 i Q 1 , k 1 1 + θ n p 2 i Q 1 , k 1 p / p 1 i = 0 λ 2 , k 2 p 2 Q 1 , k 1 1 + θ n 1 p 1 2 i Q 1 , k 1 1 + θ n p 2 i Q 1 , k 2 2 / p 2 1 / p b Lip 1 i = 1 2 k i λ i , k i p i 1 p i .

Combining the statements for F 1 and F 2 yields that

E 22 1 b Lip 1 i = 1 2 k i λ i , k i p i 1 p i .

To estimate methods for E 22 2 and E 22 3 are similar. We only deal with E 22 2 . Observe that for all x I i s with i , s = 0 , 1 , , and y ( 2 i 1 Q 1 , k 1 \ 2 Q 1 , k 1 ) ( 2 g + 1 Q 2 , k 2 \ 2 g Q 2 , k 2 ) with g = s 1 , s , ,

2 i l ( Q 1 , k 1 ) x y 2 g l ( Q 2 , k 2 ) .

(ii) of Lemma 2.3 and the assumption l ( Q 1 , k 1 ) l ( Q 2 , k 2 ) then tell us that for all x I i s with i , s = 0 , 1 , ,

Φ 22 ( a 1 , k 1 , a 2 , k 2 ) ( x ) ( 2 i 1 Q 1 , k 1 \ 2 Q 1 , k 1 ) ( 2 s 1 Q 2 , k 2 ) c 1 x y n + 1 x x Q 1 , k 1 n [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y b Lip 1 d y b Lip 1 Q 1 , k 1 1 + 1 n 1 p 1 Q 2 , k 2 1 1 p 2 2 i Q 1 , k 1 g = s 1 2 g + 1 Q 2 , k 2 \ 2 g Q 2 , k 2 1 y x Q 2 , k 2 2 n + 1 d y b Lip 1 Q 1 , k 1 1 + θ n 1 p 1 Q 2 , k 2 1 + 1 n θ n 1 p 2 2 i Q 1 , k 1 1 + θ n 2 s Q 2 , k 2 1 + 1 n θ n ,

which in turn leads to that

E 22 2 i = 0 s = 0 k 1 k 2 λ 1 , k 1 λ 2 , k 2 b Lip 1 Q 1 , k 1 1 + θ n 1 p 1 Q 2 , k 2 1 + 1 n θ n 1 p 2 2 i Q 1 , k 1 1 + θ n 2 s Q 2 , k 2 1 + 1 n θ n p I i s 1 / p b Lip 1 i = 1 2 k i λ i , k i p i 1 p i .

Similarly, we have

E 22 3 b Lip 1 i = 1 2 k i λ i , k i p i 1 p i .

We now turn to estimate E 22 4 . For this purpose, we first note that for all x I i s with i , s = 0 , 1 , ,

( 2 i 1 Q 1 , k 1 ) \ ( 2 Q 1 , k 1 ) ( 2 s 1 Q 2 , k 2 ) \ ( 2 Q 2 , k 2 ) y x Q 1 , k 1 n + 1 x y 2 n + 1 ( y x Q 1 , k 1 + y x Q 2 , k 2 ) 2 n + 1 d y 1 2 i Q 1 , k 1 1 + θ n 2 s Q 2 , k 2 1 + 1 n θ n ( 2 i 1 Q 2 , k 2 \ 2 Q 1 , k 1 ) 1 y x Q 1 , k 1 n d y i 2 i Q 1 , k 1 1 + θ n 2 s Q 2 , k 2 1 + 1 n θ n ,

which, along with (ii) of Lemma 2.3 and the assumption l ( Q 1 , k 1 ) l ( Q 2 , k 2 ) , gives us that for all x I i s with i , s = 0 , 1 , ,

Φ 24 ( a 1 , k 1 , a 2 , k 2 ) ( x ) ( 2 i 1 Q 1 , k 1 ) \ ( 2 Q 1 , k 1 ) ( 2 s 1 Q 2 , k 2 ) \ ( 2 Q 2 , k 2 ) y x Q 1 , k 1 n + 1 x y 2 n [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y b Lip 1 ( 2 i 1 Q 1 , k 1 ) \ ( 2 Q 1 , k 1 ) ( 2 s 1 Q 2 , k 2 ) \ ( 2 Q 2 , k 2 ) y x Q 1 , k 1 n + 1 Q 1 , k 1 1 + 1 n 1 p 1 Q 2 , k 2 1 1 p 2 x y 2 n ( y x Q 1 , k 1 + y x Q 2 , k 2 ) 2 n + 1 d y i b Lip 1 Q 1 , k 1 1 + θ n 1 p 1 Q 2 , k 2 1 + 1 n θ n 1 p 2 2 i Q 1 , k 1 1 + θ n 2 s Q 2 , k 2 1 + 1 n θ n .

Thus,

E 22 4 i = 0 s = 0 R n k 1 k 2 λ 1 , k 1 λ 2 , k 2 i b Lip 1 Q 1 , k 1 1 + θ n 1 p 1 Q 2 , k 2 1 + 1 n θ n 1 p 2 2 i Q 1 , k 1 1 + θ n 2 s Q 2 , k 2 1 + 1 n θ n I i s p d x 1 / p b Lip 1 i = 0 i p k 1 λ 1 , k 1 p 1 2 i + 1 Q 1 , k 1 \ 2 i Q 1 , k 1 Q 1 , k 1 1 + θ n 1 p 1 2 i Q 1 , k 1 1 + θ n p 1 d x p / p 1 × s = 0 k 2 λ 2 , k 2 p 2 2 s + 1 Q 2 , k 2 \ 2 s Q 2 , k 2 Q 2 , k 2 1 + 1 n θ n 1 p 2 2 s Q 2 , k 2 1 + 1 n θ n p 2 d x p / p 2 1 / p b Lip 1 i = 1 2 k i λ i , k i p i 1 p i .

Combining with the estimates for E 22 k with k = 1 , 2 , 3 , 4 yields that

E 22 b Lip 1 i = 1 2 k i λ i , k i p i 1 p i .

Some computations similar to those used in the estimates for E 22 give us that

E 23 + E 24 b Lip 1 i = 1 2 k i λ i , k i p i 1 p i .

Our desired estimate for E 2 now follows directly.

It remains to consider the terms E 3 and E 4 . Since the estimates for these two terms are similar, we only deal with E 3 . Using the vanishing moment of [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( j = 1 , 2 ) , we have that for all x ( Q 1 , k 1 ) c Q 2 , k 2 ,

φ + [ [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ] ( x ) sup t > 0 2 Q 1 , k 1 [ φ t ( x y ) φ t ( x x Q 1 , k 1 ) ] [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y + sup t > 0 ( 2 Q 1 , k 1 ) c [ φ t ( x y ) φ t ( x x Q 1 , k 1 ) ] [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y Ψ 1 ( a 1 , k 1 , a 2 , k 2 ) ( x ) + Ψ 2 ( a 1 , k 1 , a 2 , k 2 ) ( x ) .

Then,

E 3 i = 1 2 k 1 k 2 λ 1 , k 1 λ 2 , k 2 Ψ i ( a 1 , k 1 , a 2 , k 2 ) χ ( Q 1 , k 1 ) c Q 2 , k 2 L p ( R n ) E 31 + E 32 .

A trivial computation gives us that for all x ( Q 1 , k 1 ) c Q 2 , k 2 ,

Ψ 1 ( a 1 , k 1 , a 2 , k 2 ) ( x ) Q 1 , k 1 1 / n x x Q 1 , k 1 n + 1 2 Q 1 , k 1 [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y ,

which, via Hölder’s inequality and Lemma 2.2, leads to that

E 31 R n k 1 k 2 λ 1 , k 1 λ 2 , k 2 Q 1 , k 1 1 / n x x Q 1 , k 1 n + 1 [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) L 2 ( R n ) Q 1 , k 1 1 / 2 p χ ( Q 1 , k 1 ) c Q 2 , k 2 ( x ) d x 1 / p b Lip 1 k 1 λ 1 , k 1 p 1 ( Q 1 , k 1 ) c Q 1 , k 1 ( 1 + 1 n 1 p 1 ) p 1 x x Q 1 , k 1 ( n + 1 ) p 1 d x p 1 k 2 λ 2 , k 2 p 2 Q 2 , k 2 1 Q 2 , k 2 χ Q 2 , k 2 ( x ) d x 1 / p 2 b Lip 1 i = 1 2 k i λ i , k i p i 1 p i .

Let us estimate E 32 . Observe that for all x 2 i + 1 Q 1 , k 1 \ 2 i Q 1 , k 1 with i = 0 , 1 , ,

Ψ 2 ( a 1 , k 1 , a 2 , k 2 ) ( x ) sup t > 0 ( 2 i 1 Q 1 , k 1 ) c φ t ( x y ) [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y + sup t > 0 ( 2 i 1 Q 1 , k 1 ) c φ t ( x x 1 , Q 1 ) [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y d y + sup t > 0 2 i 1 Q 1 , k 1 \ 2 Q 1 , k 1 φ t ( x y ) φ t ( x x 1 , Q 1 ) [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y d y φ + [ [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) χ ( 2 i 1 Q 1 , k 1 ) c ] ( x ) + 1 x x Q 1 , k 1 n ( 2 i 1 Q 1 , k 1 ) c [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y + 2 i 1 Q 1 , k 1 y x Q 1 , k 1 x y n + 1 [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y .

We then decompose

E 32 i = 0 R n k 1 k 2 λ 1 , k 1 λ 2 , k 2 φ + [ [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) χ ( 2 i 1 Q 1 , k 1 ) c ] ( x ) χ ( 2 i + 1 Q 1 , k 1 \ 2 i Q 1 , k 1 ) Q 2 , k 2 ( x ) d x 1 / p + i = 0 R n k 1 k 2 λ 1 , k 1 λ 2 , k 2 x x Q 1 , k 1 n ( 2 i 1 Q 1 , k 1 ) [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y p χ ( 2 i + 1 Q 1 , k 1 \ 2 i Q 1 , k 1 ) Q 2 , k 2 ( x ) d x 1 / p + i = 0 R n k 1 k 2 2 i 1 Q 1 , k 1 \ 2 Q 1 , k 1 y x Q 1 , k 1 x y n + 1 [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( y ) d y p χ ( 2 i + 1 Q 1 , k 1 \ 2 i Q 1 , k 1 ) Q 2 , k 2 ( x ) d x 1 / p k = 1 3 E 32 k .

The estimate for E 32 1 is similar to that for F 1 . For 2 i + 1 Q 1 , k 1 with i = 0 , 1 , , and Q 2 , k 2 , there exists a cube R i such that

( 2 i + 1 Q 1 , k 1 ) ( Q 2 , k 2 ) R i R i [ ( 2 i + 1 Q 1 , k 1 ) ( Q 2 , k 2 ) ] ,

and R i C 1 2 i + 1 Q 1 , k 1 . A familiar argument involving Hölder’s inequality, the fact that φ + is bounded on L 1 ( R n ) and (i) of Lemma 2.3 leads to that

R i φ + [ [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) χ ( 2 i 1 Q 1 , k 1 ) c ] ( x ) d x R 1 / 2 ( 2 i 1 Q 1 , k 1 ) c [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) ( x ) 2 d x 1 / 2 b Lip 1 Q 1 , k 1 1 + 1 n 1 p 1 Q 2 , k 2 1 p 2 2 i Q 1 , k 1 1 + 1 n R i .

This now states that

E 32 1 i = 0 k 1 k 2 λ 1 , k 1 λ 2 , k 2 1 R i R n φ + [ T σ , b ] j ( a 1 , k 1 , a 2 , k 2 ) χ ( 2 i 1 Q 1 , k 1 ) c ( x ) d x χ R i L p ( R n ) p 1 / p i = 0 k 1 k 2 λ 1 , k 1 λ 2 , k 2 Q 1 , k 1 1 + 1 n 1 p 1 2 i Q 1 , k 1 1 + 1 n Q 2 , k 2 1 p 2 χ ( 2 i + 1 Q 1 , k 1 ) ( Q 2 , k 2 ) L p ( R n ) p 1 / p b Lip 1 i = 1 2 k i λ i , k i p i 1 p i .

The estimate for E 32 2 is straightforward. In fact, by (i) of Lemma 2.3 and the fact p 1 > n / ( n + 1 ) , we obtain that

E 32 2 b Lip 1 i = 0 R n k 1 k 2 λ 1 , k 1 λ 2 , k 2 Q 1 , k 1 1 + 1 n 1 p 1 Q 2 , k 2 1 p 2 x x Q 1 , k 1 n × ( 2 i 1 Q 1 , k 1 ) c d y y x Q 1 , k 1 n + 1 p χ ( 2 i + 1 Q 1 , k 1 \ 2 i Q 1 , k 1 ) Q 2 , k 2 ( x ) d x 1 / p b Lip 1 i = 0 R n k 1 λ 1 , k 1 p Q 1 , k 1 1 + 1 n 1 p 1 2 i Q 1 , k 1 1 + 1 n p 2 i + 1 Q 1 , k 1 \ 2 i Q 1 , k 1 p p 1 × k 2 λ 2 , k 2 p 2 Q 1 , k 2 1 Q 2 , k 2 χ Q 2 , k 2 ( x ) d x p p 2 1 p b Lip 1 i = 1 2 k i λ i , k i p i 1 p i .

Another application of (i) of Lemma 2.3 gives us that

E 32 3 b Lip 1 i = 0 R n k 1 k 2 λ 1 , k 1 λ 2 , k 2 Q 1 , k 1 1 + 1 n 1 p 1 Q 2 , k 2 1 p 2 2 i Q 1 , k 1 1 + 1 n × 2 i 1 Q 1 , k 1 \ 2 Q 1 , k 1 d y y x Q 1 , k 1 n χ ( 2 i + 1 Q 1 , k 1 \ 2 i Q 1 , k 1 ) Q 2 , k 2 ( x ) p d x 1 / p b Lip 1 i = 0 R n k 1 λ 1 , k 1 λ 2 , k 2 i Q 1 , k 1 1 + 1 n 1 p 1 Q 1 , k 1 1 p 2 2 i Q 1 , k 1 1 + 1 n χ ( 2 i + 1 Q 1 , k 1 \ 2 i Q 1 , k 1 ) Q 2 , k 2 ( x ) p d x 1 / p b Lip 1 i = 0 i p k 1 λ 1 , k 1 p 1 2 i + 1 Q 1 , k 1 \ 2 i Q 1 , k 1 Q 1 , k 1 1 + 1 n 1 p 1 2 i Q 1 , k 1 1 + 1 n p 1 d x p p 1 k 2 λ 2 , k 2 p 2 Q 1 , k 2 1 Q 2 , k 2 d x p p 2 1 p b Lip 1 i = 1 2 k i λ i , k i p i 1 p i .

This estimate for E 32 k with k = 1 , 2 , 3 gives us that

E 32 b Lip 1 i = 1 2 k i λ i , k i p i 1 p i ,

which, together with the estimates for E 31 , proves that

E 3 b Lip 1 i = 1 2 k i λ i , k i p i 1 p i .

The estimates for E i with i = 1 , 2 , 3 , 4 show that inequality (2.1) holds. This completes the proof of Theorem 1.1.□

3 Boundedness on product of Herz-type spaces

For k Z and measurable function f ( x ) on R n , let m k ( σ , f ) = { x E k : f ( x ) > σ } . For k Z , let m ˜ k ( σ , f ) = m k ( σ , f ) and m ˜ k 0 ( σ , f ) = { x B ( 0 , 1 ) : f ( x ) > σ } . In this section, we shall prove Theorem 1.2. In order to do this, let us recall some definitions.

Definition 3.1

[15] Let α R , 0 < q < and 0 < p .

A measurable function f ( x ) on R n is said to belong to the homogeneous weak Herz space W H ˙ q α , p , if

f W H ˙ q α , p ( R n ) = sup λ > 0 λ k = 2 k α p m k ( λ , f ) p / q 1 / p < ,

where the usual modification is made when p = .

Proof of Theorem 1.2

Let f 1 , f 2 be functions, respectively, in K ˙ q 1 n ( 1 1 / q 1 ) , p 1 ( R n ) and K ˙ q 2 n ( 1 1 / q 2 ) , p 2 ( R n ) . Since f i ( x ) = l i = f i ( x ) χ l i ( x ) , i = 1 , 2 , and [ T σ , b ] j , j = 1 , 2 are bilinear Calderón-Zygmund operators, together with Theorem A, we can deduce the weaker condition (see [16]), namely, for any integrable function f 1 , f 2 with supp f i B ( 0 , r i ) , r i > 0 , i = 1 , 2 and x i = 1 2 B ( 0 , 2 r i ) , there is

(3.1) [ T σ , b ] j ( f 1 , f 2 ) ( x ) b Lip 1 x m n i = 1 2 f i L 1 ( R n ) .

We have

[ T σ , b ] j ( f 1 , f 2 ) W K ˙ q n ( 2 1 / q ) , p ( R n ) sup λ > 0 λ k = 2 k n ( 2 1 / q ) p x E k : [ T σ , b ] j i 1 = k 1 f 1 χ I 1 , i 2 = k 1 f 2 χ I 2 ( x ) > λ 4 p / q 1 / p + sup λ > 0 λ k = 2 k n ( 2 1 / q ) p x E k : i 1 = k 3 i 2 = k 2 [ T σ , b ] j ( f 1 χ I 1 , f 2 χ I 2 ) ( x ) > λ 4 p / q 1 / p + sup λ > 0 λ k = 2 k n ( 2 1 / q ) p x E k : i 1 = k 3 i 2 = k 3 [ T σ , b ] j ( f 1 χ I 1 , f 2 χ I 2 ) ( x ) > λ 4 p / q 1 / p

+ sup λ > 0 λ k = 2 k n ( 2 1 / q ) p x E k : i 1 = k 2 i 2 = k 3 [ T σ , b ] j ( f 1 χ I 1 , f 2 χ I 2 ) ( x ) > λ 4 p / q 1 / p I 1 + I 2 + I 3 + I 4 .

Using the fact that [ T σ , b ] j ( j = 1 , 2 ) is bounded from L q 1 × L q 2 into L q , with controlled by a Lip 1 and 1 < q 1 , q 2 < , 1 / p = 1 / p 1 + 1 / p 2 , by Hölder’s inequality, we see that

I 1 k = 2 k n ( 2 1 / q ) p i 1 = k 2 f 1 χ i 1 L q 1 p i 2 = k 2 f 2 χ i 2 L q 2 p 1 / p b Lip 1 k = 2 k n ( 2 1 / q 1 ) p 1 i 1 = k 2 f 1 χ i 1 L q 1 p 1 1 / p 1 k = 2 k n ( 2 1 / q 2 ) p 2 i 2 = k 2 f 1 χ i 2 L q 2 p 2 1 / p 2 b Lip 1 i 1 = f 1 χ i 1 L q 1 p 1 k = i 1 + 2 2 k n ( 1 1 / q 1 ) p 1 1 / p 1 i 2 = f 2 χ i 2 L q 2 p 2 k = i 2 + 2 2 k n ( 1 1 / q 2 ) p 2 1 / p 2 = b Lip 1 i 1 = 2 i 1 n ( 1 1 / q 1 ) p 1 f 1 χ i 1 L q 1 p 1 1 / p 1 i 2 = 2 i 2 n ( 1 1 / q 2 ) p 2 f 2 χ i 2 L q 2 p 2 1 / p 2 = b Lip 1 f 1 K ˙ q 1 n ( 1 1 / q 1 ) , p 1 ( R n ) f 2 K ˙ q 2 n ( 1 1 / q 2 ) , p 2 ( R n ) .

For I 2 , noting that x E k , supp f i χ l i { x R n : x 2 l i } , i = 1 , 2 , and l 1 k 3 , by (3.1) we have

(3.2) l 1 = k 3 l 2 = k 2 [ T σ , b ] j ( f 1 χ I 1 , f 2 χ I 2 ) ( x ) b Lip 1 x 2 n l 1 = k 3 f 1 χ l 1 L 1 l 2 = k 2 f 2 χ l 2 L 1 b Lip 1 2 2 k n f 1 χ { x 2 k 3 } L 1 2 2 k n f 2 χ { x 2 k 3 } L 1 b Lip 1 2 2 k n f 1 L 1 f 2 L 1 .

It is easy to see from the definition of Herz space that K ˙ q i n ( 1 1 / q i ) , p i ( R n ) L 1 ( R n ) . Given any fixed λ > 0 , if

x E k : l 1 = k 3 l 2 = k 2 [ T σ , b ] j ( f 1 χ I 1 , f 2 χ I 2 ) ( x ) > λ 4 0 ,

then by (3.2),

λ 4 b Lip 1 2 2 k n f 1 K ˙ q 1 n ( 1 1 / q 1 ) , p 1 ( R n ) f 2 K ˙ q 2 n ( 1 1 / q 2 ) , p 2 ( R n ) .

That is,

k 2 1 n 1 log 2 ( 4 b Lip 1 2 2 k n f 1 K ˙ q 1 n ( 1 1 / q 1 ) , p 1 ( R n ) f 2 K ˙ q 2 n ( 1 1 / q 2 ) , p 2 ( R n ) ) N λ .

From this, we can obtain

I 2 sup λ > 0 λ k = N λ 2 k n ( 2 1 / q ) p 2 k n p / q 1 / p = sup λ > 0 λ 2 2 n N λ sup λ > 0 ( λ 4 b Lip 1 2 2 k n f 1 K ˙ q 1 n ( 1 1 / q 1 ) , p 1 ( R n ) f 2 K ˙ q 2 n ( 1 1 / q 2 ) , p 2 ( R n ) ) = b Lip 1 f 1 K ˙ q 1 n ( 1 1 / q 1 ) , p 1 ( R n ) f 2 K ˙ q 2 n ( 1 1 / q 2 ) , p 2 ( R n ) .

From the similar way of I 2 , the proof of I 3 and I 4 can be deduced. Combining all estimates on I 1 , I 2 , I 3 and I 4 , the desired result can be established. This completes the proof of Theorem 1.2.□

Acknowledgement

The authors would like to thank the referees for their very careful reading of the manuscript and valuable comments.

  1. Funding information: This work was supported by the the Doctoral Scientific Research Foundation of Northwest Normal University (202003101203), Young Teachers’ Scientific Research Ability Promotion Project of Northwest Normal University (NWNU-LKQN2021-03).

  2. Author contributions: YQY completed the main study and wrote the manuscript, SPT checked the proofs process and verified the calculation. Moreover, all the authors read and approved the last version of the manuscript.

  3. Conflict of interest: The authors state no conflict of interest.

References

[1] A. Calderón, Commutators of singular integral operators, Proc. Natl. Acad. Sci. USA 53 (1965), no. 5, 1092–1099, https://doi.org/10.1073/pnas.53.5.1092. Search in Google Scholar PubMed PubMed Central

[2] R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Vol. 57, Société mathématique de France, Paris, 1978. Search in Google Scholar

[3] R. Coifman and Y. Meyer, Commutateurs d’intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, 177–202, https://doi.org/10.5802/aif.708 Search in Google Scholar

[4] P. Auscher and M. Taylor, Paradifferential operators and commutator estimates, Comm. Partial Differential Equations 20 (1995), 1743–1775, https://doi.org/10.1080/03605309508821150. Search in Google Scholar

[5] M. E. Taylor, Commutator estimates, Proc. Amer. Math. Soc. 131 (2003), 1501–1507, https://doi.org/10.1090/S0002-9939-02-06723-0. Search in Google Scholar

[6] M. E. Taylor, Commutator estimates for Hölder continuous and bmo-Sobolev multipliers, Proc. Amer. Math. Soc. 143 (2015), 5265–5274, https://doi.org/10.1090/proc/12825. Search in Google Scholar

[7] Á. Bényi and T. Oh, Smoothing of commutators for a Hörmander class of bilinear pseudodifferential operators, J. Fourier Anal. Appl. 20 (2014), 282–300, https://doi.org/10.1007/s00041-013-9312-3. Search in Google Scholar

[8] Y. Meyer, Régularité des solutions des équations aux dérivées partielles nonlinéaires, Séminaire Bourbaki 1981 (1981), no. 22, 550. Search in Google Scholar

[9] Á. Bényi and V. Naibo, Commutators of bilinear pseudodifferential operators and Lipschitz functions, J. Fourier Anal. Appl. 24 (2018), 759–779, https://doi.org/10.1007/s00041-016-9519-1. Search in Google Scholar

[10] S. P. Tao and Q. X. Li, Commutators of bilinear pseudodifferential operators with Hörmander symbol on generalized Morrey spaces, J. Jilin Univ. Sci. 56 (2018), 469–474, https://doi.org/10.13413/j.cnki.jdxblxb.2018.03.01. Search in Google Scholar

[11] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137–193, DOI: https://doi.org/10.1007/bf02392215. 10.1007/BF02392215Search in Google Scholar

[12] R. R. Coifman, A real variable characterization of Hp, Stud. Math. 51 (1974), 269–274. 10.4064/sm-51-3-269-274Search in Google Scholar

[13] S. Meda, P. Sjögren, and M. Vallarino, On the H1−L1 boundedness of operators, Proc. Amer. Math. Soc. 136 (2008), 2921–2931, https://doi.org/10.1090/s0002-9939-08-09365-9. Search in Google Scholar

[14] L. Grafakos and N. Kalton, Multilinear Calderón-Zygmund operators on Hardy spaces, Collect. Math. 52 (2001), 169–179, https://kaltonmemorial.missouri.edu/assets/docs/collect2001b.pdf. Search in Google Scholar

[15] G. Hu, S. Lu, and D. Yang, The weak Herz spaces, J. Beijing Normal Univ. (Natur. Sci.) 33 (1997), 27–34. Search in Google Scholar

[16] Y. Lin and S. Lu, Boundedness of multilinear singular integral operators on Hardy and Herz-type spaces, Hokkaido Math. J. 36 (2007), no. 3, 585–613, https://doi.org/10.14492/hokmj/1277472868. Search in Google Scholar

Received: 2021-10-20
Revised: 2022-09-30
Accepted: 2022-10-04
Published Online: 2022-10-28

© 2022 Yanqi Yang and Shuangping Tao, published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Regular Articles
  2. A random von Neumann theorem for uniformly distributed sequences of partitions
  3. Note on structural properties of graphs
  4. Mean-field formulation for mean-variance asset-liability management with cash flow under an uncertain exit time
  5. The family of random attractors for nonautonomous stochastic higher-order Kirchhoff equations with variable coefficients
  6. The intersection graph of graded submodules of a graded module
  7. Isoperimetric and Brunn-Minkowski inequalities for the (p, q)-mixed geominimal surface areas
  8. On second-order fuzzy discrete population model
  9. On certain functional equation in prime rings
  10. General complex Lp projection bodies and complex Lp mixed projection bodies
  11. Some results on the total proper k-connection number
  12. The stability with general decay rate of hybrid stochastic fractional differential equations driven by Lévy noise with impulsive effects
  13. Well posedness of magnetohydrodynamic equations in 3D mixed-norm Lebesgue space
  14. Strong convergence of a self-adaptive inertial Tseng's extragradient method for pseudomonotone variational inequalities and fixed point problems
  15. Generic uniqueness of saddle point for two-person zero-sum differential games
  16. Relational representations of algebraic lattices and their applications
  17. Explicit construction of mock modular forms from weakly holomorphic Hecke eigenforms
  18. The equivalent condition of G-asymptotic tracking property and G-Lipschitz tracking property
  19. Arithmetic convolution sums derived from eta quotients related to divisors of 6
  20. Dynamical behaviors of a k-order fuzzy difference equation
  21. The transfer ideal under the action of orthogonal group in modular case
  22. The multinomial convolution sum of a generalized divisor function
  23. Extensions of Gronwall-Bellman type integral inequalities with two independent variables
  24. Unicity of meromorphic functions concerning differences and small functions
  25. Solutions to problems about potentially Ks,t-bigraphic pair
  26. Monotonicity of solutions for fractional p-equations with a gradient term
  27. Data smoothing with applications to edge detection
  28. An ℋ-tensor-based criteria for testing the positive definiteness of multivariate homogeneous forms
  29. Characterizations of *-antiderivable mappings on operator algebras
  30. Initial-boundary value problem of fifth-order Korteweg-de Vries equation posed on half line with nonlinear boundary values
  31. On a more accurate half-discrete Hilbert-type inequality involving hyperbolic functions
  32. On split twisted inner derivation triple systems with no restrictions on their 0-root spaces
  33. Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry
  34. Bifurcation and chaos in a discrete predator-prey system of Leslie type with Michaelis-Menten prey harvesting
  35. A posteriori error estimates of characteristic mixed finite elements for convection-diffusion control problems
  36. Dynamical analysis of a Lotka Volterra commensalism model with additive Allee effect
  37. An efficient finite element method based on dimension reduction scheme for a fourth-order Steklov eigenvalue problem
  38. Connectivity with respect to α-discrete closure operators
  39. Khasminskii-type theorem for a class of stochastic functional differential equations
  40. On some new Hermite-Hadamard and Ostrowski type inequalities for s-convex functions in (p, q)-calculus with applications
  41. New properties for the Ramanujan R-function
  42. Shooting method in the application of boundary value problems for differential equations with sign-changing weight function
  43. Ground state solution for some new Kirchhoff-type equations with Hartree-type nonlinearities and critical or supercritical growth
  44. Existence and uniqueness of solutions for the stochastic Volterra-Levin equation with variable delays
  45. Ambrosetti-Prodi-type results for a class of difference equations with nonlinearities indefinite in sign
  46. Research of cooperation strategy of government-enterprise digital transformation based on differential game
  47. Malmquist-type theorems on some complex differential-difference equations
  48. Disjoint diskcyclicity of weighted shifts
  49. Construction of special soliton solutions to the stochastic Riccati equation
  50. Remarks on the generalized interpolative contractions and some fixed-point theorems with application
  51. Analysis of a deteriorating system with delayed repair and unreliable repair equipment
  52. On the critical fractional Schrödinger-Kirchhoff-Poisson equations with electromagnetic fields
  53. The exact solutions of generalized Davey-Stewartson equations with arbitrary power nonlinearities using the dynamical system and the first integral methods
  54. Regularity of models associated with Markov jump processes
  55. Multiplicity solutions for a class of p-Laplacian fractional differential equations via variational methods
  56. Minimal period problem for second-order Hamiltonian systems with asymptotically linear nonlinearities
  57. Convergence rate of the modified Levenberg-Marquardt method under Hölderian local error bound
  58. Non-binary quantum codes from constacyclic codes over 𝔽q[u1, u2,…,uk]/⟨ui3 = ui, uiuj = ujui
  59. On the general position number of two classes of graphs
  60. A posteriori regularization method for the two-dimensional inverse heat conduction problem
  61. Orbital stability and Zhukovskiǐ quasi-stability in impulsive dynamical systems
  62. Approximations related to the complete p-elliptic integrals
  63. A note on commutators of strongly singular Calderón-Zygmund operators
  64. Generalized Munn rings
  65. Double domination in maximal outerplanar graphs
  66. Existence and uniqueness of solutions to the norm minimum problem on digraphs
  67. On the p-integrable trajectories of the nonlinear control system described by the Urysohn-type integral equation
  68. Robust estimation for varying coefficient partially functional linear regression models based on exponential squared loss function
  69. Hessian equations of Krylov type on compact Hermitian manifolds
  70. Class fields generated by coordinates of elliptic curves
  71. The lattice of (2, 1)-congruences on a left restriction semigroup
  72. A numerical solution of problem for essentially loaded differential equations with an integro-multipoint condition
  73. On stochastic accelerated gradient with convergence rate
  74. Displacement structure of the DMP inverse
  75. Dependence of eigenvalues of Sturm-Liouville problems on time scales with eigenparameter-dependent boundary conditions
  76. Existence of positive solutions of discrete third-order three-point BVP with sign-changing Green's function
  77. Some new fixed point theorems for nonexpansive-type mappings in geodesic spaces
  78. Generalized 4-connectivity of hierarchical star networks
  79. Spectra and reticulation of semihoops
  80. Stein-Weiss inequality for local mixed radial-angular Morrey spaces
  81. Eigenvalues of transition weight matrix for a family of weighted networks
  82. A modified Tikhonov regularization for unknown source in space fractional diffusion equation
  83. Modular forms of half-integral weight on Γ0(4) with few nonvanishing coefficients modulo
  84. Some estimates for commutators of bilinear pseudo-differential operators
  85. Extension of isometries in real Hilbert spaces
  86. Existence of positive periodic solutions for first-order nonlinear differential equations with multiple time-varying delays
  87. B-Fredholm elements in primitive C*-algebras
  88. Unique solvability for an inverse problem of a nonlinear parabolic PDE with nonlocal integral overdetermination condition
  89. An algebraic semigroup method for discovering maximal frequent itemsets
  90. Class-preserving Coleman automorphisms of some classes of finite groups
  91. Exponential stability of traveling waves for a nonlocal dispersal SIR model with delay
  92. Existence and multiplicity of solutions for second-order Dirichlet problems with nonlinear impulses
  93. The transitivity of primary conjugacy in regular ω-semigroups
  94. Stability estimation of some Markov controlled processes
  95. On nonnil-coherent modules and nonnil-Noetherian modules
  96. N-Tuples of weighted noncommutative Orlicz space and some geometrical properties
  97. The dimension-free estimate for the truncated maximal operator
  98. A human error risk priority number calculation methodology using fuzzy and TOPSIS grey
  99. Compact mappings and s-mappings at subsets
  100. The structural properties of the Gompertz-two-parameter-Lindley distribution and associated inference
  101. A monotone iteration for a nonlinear Euler-Bernoulli beam equation with indefinite weight and Neumann boundary conditions
  102. Delta waves of the isentropic relativistic Euler system coupled with an advection equation for Chaplygin gas
  103. Multiplicity and minimality of periodic solutions to fourth-order super-quadratic difference systems
  104. On the reciprocal sum of the fourth power of Fibonacci numbers
  105. Averaging principle for two-time-scale stochastic differential equations with correlated noise
  106. Phragmén-Lindelöf alternative results and structural stability for Brinkman fluid in porous media in a semi-infinite cylinder
  107. Study on r-truncated degenerate Stirling numbers of the second kind
  108. On 7-valent symmetric graphs of order 2pq and 11-valent symmetric graphs of order 4pq
  109. Some new characterizations of finite p-nilpotent groups
  110. A Billingsley type theorem for Bowen topological entropy of nonautonomous dynamical systems
  111. F4 and PSp (8, ℂ)-Higgs pairs understood as fixed points of the moduli space of E6-Higgs bundles over a compact Riemann surface
  112. On modules related to McCoy modules
  113. On generalized extragradient implicit method for systems of variational inequalities with constraints of variational inclusion and fixed point problems
  114. Solvability for a nonlocal dispersal model governed by time and space integrals
  115. Finite groups whose maximal subgroups of even order are MSN-groups
  116. Symmetric results of a Hénon-type elliptic system with coupled linear part
  117. On the connection between Sp-almost periodic functions defined on time scales and ℝ
  118. On a class of Harada rings
  119. On regular subgroup functors of finite groups
  120. Fast iterative solutions of Riccati and Lyapunov equations
  121. Weak measure expansivity of C2 dynamics
  122. Admissible congruences on type B semigroups
  123. Generalized fractional Hermite-Hadamard type inclusions for co-ordinated convex interval-valued functions
  124. Inverse eigenvalue problems for rank one perturbations of the Sturm-Liouville operator
  125. Data transmission mechanism of vehicle networking based on fuzzy comprehensive evaluation
  126. Dual uniformities in function spaces over uniform continuity
  127. Review Article
  128. On Hahn-Banach theorem and some of its applications
  129. Rapid Communication
  130. Discussion of foundation of mathematics and quantum theory
  131. Special Issue on Boundary Value Problems and their Applications on Biosciences and Engineering (Part II)
  132. A study of minimax shrinkage estimators dominating the James-Stein estimator under the balanced loss function
  133. Representations by degenerate Daehee polynomials
  134. Multilevel MC method for weak approximation of stochastic differential equation with the exact coupling scheme
  135. Multiple periodic solutions for discrete boundary value problem involving the mean curvature operator
  136. Special Issue on Evolution Equations, Theory and Applications (Part II)
  137. Coupled measure of noncompactness and functional integral equations
  138. Existence results for neutral evolution equations with nonlocal conditions and delay via fractional operator
  139. Global weak solution of 3D-NSE with exponential damping
  140. Special Issue on Fractional Problems with Variable-Order or Variable Exponents (Part I)
  141. Ground state solutions of nonlinear Schrödinger equations involving the fractional p-Laplacian and potential wells
  142. A class of p1(x, ⋅) & p2(x, ⋅)-fractional Kirchhoff-type problem with variable s(x, ⋅)-order and without the Ambrosetti-Rabinowitz condition in ℝN
  143. Jensen-type inequalities for m-convex functions
  144. Special Issue on Problems, Methods and Applications of Nonlinear Analysis (Part III)
  145. The influence of the noise on the exact solutions of a Kuramoto-Sivashinsky equation
  146. Basic inequalities for statistical submanifolds in Golden-like statistical manifolds
  147. Global existence and blow up of the solution for nonlinear Klein-Gordon equation with variable coefficient nonlinear source term
  148. Hopf bifurcation and Turing instability in a diffusive predator-prey model with hunting cooperation
  149. Efficient fixed-point iteration for generalized nonexpansive mappings and its stability in Banach spaces
Downloaded on 7.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/math-2022-0517/html
Scroll to top button