Home Mathematics The family of random attractors for nonautonomous stochastic higher-order Kirchhoff equations with variable coefficients
Article Open Access

The family of random attractors for nonautonomous stochastic higher-order Kirchhoff equations with variable coefficients

  • Penghui Lv EMAIL logo , Guoguang Lin and Yuting Sun
Published/Copyright: March 10, 2022

Abstract

In this paper, the stochastic asymptotic behavior of the nonautonomous stochastic higher-order Kirchhoff equation with variable coefficients is studied. By using the Galerkin method, the solution of this kind of equation is obtained, and stochastic dynamical system under this kind of equation is obtained; by using the uniform estimation, the existence of the family of D k -absorbing sets of the stochastic dynamical system Φ k is obtained, and the asymptotic compactness of Φ k is proved by the decomposition method. Finally, the D k -stochastic attractor family of the stochastic dynamical system Φ k in V m + k ( Ω ) × V k ( Ω ) is obtained.

MSC 2010: 37B55; 35B41; 35G31; 60H15

1 Introduction

Let Ω R N be a bounded domain with smooth boundary (i.e., the derivative of the function at the boundary exists and is continuous). In this paper, we study the asymptotic behavior of nonautonomous stochastic higher-order Kirchhoff equations with variable coefficients on Ω :

(1.1) u t t + a ( x ) ( Δ ) m u t + b ( x ) M ( m u ) ( Δ ) m u + g ( x , u ) = f ( x , t ) + h ( x ) w t , u = 0 , i u v i = 0 , i = 1 , 2 , , m 1 , x Γ , t τ , u ( x , τ ) = u τ ( x ) , u t ( x , τ ) = u 1 τ ( x ) , x Ω ,

where Γ is the smooth boundary of Ω , v is the outer normal vector on the boundary Γ , m > 1 , a ( x ) and b ( x ) are variable coefficient functions, f ( x , t ) L loc 2 ( R , V k ( Ω ) ) is a time-dependent external force term, w is a one-dimensional bilateral standard Wiener process, h ( x ) w t describes white noise, and g ( x , u ) is a nonlinear function that satisfies certain growth conditions and dissipation conditions.

The Kirchhoff model was proposed in 1883 to describe the motion of elastic cross-section. Compared with classical wave equations, the Kirchhoff model can describe the motion of elastic rod more accurately. There has been a lot of in-depth research on the Kirchhoff equations. [1,2,3, 4,5,6] studied the long-term dynamics of the autonomous low-order Kirchhoff equation; [7,8,9, 10,11] studied the existence of global solutions and the blow-up of solutions of the higher-order Kirchhoff equations.

Stochastic wave equations are a very important class of stochastic partial differential equations, which are widely used in many fields such as fluid mechanics, physics, electricity, etc. The random attractor is an important tool for studying the long-term asymptotic behavior of stochastic dynamical systems. Using it to characterize the long-term behavior of random dynamical systems has laid a solid foundation for the study of random dynamical systems. After more than 30 years of development, random dynamical systems have also been extensively studied. Many scholars have conducted in-depth studies on the dynamical behavior of random wave equations in unbounded domains [12,13,14, 15,16,17] and bounded domains [18,19,20]. For new trends in functional analysis and random attractors, see also [21,22, 23,24].

Regarding the variable coefficients in the equation, it represents the wave velocity at the space coordinate x , which will appear in the wave phenomena in mathematical physics, marine acoustics, and other fields. It is of great practical significance to study the mathematical and physical equations with variable coefficients. In [25], they studied the global well-posedness and asymptotic behavior of solutions of Kirchhoff-type equations with variable coefficients and weak damping in unbounded domains. More relevant results can also be found in [26,27,28, 29,30,31, 32,33].

In recent years, Lin and Chen [34], Lin and Jin [35] have performed a detailed study on the long-term dynamical behavior of higher-order wave equations and proposed the concept of the family of attractors. Combined with the current research results, there are no relevant research results on the long-time dynamics of the nonautonomous stochastic higher-order Kirchhoff equation, and the asymptotic behavior of the higher-order Kirchhoff equation with variable coefficients has not been studied. By studying the nonautonomous stochastic higher-order Kirchhoff model with variable coefficients, the relevant results of the Kirchhoff model can be generalized, and the theoretical achievements of the Kirchhoff model can be enriched, which lays a theoretical foundation for later application. Therefore, this article will specifically study the family of random attractors of nonautonomous random higher-order Kirchhoff equation with variable coefficients. In the research process, the reasonable assumption and Leibniz formula are used to overcome how to define the L p -weighted space and the difficulty of estimating the absorption sets and asymptotic compactness caused by the variable coefficients.

Section 2 of this article introduces related theories, related definitions, and theories of stochastic dynamical systems; Section 3 presents the family of the continuous cocycle of the problem; In Section 4, the uniform estimation of the solution of problem (1.1) is obtained, and the asymptotic compactness of Φ k is obtained through the decomposition method; in Section 5, we get the family of D k -random attractors of Φ k in X k .

2 Preparatory knowledge

In this section, we mainly give the related theories of nonautonomous stochastic dynamical systems and random attractor (the family of random attractors).

First, the relevant notation needed in this paper is introduced: Define the inner product and norm on H = L 2 ( Ω ) as ( , ) and ( ) , L p = L p ( Ω ) , p = L p , where p 1 . Set variable coefficient a ( x ) , b ( x ) = b 0 a ( x ) , b 0 as a positive constant, satisfying a C 0 ( Ω ) , a ( x ) a 00 > 0 , i a i v Γ = 0 , a 0 = a ( x ) , a ( x ) 1 = μ ( x ) , x Ω , and μ L N 2 ( Ω ) C 0 ( Ω ) .

By D 1 , 2 , we define the closure of the C 0 ( Ω ) functions with respect to the “energy norm” u D 1 , 2 = Ω u 2 d x . It is well known that

D 1 , 2 D 1 , 2 ( Ω ) = { u L 2 N / ( N 2 ) ( Ω ) u ( L 2 ( Ω ) ) N } ,

and for D 1 , 2 L 2 N / ( N 2 ) ( Ω ) , there exists β > 0 such that u 2 N / ( N 2 ) β u D 1 , 2 .

Lemma 2.1

[26] Suppose that μ L N 2 ( Ω ) C 0 ( Ω ) , then for all u C 0 ( Ω ) , there exists α > 0 such that

α Ω μ u 2 d x Ω u 2 d x ,

where α = β 2 μ N / 2 1 .

Let μ > 0 be the weight function, and the weighted space L μ p = L μ p ( Ω ) with the following norm:

u L μ p p = Ω μ u p d x = μ 1 p u p p ,

for 1 p < + . Clearly L μ 2 = L μ 2 ( Ω ) is a separable Hilbert space the inner product and norm are respectively:

( u , v ) μ = Ω μ u v d x = μ 1 2 u , μ 1 2 v , u L μ 2 = μ 1 2 u .

For p : 1 p < , the Banach space L μ p is uniformly convex, reflexive space, and ( L μ p ) = L μ p , where p is the conjugate number of p .

Lemma 2.2

[26] Suppose that μ L N 2 ( Ω ) C 0 ( Ω ) , then D 1 , 2 is compactly embedded in L μ 2 . Let

V m = H 0 m ( Ω ) = H m ( Ω ) H 0 1 ( Ω ) , V m + k = H 0 m + k ( Ω ) = H m + k ( Ω ) H 0 1 ( Ω ) , k = 0 , 1 , , m ,

and the corresponding inner product and norm are, respectively,

( u , v ) V m + k = ( m + k u , m + k v ) , u V m + k = m + k u H .

At the same time, a general form of Poincare inequality: λ 1 r u 2 r + 1 u 2 , where λ 1 is the first eigenvalue of Δ . In the text, C i is a positive constant, C ( ) represents a positive constant that depends on the parameters in parentheses, and C m n is the corresponding number of combinations.

Assuming that ( X , X ) is a separable Hilbert space, and B ( X ) is the Borel σ -algebra of X ( Ω 1 , , P ) is the metric probability space.

Definition 2.3

[12] Let θ t : R × Ω 1 Ω 1 be a family of ( B ( X ) × , ) -measurable mappings such that θ 0 ( ) is the identity on Ω 1 t , s R , θ t + s ( ) = θ t ( ) θ s ( ) , P θ t ( ) = P . A mapping Φ : R + × R × Ω 1 × X X is called a continuous cocycle or continuous random dynamical system (RDS) on X over R and ( Ω 1 , , P , ( θ t ) t R ) if for all τ R , w Ω 1 , t , s R + the following conditions are satisfied:

  1. Φ ( , τ , , ) : R + × Ω 1 × X X is a ( B ( R + ) × × B ( X ) , B ( X ) ) -measurable mapping;

  2. Φ ( 0 , τ , w , ) is the identity on X ;

  3. Φ ( t + s , τ , w , ) = Φ ( t , τ + s , θ s w , Φ ( s , τ , w , ) ) ;

  4. Φ ( t , τ , w , ) : X X is continuous.

Let D = { D ( τ , w ) X : τ R , w Ω 1 } be a family of subsets parameterized by ( τ , w ) R × Ω 1 in X .

Definition 2.4

[13] The family D = { D ( τ , w ) X : τ R , w Ω 1 } satisfies:

  1. for all ( τ , w ) R × Ω 1 D ( τ , w ) is a closed nonempty subset of X ;

  2. for every fixed x X and any τ R , the mapping w Ω 1 dist X ( x , B ( τ , w ) ) is ( , B ( R + ) ) measurable, then the family D is measurable with to in Ω 1 .

Definition 2.5

[15] For all σ > 0 , w Ω 1 D = { D ( τ , w ) X : τ R , w Ω 1 } satisfies:

lim t e σ t D ( τ + t , θ t w ) X = 0 ,

then D = { D ( τ , w ) X : τ R , w Ω 1 } is called tempered.

Let D = D ( X ) be the set of all random tempered sets in X .

Definition 2.6

[12] A family K = { K ( τ , w ) X : τ R , w Ω 1 } D of nonempty subsets of X is called a measurable D -pullback attracting(or absorbing) set for { Φ ( t , τ , w ) } t 0 , τ R , w Ω 1 if

  1. K is measurable with respect to the P completion of in Ω 1 ;

  2. for all τ R , w Ω 1 and for every D D , there exists T ( D , τ , w ) > 0 such that

    Φ ( t , τ t , θ t w , D ( τ t , θ t w ) ) K ( τ , w ) , t T ( D , τ , w ) .

Definition 2.7

[15] Φ is said to be asymptotically compact in X if for τ R , w Ω 1 , D = { D ( τ , w ) X : τ R , w Ω 1 } D , x n B ( τ t n , θ t n w ) { Φ ( t n , τ t n , θ t n w , x n ) } n = 1 has a convergent subsequence in X whenever t n .

Definition 2.8

[13] A family A = { A ( τ , w ) X : τ R , w Ω 1 } D is called a D -pullback random attractor for { Φ ( t , τ , w ) } t 0 , τ R , w Ω 1 if

  1. A ( τ , w ) is measurable in Ω 1 with respect to and compact in X for τ R , w Ω 1 ,

  2. A is invariant, i.e., for τ R and w Ω 1 , t 0 ,

    Φ ( t , τ , w , A ( τ , w ) ) = A ( t + τ , θ t w ) ;

  3. A attracts every member of D , i.e., for every D D , τ R and for every w Ω 1 ,

    lim t + dist X ( Φ ( t , τ t , θ t w , B ( τ t , θ t w ) ) , A ( τ , w ) ) = 0 ,

    where dist X ( P , Q ) denotes the Hausdorff semi-distance between two subsets P and Q of X .

If we change D = D ( X ) to D k = D k ( X k ) , where k = 0 , 1 , , m , then A in Definition 2.8 can be a family of random attractors { A k } .

Lemma 2.9

[12] Let D be a neighborhood-closed collection of ( τ , w ) -parametrized families of nonempty subsets of X and Φ be a continuous cocycle on X over R and ( Ω 1 , , P , { θ t } t R ) , then Φ has a pullback D -attract A if and only if Φ is pullback D asymptotically compact in X and Φ has a closed, -measurable pullback D -absorbing set K in D and the unique pullback D -attractor A = { A ( τ , w ) } is given by

A ( τ , w ) = τ 0 t τ Φ ( t , τ t , θ t w , K ( τ t , θ t w ) ) ¯ , τ R , w Ω 1 .

Similarly, Lemma 2.9 can be extended to Lemma 2.10 of the family of pullback attractors.

Lemma 2.10

Let D k be neighborhood-closed collections of ( τ , w ) -parametrized families of nonempty subsets of X k , k = 1 , 2 , , m , and Φ k be the family of continuous cocycles on X k , k = 1 , 2 , , m over R and ( Ω 1 , , P , { θ t } t R ) , then Φ k has the family of pullback D k -attracts { A k } if and only if Φ k is pullback D k -asymptotically compact in X k and D k has closed, -measurable pullback D k -absorbing sets K k in D k and the unique pullback D k -attractor A k = { A k ( τ , w ) } is given by

A k ( τ , w ) = τ 0 t τ Φ k ( t , τ t , θ t w , K k ( τ t , θ t w ) ) ¯ , τ R , w Ω 1 .

3 The family of cocycles of nonautonomous stochastic higher-order Kirchhoff equations with variable coefficients

Let ( Ω 1 , , P ) be a probability space, where

Ω 1 = { w C ( R , R ) , w ( 0 ) = 0 } .

w is a two-sided real-valued Winner processes on the probability space ( Ω 1 , , P ) . Define θ t w ( ) = w ( + t ) w ( t ) , w Ω 1 , t R , thus, ( Ω 1 , , P , ( θ t ) t R ) is an ergodic metric dynamical system.

For a small positive number ε , let z be a new variable given by z = u t + ε u and then, system (1.1) becomes

(3.1) u t + ε u = z ; z t = ε z a ( x ) ( Δ ) m z + ε a ( x ) ( Δ ) m u ε 2 u b ( x ) M ( m u 2 ) ( Δ ) m u g ( x , u ) + f ( x , t ) + h ( x ) d w d t ; u = 0 , i u v i = 0 , i = 1 , 2 , , m 1 , x Γ , t τ ; u ( x , τ ) = u τ ( x ) , z ( x , τ ) = z τ ( x ) = u 1 τ ( x ) + u τ ( x ) , x Ω ,

where ( M ) M C 1 ( R + ) , M 0 , and M ( s ) M 0 ( 1 + s q ) , 0 < q < 1 / 2 , M 0 = M ( 0 ) is a positive constant s R + , h ( x ) V m + k ( Ω ) , x Ω , t τ , τ R , k = 0 , 1 , , m , f ( x , t ) L loc 2 ( R , V k ( Ω ) ) . In order to get the conclusion of this article, suppose that the nonlinear term g ( x , u ) satisfies the following conditions: for u R , x Ω , there are positive constants c 1 , c 2 , c 3 , c 4 , c 5 > 0 , satisfying

(3.2) g ( x , u ) c 1 p p + ϕ 1 ( x ) , ϕ 1 L μ 2 ( Ω ) ,

(3.3) u g ( x , u ) c 2 G ( x , u ) ϕ 2 ( x ) , ϕ 2 L μ 1 ( Ω ) ,

(3.4) G ( x , u ) c 3 u p + 1 ϕ 3 ( x ) , ϕ 3 L μ 1 ( Ω ) ,

(3.5) g u ( x , u ) c 4 u p 1 + ϕ 4 ( x ) , ϕ 4 V m ( Ω ) ,

(3.6) x k g ( x , u ) c 5 u p + ϕ 5 ( x ) , ϕ 5 V k ( Ω ) ,

where 1 p < + , for N = 1 , 2 ; 1 p < N N 2 N = 3 , 4 ; and G ( x , u ) = 0 u g ( x , s ) d s . From equations (3.2) and (3.3), we can get

(3.7) G ( x , u ) c 6 ( u 2 + u p + 1 + ϕ 1 2 + ϕ 2 ) .

To show that problem (3.1) generates a random dynamical system, we let v ( t , τ , w ) = z ( t , τ , w ) h w ( t ) , and then, (3.1) can be rewritten as the equivalent system with random coefficients but without white noise:

(3.8) u t v + ε u = h w ( t ) ; v t = ε v a ( x ) ( Δ ) m v + ε a ( x ) ( Δ ) m u ε 2 u b ( x ) M ( m u 2 ) ( Δ ) m u g ( x , u ) + f ( x , t ) + ε h ( x ) w ( t ) a ( x ) ( Δ ) m h ( x ) w ( t ) ; u = 0 , i u v i = 0 , i = 1 , 2 , , m 1 , x Γ , t τ ; u ( x , τ ) = u τ ( x ) , v ( x , τ ) = v τ ( x ) = z τ ( x ) h w ( τ ) , x Ω .

Let X k = V m + k × V k , k = 0 , 1 , , m , when k = 0 V 0 = L μ 2 , endowed with the usual norm ( u , v ) X k 2 = u V m + k 2 + v V k 2 . By the standard Galerkin method: If the assumptions ( M ) h ( x ) V m + k ( Ω ) , x Ω , t τ , τ R , f ( x , t ) L loc 2 ( R , V k ( Ω ) ) conditions (3.2)–(3.6) hold the problem (3.8) is well posed in X k = V m + k × V k , i.e., for all τ R and P a . e . w Ω 1 , ( u τ , v τ ) X k , the problem (3.8) has a unique global solution ( u ( t , τ , w , u τ ) , v ( t , τ , w , v τ ) ) C ( [ τ , ) , X k ) and ( u ( τ , τ , w , u τ ) , v ( τ , τ , w , v τ ) ) = ( u τ , v τ ) . Moreover, for t τ , ( u ( t , τ , w , u τ ) , v ( t , τ , w , v τ ) ) is ( , B ( X k ) ) measurable in w and continuous in ( u τ , v τ ) with respect to the X k norm. Thus, the solution mapping can be used to define a family of continuous cocycles for (3.8). Let Φ k : R + × R × Ω 1 × X k X k be mappings given by

(3.9) Φ k ( t , τ , w , ( u τ , v τ ) ) = ( u ( t + τ , τ , θ τ w , u τ ) , v ( t + τ , τ , θ τ w , v τ ) ) ,

where ( t , τ , w , ( u τ , v τ ) ) R + × R × Ω 1 × X k , then Φ k is a family of continuous cocycles over ( R , τ + t ) and ( Ω 1 , , P , { θ t } t R ) on X k . For P a . e . w Ω 1 and t , s 0 , τ R :

(3.10) Φ k ( t + s , τ , w , ( u τ , v τ ) ) = Φ k ( t , s + τ , w , Φ k ( s , τ , w , ( u τ , v τ ) ) ) .

For any bounded nonempty subset B k of X k denote by B k = sup Φ k R Φ X k . Let D k = { D k ( τ , w ) : τ R , w Ω 1 } be a family of bounded nonempty subsets of X k , and for all τ R , w Ω 1 ,

(3.11) lim s e σ s D k ( τ + s , θ s w ) X k 2 = 0 .

Remember that D k is the set of the aforementioned subset family D k , that is, D k = { D k = { D k ( τ , w ) : τ R , w Ω 1 } : D k satisfies (3.11) } .

4 Uniform estimates of solutions

To prove the existence of the family of random attractors, we conduct uniform estimates on the solutions of the problem (3.8) defined on Ω , for the purposes of showing the existence of a family of D k pullback absorbing sets and the pullback D k asymptotic compactness of the random dynamical system. Let ε > 0 be small enough and satisfy α λ 1 m 1 3 ε > 0 , 2 a 00 λ 1 m ( a 00 λ 1 m + 12 ) ε > 0 , M 0 5 2 ε > 0 , b 0 M 0 8 ε > 0 ,

(4.1) σ = 1 2 min α λ 1 m 1 3 ε , ε 2 , ε c 2 2 , σ 1 = 1 2 min { 2 a 00 λ 1 m ( a 00 λ 1 m + 12 ) ε , ε } .

To obtain uniform estimates of the solutions, f ( x , t ) needs to satisfy ( F 1 ) t e σ s f ( , s ) V k 2 d s < .

Lemma 4.1

Suppose M satisfies ( M ) , h ( x ) V m + k ( Ω ) , k = 0 , 1 , , m , (3.2)–(3.6) hold, f ( x , t ) satisfies ( F 1 ) , and B k = { B k ( τ , w ) : τ R , w Ω 1 } D k for P a . e . w Ω 1 , τ R initial value satisfies ( u τ t , v τ t ) B k ( τ t , θ τ w ) , there exists T k = T k ( τ , w , B k ) > 0 such that for all t T k , the solution ( u ( τ , τ , w , u τ t ) , v ( τ , τ , w , v τ t ) ) = ( u τ t , v τ t ) of problem (3.8) satisfies

v ( τ , τ t , θ τ w , v τ t ) V k 2 + u ( τ , τ t , θ τ w , v τ t ) V m + k 2 r 1 k ( τ , w ) ,

where r 1 k ( τ , w ) will be given in detail later.

Proof

Taking the inner product of (3.8) with v in L μ 2 ( Ω ) , we find that

(4.2) 1 2 d d t v L μ 2 2 = ε v L μ 2 2 m v 2 + ε ( ( Δ ) m u , v ) ε 2 ( u , v ) L μ 2 b 0 ( M ( m u 2 ) ( Δ ) m u , v ) ( g ( x , u ) , v ) L μ 2 + ( f ( x , t ) , v ) L μ 2 + ε w ( t ) ( h , v ) L μ 2 w ( t ) ( ( Δ ) m h , v ) ,

for each term on the right-hand side of (4.2):

(4.3) ε ( ( Δ ) m u , v ) = ε ( ( Δ ) m u , u t + ε u + h w ( t ) ) = ε 2 d d t m u 2 + ε 2 m u 2 ε w ( t ) ( ( Δ ) m u , h ) ,

(4.4) ε 2 ( u , v ) L μ 2 = ε 2 ( u , u t + ε u h w ( t ) ) L μ 2 = ε 2 2 d d t v L μ 2 2 + ε 3 v L μ 2 2 ε 2 w ( t ) ( u , h ) L μ 2 ,

(4.5) b 0 ( M ( m u 2 ) ( Δ ) m u , v ) = b 0 ( M ( m u 2 ) ( Δ ) m u , u t + ε u h w ( t ) ) = b 0 2 d d t 0 m u 2 M ( s ) d s + ε b 0 M ( m u 2 ) m u 2 b 0 M ( m u 2 ) w ( t ) ( ( Δ ) m u , h ) ,

(4.6) ( g ( x , u ) , v ) L μ 2 = ( g ( x , u ) , u t + ε u h w ( t ) ) L μ 2 = d d t Ω μ G ( x , u ) d x + ε ( g ( x , u ) , u ) L μ 2 w ( t ) ( g ( x , u ) , h ) L μ 2 .

Substitute (4.3)–(4.6) into (4.2) to obtain

(4.7) d d t v L μ 2 2 + b 0 0 m u 2 M ( s ) d s ε m u 2 + ε 2 u L μ 2 2 + 2 Ω μ G ( x , u ) d x + 2 m v 2 2 ε v L μ 2 2 + 2 ε b 0 M ( m u 2 ) m u 2 2 ε 2 m u 2 + 2 ε 3 u L μ 2 2 + 2 ε ( g ( x , u ) , u ) L μ 2 = 2 ( f ( x , t ) , v ) L μ 2 + ( 2 b 0 M ( m u 2 ) 2 ε ) w ( t ) ( ( Δ ) m u , h ) 2 ε 2 w ( t ) ( u , h ) L μ 2 + 2 w ( t ) ( g ( x , u ) , h ) L μ 2 + 2 w ( t ) ( h , v ) L μ 2 2 w ( t ) ( ( Δ ) m h , v ) .

Using the Cauchy-Schwarz inequality, Young’s inequality and Holder’s inequality, we have

(4.8) 2 ε 2 w ( t ) ( u , h ) L μ 2 ε 3 u L μ 2 2 + ε w ( t ) 2 h L μ 2 2 ,

(4.9) 2 b 0 M ( m u 2 ) w ( t ) ( ( Δ ) m u , h ) 2 b 0 M 0 ( 1 + m u 2 q ) w ( t ) m u m h 2 b 0 M 0 w ( t ) m u m h + 2 b 0 M 0 w ( t ) m u 2 q + 1 m h ε b 0 M 0 4 m u 2 + 4 ε 1 b 0 M 0 w ( t ) 2 m h 2 + ε b 0 M 0 4 m u 2 + 1 2 q 2 ε 8 q + 4 2 q + 1 2 q 1 b 0 M 0 w ( t ) 2 1 2 q m h 2 1 2 q .

By (3.2) and (3.4), we get

(4.10) 2 w ( t ) ( g ( x , u ) , h ) L μ 2 2 w ( t ) ϕ 1 L μ 2 h L μ 2 + 2 c 1 w ( t ) Ω μ u p + 1 d x p p + 1 h L μ p + 1 2 w ( t ) ϕ 1 L μ 2 h L μ 2 + 2 c 1 w ( t ) Ω ( μ G ( x , u ) + μ ϕ 3 ) d x p p + 1 h L μ p + 1 2 w ( t ) ϕ 1 L μ 2 h L μ 2 + ε c 2 Ω μ G ( x , u ) d x + ε c 2 Ω μ ϕ 3 ( x ) d x + ( 2 c 1 ) p + 1 ( ε c 2 ) p p + 1 p + 1 p p w ( t ) p + 1 h L μ p + 1 p + 1 ,

(4.11) 2 ( f ( x , t ) , v ) L μ 2 + 2 w ( t ) ( h , v ) L μ 2 2 w ( t ) ( ( Δ ) m h , v ) 2 f L μ 2 v L μ 2 + 2 ε w ( t ) h L μ 2 v L μ 2 + 2 w ( t ) m h m v 2 α 1 2 λ 1 m 1 2 f L μ 2 m v + ε v L μ 2 2 + ε w ( t ) 2 h L μ 2 2 + 1 2 m v 2 + 2 w ( t ) 2 m h 2 m v 2 + ε v L μ 2 2 + 2 α 1 λ 1 1 m f L μ 2 2 + 2 w ( t ) 2 m h 2 + ε w ( t ) 2 h L μ 2 2 ,

(4.12) 2 ε w ( t ) ( ( Δ ) m u , h ) 2 ε w ( t ) m h m u ε 2 m u 2 + w ( t ) 2 m h 2 .

Substitute (4.8)–(4.12) into (4.7) to obtain

(4.13) d d t v L μ 2 2 + b 0 0 m u 2 M ( s ) d s ε m u 2 + ε 2 u L μ 2 2 + 2 Ω μ G ( x , u ) d x + m v 2 3 ε v L μ 2 2 + 2 ε M ( m u 2 ) ε M 0 2 b 0 m u 2 3 ε 2 m u 2 + ε 3 u L μ 2 2 + 2 ε ( g ( x , u ) , u ) L μ 2

2 α 1 λ 1 1 m f L μ 2 2 + ( 3 + 4 ε 1 M 0 b 0 ) w ( t ) 2 m h 2 + 2 ε w ( t ) 2 h L μ 2 2 + 1 2 q 2 ε 8 q + 4 2 q + 1 2 q 1 b 0 M 0 w ( t ) 2 1 2 q m h 2 1 2 q + 2 w ( t ) ϕ 1 L μ 2 h L μ 2 + ε c 2 Ω μ G ( x , u ) d x + ε c 2 Ω μ ϕ 3 ( x ) d x + ( 2 c 1 ) p + 1 ( ε c 2 ) p p + 1 p + 1 p p w ( t ) p + 1 h L μ p + 1 p + 1 .

By condition (3.3), we have

(4.14) 2 ε ( g ( x , u ) , u ) L μ 2 2 ε c 2 Ω μ G ( x , u ) d x + Ω μ ϕ 2 ( x ) d x .

Substitute (4.14) into (4.12) to obtain

(4.15) d d t v L μ 2 2 + b 0 0 m u 2 M ( s ) d s ε m u 2 + ε 2 u L μ 2 2 + 2 Ω μ G ( x , u ) d x + m v 2 3 ε v L μ 2 2 + 2 ε M ( m u 2 ) ε M 0 2 b 0 m u 2 3 ε 2 m u 2 + ε 3 u L μ 2 2 + ε c 2 Ω μ G ( x , u ) d x + 2 ε Ω μ ϕ 2 ( x ) d x 2 α 1 λ 1 1 m f L μ 2 2 + ( 3 + 4 ε 1 M 0 b 0 ) w ( t ) 2 m h 2 + 2 ε w ( t ) 2 h L μ 2 2 + 1 2 q 2 ε 8 q + 4 2 q + 1 2 q 1 b 0 M 0 w ( t ) 2 1 2 q m h 2 1 2 q + 2 w ( t ) ϕ 1 L μ 2 h L μ 2 + ε c 2 Ω μ ϕ 3 ( x ) d x + ( 2 c 1 ) p + 1 ( ε c 2 ) p p + 1 p + 1 p p w ( t ) p + 1 h L μ p + 1 p + 1 .

According to (4.1), we get

(4.16) d d t v L μ 2 2 + b 0 0 m u 2 M ( s ) d s ε m u 2 + ε 2 u L μ 2 2 + 2 Ω μ G ( x , u ) d x + σ v L μ 2 2 + b 0 0 m u 2 M ( s ) d s ε m u 2 + ε 2 u L μ 2 2 + 2 Ω μ G ( x , u ) d x 2 α 1 λ 1 1 m f L μ 2 2 + C 01 ( 1 + w ( t ) 2 + w ( t ) 2 1 2 q + w ( t ) p + 1 ) ,

where

C 01 = max ( 3 + 4 ε 1 M 0 b 0 ) m h 2 + 2 ε h L μ 2 2 + ϕ 1 L μ 2 2 h L μ 2 2 , ε c 2 Ω μ ϕ 3 ( x ) d x , 1 2 q 2 ε 8 q + 4 2 q + 1 2 q 1 b 0 M 0 m h 2 1 2 q , ( 2 c 1 ) p + 1 ( ε c 2 ) p p + 1 p + 1 p p h L μ p + 1 p + 1 .

Using the Gronwall inequality to integrate (4.16) over [ τ t , τ ] with t 0 and replacing w by θ τ w , we obtain

(4.17) e σ τ v L μ 2 2 + b 0 0 m u 2 M ( s ) d s ε m u 2 + ε 2 u L μ 2 2 + 2 Ω μ G ( x , u ) d x e σ ( τ t ) v ( τ t ) L μ 2 2 + b 0 0 m u ( τ t ) 2 M ( s ) d s ε m u ( τ t ) 2 + ε 2 u ( τ t ) L μ 2 2 + 2 Ω μ G ( x , u ( τ t ) ) d x + 2 α 1 λ 1 1 m τ t τ e σ ξ f ( , ξ ) L μ 2 2 d ξ + C 01 τ t τ e σ ξ ( 1 + w ( ξ ) 2 + w ( ξ ) 2 1 2 q + w ( ξ ) p + 1 ) d ξ ,

then

(4.18) v ( τ , τ t , θ τ w , v τ t ) L μ 2 2 + b 0 0 m u ( τ , τ t , θ τ w , v τ t ) 2 M ( s ) d s ε m u ( τ , τ t , θ τ w , v τ t ) 2 + ε 2 u ( τ , τ t , θ τ w , v τ t ) L μ 2 2 + 2 Ω μ G ( x , u ( τ , τ t , θ τ w , v τ t ) ) d x e σ t v ( τ t ) L μ 2 2 + b 0 0 m u ( τ t ) 2 M ( s ) d s ε m u ( τ t ) 2 + ε 2 u ( τ t ) L μ 2 2 + 2 Ω μ G ( x , u ( τ t ) ) d x + 2 α 1 λ 1 1 m e σ τ τ t τ e σ ξ f ( , ξ ) L μ 2 2 d ξ + C 01 e σ τ τ t τ e σ ξ ( 1 + θ τ w ( ξ ) 2 + θ τ w ( ξ ) 2 1 2 q + θ τ w ( ξ ) p + 1 ) d ξ .

By (3.7), we have

(4.19) Ω μ G ( x , u ( τ t ) ) d x c 6 ( ϕ 1 L μ 2 2 + ϕ 2 L μ 1 + u L μ 2 2 + u L μ p + 1 p + 1 ) C 02 ( 1 + u L μ 2 2 + u V m p + 1 ) .

Since ( u ( τ t ) , v ( τ t ) ) B 0 ( τ t , θ τ w ) when t +

(4.20) e σ t v ( τ t ) L μ 2 2 + b 0 0 m u ( τ t ) 2 M ( s ) d s ε m u ( τ t ) 2 + ε 2 u ( τ t ) L μ 2 2 + 2 Ω μ G ( x , u ( τ t ) ) d x C 03 e σ t ( 1 + v ( τ t ) L μ 2 2 + m u ( τ t ) 2 + m u ( τ t ) p + 1 ) 0 ,

and there exists T 0 = T 0 ( τ , w , B 0 ) such that for all t T 0 ,

(4.21) C 03 e σ t ( 1 + v ( τ t ) L μ 2 2 + m u ( τ t ) 2 + m u ( τ t ) p + 1 ) 1 .

By (3.4), it is easy to get to any t 0 ,

(4.22) 2 Ω G ( x , u ) d x 2 c 3 Ω u p + 1 d x + 2 Ω ϕ 3 d x 2 Ω ϕ 3 d x .

When ξ , w ( ξ ) at most polynomial growth,

C 01 e σ τ τ e σ ξ ( 1 + θ τ w ( ξ ) 2 + θ τ w ( ξ ) 2 1 2 q + θ τ w ( ξ ) p + 1 ) d ξ r 00 ( τ , w ) .

We get from (4.18) and (4.21) that

(4.23) v ( τ , τ t , θ τ w , v τ t ) L μ 2 2 + m u ( τ , τ t , θ τ w , v τ t ) 2 C 04 1 + 2 α 1 λ 1 1 m e σ τ τ e σ ξ f ( , ξ ) L μ 2 2 d ξ + r 00 ( τ , w ) r 10 ( τ , w ) ,

and r 10 ( τ , w ) is bounded.□

Taking the inner product of (3.8) with ( Δ ) k v , k = 1 , 2 , , m 1 in L 2 ( Ω ) , we find that

(4.24) 1 2 d d t k v 2 = ε k v 2 ( a ( x ) ( Δ ) m v , ( Δ ) k v ) + ε ( a ( x ) ( Δ ) m u , ( Δ ) k v ) ε 2 ( u , ( Δ ) k v ) ( b ( x ) M ( m u 2 ) ( Δ ) m u , ( Δ ) k v ) ( g ( x , u ) , ( Δ ) k v ) + ( f ( x , t ) , ( Δ ) k v ) + ε w ( t ) ( h , ( Δ ) k v ) w ( t ) ( a ( x ) ( Δ ) m h , ( Δ ) k v ) .

For each term on the right-hand side of (4.24):

(4.25) ( a ( x ) ( Δ ) m v , ( Δ ) k v ) = ( a ( x ) m + k v , m + k v ) + i = 1 m k C m k i m + k i v i a ( x ) , m + k v ,

(4.26) ε ( a ( x ) ( Δ ) m u , ( Δ ) k v ) = ε ( a ( x ) m + k u , m + k v ) + ε i = 1 m k C m k i m + k i v i a ( x ) , m + k u = ε 1 2 d d t ( a ( x ) m + k u , m + k u ) + ε 2 ( a ( x ) m + k u , m + k u ) ε w ( t ) ( a ( x ) m + k u , m + k h ) + ε i = 1 m k C m k i m + k i v i a ( x ) , m + k u ,

(4.27) ε 2 ( u , ( Δ ) k v ) = ε 2 ( u , ( Δ ) k ( u t + ε u h w ( t ) ) ) = ε 2 2 d d t k u 2 + ε 3 k u 2 ε 2 w ( t ) ( k u , k h ) ,

(4.28) ( b ( x ) M ( m u 2 ) ( Δ ) m u , ( Δ ) k v ) = b 0 M ( m u 2 ) ( a ( x ) m + k u , m + k v ) + M ( m u 2 ) i = 1 m k C m k i m + k i v i b ( x ) , m + k u = b 0 2 M ( m u 2 ) d d t ( a ( x ) m + k u , m + k u ) + ε b 0 M ( m u 2 ) ( a ( x ) m + k u , m + k u ) b 0 M ( m u 2 ) w ( t ) ( a ( x ) m + k u , m + k h ) + M ( m u 2 ) i = 1 m k C m k i m + k i v i b ( x ) , m + k u ,

(4.29) ( g ( x , u ) , ( Δ ) k v ) = ( x k g ( x , u ) , k v ) Ω ( c 5 u p + ϕ 5 ( x ) ) k v d x c 5 Ω u p k v d x + Ω ϕ 5 ( x ) k v d x c 5 u L 2 p p k v + ϕ 5 ( x ) k v a 00 8 m + k v 2 + C k 1 ( r 01 p ( τ , w ) + ϕ 5 ( x ) 2 ) ,

(4.30) ( f ( x , t ) , ( Δ ) k v ) = ( k f ( x , t ) , k v ) k f ( x , t ) k v a 00 8 m + k v 2 + 2 λ 1 m a 00 k f ( x , t ) 2 ,

moreover,

(4.31) ( m + k i v i a ( x ) , m + k v ) a i m + k i v m + k v , i = 1 , 2 , , m k , a i = i a ( x ) .

According to the interpolation inequality, we have

m + k i v C i m + k v α i v 1 α i , α i = m + k i m + k ,

then

(4.32) ( C m k i m + k i v i a ( x ) , m + k v ) C m k i C i a i v 1 α i m + k v 1 + α i a 00 8 ( m k ) m + k v 2 + 1 α i 2 a 00 4 ( 1 α i ) ( m k ) 1 + α i 1 α i ( C m k i C i a i ) 2 1 α i v 2 ,

(4.33) ( C m k i m + k i v i a ( x ) , m + k u ) a 00 b 0 M 0 8 ( m k ) m + k u 2 + 2 ( m k ) a 00 b 0 M 0 ( C m k i a i ) 2 m + k i v 2 a 00 b 0 M 0 8 ( m k ) m + k u 2 + a 00 8 ( m k ) m + k v 2 + ( 1 α i ) a 00 8 α i ( m k ) α i α i 1 2 ( m k ) a 00 b 0 M 0 ( C m k i a i C i ) 2 1 1 α i v 2 ,

(4.34) b 0 M ( m u 2 ) w ( t ) ( a ( x ) m + k u , m + k h ) b 0 a 0 M 0 ( 1 + m u 2 q ) w ( t ) m + k u m + k h ε b 0 a 00 M 0 8 m + k u 2 + 2 ε 1 a 00 1 b 0 a 0 2 M 0 ( 1 + m u 2 q ) 2 w ( t ) 2 m + k h 2 ,

(4.35) M ( m u 2 ) i = 1 m k C m k i m + k i v i b ( x ) , m + k u M 0 b 0 ( 1 + m u 2 q ) i = 1 m k C m k i a i m + k i v m + k u ε b 0 a 00 M 0 8 m + k u 2 + ε 1 a 00 1 b 0 M 0 i = 1 m k ( C m k i ( 1 + m u 2 q ) a i ) 2 m + k i v 2 ε b 0 a 00 M 0 8 m + k u 2 + a 00 8 m + k v 2 + ( ε 1 a 00 1 b 0 M 0 ) 1 1 α i i = 1 m k ( 1 α i ) a 00 8 α i ( m k ) α i α i 1 ( C m k i a i C i ( 1 + m u 2 q ) ) 2 1 α i v 2 .

By (4.25)–(4.30) and (4.32)–(4.35), we get

(4.36) d d t [ k v 2 ε ( a ( x ) m + k u , m + k u ) + ε 2 k u 2 ] + b 0 M ( m u 2 ) d d t ( a ( x ) m + k u , m + k u ) + 2 ( a ( x ) m + k v , m + k v ) 4 + ε 4 a 00 m + k v 2 2 ε k v 2 + 2 ε b 0 M ( m u 2 ) ( a ( x ) m + k u , m + k u ) 3 ε a 00 b 0 M 0 4 m + k u 2 2 ε 2 ( a ( x ) m + k u , m + k u ) + 2 ε 3 k u 2 i = 1 m k ( 1 α i ) a 00 4 ( 1 α i ) ( m k ) 1 + α i 1 α i ( C m k i a i C i ) 2 1 α i v 2 + 2 ε i = 1 m k ( 1 α i ) a 00 8 α i ( m k ) α i α i 1 2 ( m k ) a 00 b 0 M 0 ( C m k i a i C i ) 2 1 1 α i v 2

+ 2 i = 1 m k ( ε 1 a 00 1 b 0 M 0 ) 1 1 α i ( 1 α i ) a 00 8 α i ( m k ) α i α i 1 ( C m k i a i C i ( 1 + m u 2 q ) ) 2 1 α i v 2 + 4 ε 1 a 00 1 b 0 a 0 2 M 0 ( 1 + m u 2 q ) 2 w ( t ) 2 m + k h 2 + 2 λ 1 m a 00 k f ( x , t ) 2 + 2 C k 1 ( r 01 p ( τ , w ) + ϕ 5 ( x ) 2 ) 2 ε w ( t ) ( a ( x ) m + k u , m + k h ) + 2 ε 2 w ( t ) ( k u , k h ) + 2 ε w ( t ) ( ( Δ ) k u , h ) 2 w ( t ) ( a ( x ) ( Δ ) m h , ( Δ ) k v ) .

Using the Cauchy-Schwarz inequality,Young’s inequality and Holder’s inequality, etc. we have

(4.37) 2 ε w ( t ) ( a ( x ) m + k u , m + k h ) ε 2 a 00 m + k u 2 + a 00 1 a 0 2 w ( t ) 2 m + k h 2 ,

(4.38) 2 ε 2 w ( t ) ( k u , k h ) ε 3 k u 2 + ε w ( t ) 2 k h 2 ,

(4.39) 2 ε w ( t ) ( ( Δ ) k u , h ) ε k v 2 + ε w ( t ) 2 k h 2 ,

(4.40) 2 w ( t ) ( a ( x ) ( Δ ) m h , ( Δ ) k v ) = 2 w ( t ) ( a ( x ) m + k v , m + k h ) + 2 w ( t ) i = 1 m k C m k i m + k i i a ( x ) , m + k h a 00 4 m + k v 2 + 4 a 00 1 a 0 2 w ( t ) 2 m + k 2 + a 00 4 m + k v 2 + 4 a 00 1 w ( t ) 2 i = 1 m k ( C m k i a i ) 2 λ 1 i m + k h 2 a 00 2 m + k v 2 + 4 a 00 1 a 0 2 w ( t ) 2 m + k 2 + 4 a 00 1 w ( t ) 2 i = 1 m k ( C m k i a i ) 2 λ 1 i m + k h 2 .

Substitute (4.37)–(4.40) into (4.36) to obtain

(4.41) d d t [ k v 2 ε ( a ( x ) m + k u , m + k u ) + ε 2 k u 2 ] + b 0 M ( m u 2 ) d d t ( a ( x ) m + k u , m + k u ) + 2 ( a ( x ) m + k v , m + k v ) 6 + ε 4 a 00 m + k v 2 3 ε k v 2 + 2 ε b 0 M ( m u 2 ) ( a ( x ) m + k u , m + k u ) 3 ε a 00 b 0 M 0 4 m + k u 2 2 ε 2 ( a ( x ) m + k u , m + k u ) ε 2 a 00 m + k u 2 + ε 3 k u 2 i = 1 m k ( 1 α i ) a 00 4 ( 1 α i ) ( m k ) 1 + α i 1 α i ( C m k i a i C i ) 2 1 α i v 2 + 2 ε i = 1 m k ( 1 α i ) a 00 8 α i ( m k ) α i α i 1 2 ( m k ) a 00 b 0 M 0 ( C m k i a i C i ) 2 1 1 α i v 2 + 2 i = 1 m k ( 1 α i ) ( ε 1 a 00 1 b 0 M 0 ) 1 1 α i a 00 8 α i ( m k ) α i α i 1 ( C m k i a i C i ( 1 + m u 2 q ) ) 2 1 α i v 2 + 4 ε 1 a 00 1 b 0 a 0 2 M 0 ( 1 + m u 2 q ) 2 w ( t ) 2 m + k h 2 + 2 λ 1 m a 00 k f ( x , t ) 2 + 2 C k 1 ( r 01 p ( τ , w ) + ϕ 5 ( x ) 2 ) + 5 a 00 1 a 0 2 w ( t ) 2 m + k 2 + 2 ε w ( t ) 2 k h 2 + 4 a 00 1 w ( t ) 2 i = 1 m k ( C m k i a i ) 2 λ 1 i m + k h 2 .

When d d t ( a ( x ) m + k u , m + k u ) + 2 ε ( a ( x ) m + k u , m + k u ) 0 ,

b 0 M ( m u 2 ) d d t ( a ( x ) m + k u , m + k u ) + 2 ε ( a ( x ) m + k u , m + k u ) d d t ( b 0 M 0 ( a ( x ) m + k u , m + k u ) ) + 2 ε b 0 M 0 ( a ( x ) m + k u , m + k u ) ;

else

b 0 M ( m u 2 ) d d t ( a ( x ) m + k u , m + k u ) + 2 ε ( a ( x ) m + k u , m + k u ) d d t ( b 0 C ( m u 2 ) ( a ( x ) m + k u , m + k u ) ) + 2 ε b 0 C ( m u 2 ) ( a ( x ) m + k u , m + k u ) ,

then (4.41) is transformed into

(4.42) d d t [ k v 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) ( a ( x ) m + k u , m + k u ) + ε 2 k u 2 ] + 2 ( a ( x ) m + k v , m + k v ) 6 + ε 4 a 00 m + k v 2 3 ε k v 2 + 2 ε b 0 M 0 ( C ( m u 2 ) ) ( a ( x ) m + k u , m + k u ) 3 ε a 00 b 0 M 0 4 m + k u 2 2 ε 2 ( a ( x ) m + k u , m + k u ) ε 2 a 00 m + k u 2 + ε 3 k u 2 i = 1 m k ( 1 α i ) a 00 4 ( 1 α i ) ( m k ) 1 + α i 1 α i ( C m k i a i C i ) 2 1 α i v 2 + 2 ε i = 1 m k ( 1 α i ) a 00 8 α i ( m k ) α i α i 1 2 ( m k ) a 00 b 0 M 0 ( C m k i a i C i ) 2 1 1 α i v 2 + 2 i = 1 m k ( 1 α i ) ( ε 1 a 00 1 b 0 M 0 ) 1 1 α i a 00 8 α i ( m k ) α i α i 1 ( C m k i a i C i ( 1 + m u 2 q ) ) 2 1 α i v 2 + 4 ε 1 a 00 1 b 0 a 0 2 M 0 ( 1 + m u 2 q ) 2 w ( t ) 2 m + k h 2 + 2 λ 1 m a 00 k f ( x , t ) 2 + 2 C k 1 ( r 01 p ( τ , w ) + ϕ 5 ( x ) 2 ) + 5 a 00 1 a 0 2 w ( t ) 2 m + k 2 + 2 ε w ( t ) 2 k h 2 + 4 a 00 1 w ( t ) 2 i = 1 m k ( C m k i a i ) 2 λ 1 i m + k h 2 .

By 2 ( a ( x ) m + k v , m + k v ) 2 a 00 m + k v 2 , ( a ( x ) m + k u , m + k u ) a 00 m + k u 2 , (4.1), we have

(4.43) d d t [ k v 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) ( a ( x ) m + k u , m + k u ) + ε 2 k u 2 ] + σ 1 [ k v 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) ( a ( x ) m + k u , m + k u ) + ε 2 k u 2 ] C k 2 ( 1 + w ( t ) 2 ) + 2 λ 1 m a 00 k f ( x , t ) 2 .

When k = m , (4.43) is also true, which will not be detailed here.

Using the Gronwall inequality to integrate (4.43) over [ τ t , τ ] and replacing w by θ τ w we obtain

(4.44) e σ 1 τ [ k v 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) ( a ( x ) m + k u , m + k u ) + ε 2 k u 2 ] e σ 1 ( τ t ) [ k v ( τ t ) 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) ( a ( x ) m + k u ( τ t ) , m + k u ( τ t ) ) + ε 2 k u ( τ t ) 2 ] + τ t τ e σ 1 ξ C k 2 ( 1 + w ( ξ ) 2 ) d ξ + 2 λ 1 m a 00 τ t τ e σ 1 ξ k f ( x , ξ ) 2 d ξ ,

moreover,

(4.45) k v 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) ( a ( x ) m + k u , m + k u ) + ε 2 k u 2 e σ 1 t [ k v ( τ t ) 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) ( a ( x ) m + k u ( τ t ) , m + k u ( τ t ) ) + ε 2 k u ( τ t ) 2 ] + e σ 1 τ τ t τ e σ 1 ξ C k 2 ( 1 + w ( ξ ) 2 ) d ξ + 2 λ 1 m a 00 e σ 1 τ τ t τ e σ 1 ξ k f ( x , ξ ) 2 d ξ .

Since ( u ( τ t ) , v ( τ t ) ) B k ( τ t , θ τ w ) , when t + ,

(4.46) e σ 1 t [ k v ( τ t ) 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) ( a ( x ) m + k u ( τ t ) , m + k u ( τ t ) ) + ε 2 k u ( τ t ) 2 ] e σ 1 t [ k v ( τ t ) 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) a 0 m + k u ( τ t ) 2 + ε 2 k u ( τ t ) 2 ] 0 ,

then there exists T k = T k ( τ , w , B k ) such that for all t T k

(4.47) e σ 1 t [ k v ( τ t ) 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) a 0 m + k u ( τ t ) 2 + ε 2 k u ( τ t ) 2 ] 1 .

When ξ w ( ξ ) at most polynomial growth,

e σ 1 τ τ e σ 1 ξ C k 2 ( 1 + w ( ξ ) 2 ) d ξ r 0 k ( τ , w ) .

We get from (4.45)–(4.47), ( a ( x ) m + k u , m + k u ) a 00 m + k u 2 that

(4.48) k v ( τ , τ t , θ τ w , v τ t ) 2 + m + k u ( τ , τ t , θ τ w , v τ t ) 2 C k 3 1 + 2 λ 1 m a 00 e σ 1 τ τ e σ 1 ξ k f ( x , ξ ) 2 d ξ + r 0 k ( τ , w ) r 1 k ( τ , w ) ,

and r 1 k ( τ , w ) are bounded.

Lemma 4.1 is derived from (4.23) and (4.48).

Lemma 4.1 is proved.

Considering the eigenvalue problem

( Δ ) m + k u = λ m + k u , u Γ = 0 ,

the problem (3.8) has a family of eigenfunctions { e j } j = 1 with the eigenvalues { λ j } j = 1 : λ 1 λ 2 λ j ( j ) , such that { e j } j = 1 is an orthonormal basis of L μ 2 ( Ω ) . Given n let Q n = span { e 1 , , e n } and P n : V k ( Ω ) Q n be the projection operator.

Lemma 4.2

Suppose M satisfies ( M ) , h ( x ) V m + k ( Ω ) , k = 0 , 1 , , m (3.2)–(3.6) hold f ( x , t ) satisfies ( F 1 ) and for η > 0 , τ R , w Ω 1 , B k = { B k ( τ , w ) : τ R , w Ω 1 } D k , there exists T k = T k ( τ , w , B k , η k ) > 0 , N k = N k ( τ , w , η k ) 0 such that the solution of (3.8) satisfies for t T k , n N k

( I P n ) v ( τ , τ t , θ τ w ) V k 2 + ( I P n ) u ( τ , τ t , θ τ w ) V m + k 2 η k .

Proof

Let u n , 1 = P n u , u n , 2 = u u n , 1 , v n , 1 = P n v , v n , 2 = v v n , 1 . Applying ( I P n ) to the second equation of (3.8), we obtain

(4.49) d v n , 2 d t = ε v n , 2 a ( x ) ( Δ ) m v n , 2 + ε a ( x ) ( Δ ) m u n , 2 ε 2 u n , 2 b ( x ) ( I P n ) M ( m 2 ) ( Δ ) m u ( I P n ) ( g ( x , u ) + f ( x , t ) ) + ε h ( x ) w ( t ) a ( x ) ( Δ ) m h ( x ) w ( t ) .

Taking the inner product of the resulting equation (4.49) with v n , 2 in L μ 2 ( Ω ) , we have

(4.50) 1 2 d d t v n , 2 L μ 2 2 = ε v n , 2 L μ 2 2 m v n , 2 2 + ε ( ( Δ ) m u n , 2 , v n , 2 ) ε 2 ( u n , 2 , v n , 2 ) L μ 2 b 0 ( ( I P n ) M ( m u 2 ) ( Δ ) m u , v n , 2 ) ( ( I P n ) g ( x , u ) , v n , 2 ) L μ 2 + ( ( I P n ) f ( x , t ) , v n , 2 ) L μ 2 + ε w ( t ) ( h ( x ) , v n , 2 ) L μ 2 w ( t ) ( ( Δ ) m h , v n , 2 ) .

Applying I P n to the first equation of (3.8), we get

(4.51) v n , 2 = d u n , 2 d t + ε u n , 2 h w ( t ) .

For the third and fourth terms on the right-hand side of (4.49), we obtain

(4.52) ε ( ( Δ ) m u n , 2 , v n , 2 ) ε 2 ( u n , 2 , v n , 2 ) L μ 2 = ε ( ( Δ ) m u n , 2 , d u n , 2 d t + ε u n , 2 h w ( t ) ) ε 2 ( u n , 2 , d u n , 2 d t + ε u n , 2 h w ( t ) ) L μ 2 = ε 2 d d t m u n , 2 2 + ε 2 m u n , 2 2 ε w ( t ) ( ( Δ ) m u n , 2 , h ) ε 2 2 d d t u n , 2 L μ 2 2 ε 3 u n , 2 L μ 2 2 + ε 2 w ( t ) ( u n , 2 , h ) L μ 2 ,

for the fifth term on the right-hand side of (4.49), we have

(4.53) b 0 ( ( I P n ) M ( m u 2 ) ( Δ ) m u , v n , 2 ) = b 0 ( M ( m u 2 ) ( Δ ) m u n , 2 , d u n , 2 d t + ε u n , 2 h w ( t ) ) = 1 2 b 0 M ( m u 2 ) d d t m u n , 2 2 + ε b 0 M ( m u 2 ) m u n , 2 2 b 0 M ( m u 2 ) w ( t ) ( ( Δ ) m u n , 2 , h ) ,

for the sixth term on the right-hand side of (4.49), we have

(4.54) ( ( I P n ) g ( x , u ) , v n , 2 ) L μ 2 = ( ( I P n ) g ( x , u ) , d u n , 2 d t + ε u n , 2 h w ( t ) ) L μ 2 = d d t ( ( I P n ) g ( x , u ) , u n , 2 ) L μ 2 ( ( I P n ) g u ( x , u ) u t , u n , 2 ) L μ 2 + ε ( ( I P n ) g ( x , u ) , u n , 2 ) L μ 2 ( ( I P n ) g ( x , u ) , h w ( t ) ) L μ 2 ,

for the seventh, eighth, and ninth terms on the right-hand side of (4.49), we have

(4.55) ( ( I P n ) f ( x , t ) , v n , 2 ) L μ 2 1 4 m v n , 2 2 + 1 α n + 1 λ n + 1 m 1 ( I P n ) f ( x , t ) L μ 2 2 ,

(4.56) ε w ( t ) ( h ( x ) , v n , 2 ) L μ 2 1 4 m v n , 2 2 + ε w ( t ) 2 α n + 1 λ n + 1 m 1 h ( x ) L μ 2 2 ,

(4.57) w ( t ) ( ( Δ ) m h , v n , 2 ) 1 4 m v n , 2 2 + ε w ( t ) 2 m h ( x ) 2 .

When d d t m u n , 2 2 + 2 ε m v n , 2 2 0

(4.58) b 0 M ( m u 2 ) d d t m u n , 2 2 + 2 ε m v n , 2 2 d d t ( b 0 M 0 m u n , 2 2 ) + 2 ε b 0 M 0 m v n , 2 2 ,

else

(4.59) b 0 M ( m u 2 ) d d t m u n , 2 2 + 2 ε m v n , 2 2 d d t ( b 0 C ( m u 2 ) m u n , 2 2 ) + 2 ε b 0 C ( m u 2 ) m v n , 2 2 .

By using Young’s inequality and Holder’s inequality, we can get

(4.60) 2 b 0 M ( m u 2 ) w ( t ) ( ( Δ ) m u n , 2 , h ) 2 b 0 M ( m u 2 ) w ( t ) m u n , 2 w ( t ) m h ε b 0 M 0 2 m u n , 2 2 + 2 b 0 C ( m u 2 ) ε M 0 w ( t ) 2 m h 2 ,

(4.61) 2 ε 2 w ( t ) ( h ( x ) , u n , 2 ) L μ 2 2 ε w ( t ) ( ( Δ ) m u n , 2 , h ( x ) ) ε 3 u n , 2 L μ 2 2 + ε 2 m u n , 2 2 + ε w ( t ) 2 h L μ 2 2 + w ( t ) 2 m h 2 .

By (3.5), we have

(4.62) 2 ( ( I P n ) g u ( x , u ) u t , u n , 2 ) L μ 2 2 ϕ 4 L μ 4 u t L μ 2 u n , 2 L μ 4 + 2 c 4 u t L μ 2 u L μ 2 p p 1 u n , 2 L μ 2 p ε b 0 M 0 2 m u n , 2 2 + C 05 ε b 0 M 0 λ n + 1 1 m u t L μ 2 2 + C 06 λ n + 1 1 m u t L μ 2 2 m u 2 p 2 ,

(4.63) 2 w ( t ) ( ( I P n ) g ( x , u ) , h ) L μ 2 2 w ( t ) ϕ 1 L μ 2 h L μ 2 + 2 c 1 w ( t ) u L μ 2 p p h L μ 2 2 w ( t ) ϕ 1 L μ 2 h L μ 2 + 2 C 07 w ( t ) m u p h L μ 2 .

By substituting (4.52)–(4.63) into (4.50), we have

(4.64) d d t [ v n , 2 L μ 2 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) m u n , 2 2 + ε 2 u n , 2 L μ 2 2 + 2 ( ( I P n ) g ( x , u ) , u n , 2 ) L μ 2 ] + 1 2 m v n , 2 2 2 ε v n , 2 L μ 2 2 + ( 2 ε M ( m u 2 ) ε M 0 ) b 0 m u 2 3 ε 2 m u 2 + ε 3 u L μ 2 2 + 2 ε ( ( I P n ) g ( x , u ) , u n , 2 ) L μ 2 1 + 2 b 0 C ( m u 2 ) ε M 0 + 2 ε w ( t ) 2 m h 2 + ε + 2 ε α n + 1 λ n + 1 m 1 w ( t ) 2 h ( x ) L μ 2 2 + C 05 ε b 0 M 0 λ n + 1 1 m u t L μ 2 2 + C 06 λ n + 1 1 m u t L μ 2 2 m u 2 p 2 + ( 2 ϕ 1 L μ 2 h L μ 2 + 2 C 08 m u p ) w ( t ) h L μ 2 + 2 α n + 1 λ n + 1 m 1 ( I p n ) f ( x , t ) L μ 2 2 .

Because, when N = 1 , 2 , then 1 p < + ; when N = 3 , 4 , then 1 p < N N 2 . Moreover, when n , λ n so given η 0 > 0 , there exists N 01 = N 01 ( η 0 ) 1 for n N 01

(4.65) 1 + 2 b 0 C ( m u 2 ) ε M 0 + 2 ε w ( t ) 2 m h 2 + ε + 2 ε α n + 1 λ n + 1 m 1 w ( t ) 2 h ( x ) L μ 2 2 + C 05 ε b 0 M 0 λ n + 1 1 m u t L μ 2 2 + C 06 λ n + 1 1 m u t L μ 2 2 m u 2 p 2 + ( 2 ϕ 1 L μ 2 h L μ 2 + 2 C 08 m u p ) w ( t ) h L μ 2 + 2 α n + 1 λ n + 1 m 1 ( I p n ) f ( x , t ) L μ 2 2 C 09 η 0 ( 1 + w ( t ) 2 + u t L μ 2 6 + m u 6 ) + 2 α n + 1 λ n + 1 m 1 ( I p n ) f ( x , t ) L μ 2 2 .

Then, there is an appropriate positive constant σ 2 so that (4.64) can be reduced to

(4.66) d d t [ v n , 2 L μ 2 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) m u n , 2 2 + ε 2 u n , 2 L μ 2 2 + 2 ( ( I P n ) g ( x , u ) , u n , 2 ) L μ 2 ] + σ 2 [ v n , 2 L μ 2 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) m u n , 2 2 + ε 2 u n , 2 L μ 2 2 + 2 ( ( I P n ) g ( x , u ) , u n , 2 ) L μ 2 ] C 09 η 0 ( 1 + w ( t ) 2 + u t L μ 2 6 + m u 6 ) + 2 α n + 1 λ n + 1 m 1 ( I p n ) f ( x , t ) L μ 2 2 ,

integrating (4.66) over ( τ t , τ ) with t 0 we get for all n N 01

(4.67) v n , 2 ( τ , τ t , w ) L μ 2 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) m u n , 2 ( τ , τ t , w ) 2 + ε 2 u n , 2 ( τ , τ t , w ) L μ 2 2 + 2 ( ( I P n ) g ( x , u ) , u n , 2 ( τ , τ t , w ) ) L μ 2

e σ 2 t [ v n , 2 ( τ t ) L μ 2 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) m u n , 2 ( τ t ) 2 + ε 2 u n , 2 ( τ t ) L μ 2 2 + 2 ( ( I P n ) g ( x , u ( τ t ) ) , u n , 2 ( τ t ) ) L μ 2 ] + C 09 η 0 τ t τ e σ ( s t ) ( 1 + w ( s ) 2 + u t ( s , τ t , w , u 1 τ ) L μ 2 6 + m u ( s , τ t , w , u 1 τ ) 6 ) d s + 2 α n + 1 λ n + 1 m 1 τ t τ e σ ( s t ) ( I p n ) f ( x , s ) L μ 2 2 d s .

Replacing w by θ τ w in (4.67) for every t R + , τ R , w Ω 1 , n N 01 , we obtain

(4.68) v n , 2 ( τ , τ t , θ τ w ) L μ 2 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) m u n , 2 ( τ , τ t , θ τ w ) 2 + ε 2 u n , 2 ( τ , τ t , θ τ w ) L μ 2 2 + 2 ( ( I P n ) g ( x , u ) , u n , 2 ( τ , τ t , θ τ w ) ) L μ 2 e σ 2 t [ v n , 2 ( τ t ) L μ 2 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) m u n , 2 ( τ t ) 2 + ε 2 u n , 2 ( τ t ) L μ 2 2 + 2 ( ( I P n ) g ( x , u ( τ t ) ) , u n , 2 ( τ t ) ) L μ 2 ] + C 09 η 0 τ t τ e σ ( s t ) ( 1 + w ( s ) 2 + u t ( s , τ t , θ τ w , u 1 τ ) L μ 2 6 + m u ( s , τ t , θ τ w , u 1 τ ) 6 ) d s + 2 α n + 1 λ n + 1 m 1 τ t τ e σ ( s t ) ( I p n ) f ( x , s ) L μ 2 2 d s .

From (3.8), f ( x , t ) satisfies ( F 1 ) , h V m and Lemma 4.1, we have

(4.69) v n , 2 ( τ , τ t , θ τ w ) L μ 2 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) m u n , 2 ( τ , τ t , θ τ w ) 2 + ε 2 u n , 2 ( τ , τ t , θ τ w ) L μ 2 2 + 2 ( ( I P n ) g ( x , u ) , u n , 2 ( τ , τ t , θ τ w ) ) L μ 2 e σ 2 t [ v n , 2 ( τ t ) L μ 2 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) m u n , 2 ( τ t ) 2 + ε 2 u n , 2 ( τ t ) L μ 2 2 + 2 ( ( I P n ) g ( x , u ( τ t ) ) , u n , 2 ( τ t ) ) L μ 2 ] + C 09 η 0 r 00 3 τ t τ e σ ( s t ) ( 1 + w ( s ) 2 + w ( s ) 6 ) d s + 2 α n + 1 λ n + 1 m 1 τ t τ e σ ( s t ) ( I p n ) f ( x , s ) L μ 2 2 d s ,

by ( u τ t , v τ t ) B 0 ( τ t , θ τ w ) , then

(4.70) e σ 2 t [ v n , 2 ( τ t ) L μ 2 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) m u n , 2 ( τ t ) 2 + ε 2 u n , 2 ( τ t ) L μ 2 2 + 2 ( ( I P n ) g ( x , u ( τ t ) ) , u n , 2 ( τ t ) ) L μ 2 ] 0 , t .

Taking the inner product of (4.49) with ( Δ ) k v n , 2 , k = 1 , 2 , , m 1 in L 2 ( Ω ) , we have

(4.71) 1 2 d d t k v n , 2 2 = ε k v n , 2 2 ( a ( x ) ( Δ ) m v n , 2 , ( Δ ) k v n , 2 ) + ε ( a ( x ) ( Δ ) m u n , 2 , ( Δ ) k v n , 2 ) ε 2 ( u n , 2 , ( Δ ) k v n , 2 ) ( b ( x ) M ( m u 2 ) ( Δ ) m u n , 2 , ( Δ ) k v n , 2 ) ( ( I P n ) g ( x , u ) , ( Δ ) k v n , 2 ) + ( f ( x , t ) , ( Δ ) k v n , 2 ) + ε w ( t ) ( h , ( Δ ) k v n , 2 ) w ( t ) ( a ( x ) ( Δ ) m h , ( Δ ) k v n , 2 ) .

Then applying I P n to the first equation of (3.8), we obtain

(4.72) v n , 2 = d u n , 2 d t + ε u n , 2 h w ( t ) .

Combining the processing method of Lemma 4.1,

(4.73) d d t [ k v n , 2 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) ( a ( x ) m + k u n , 2 , m + k u n , 2 ) + ε 2 k u n , 2 2 ] + 2 ( a ( x ) m + k v n , 2 , m + k v n , 2 ) 6 + ε 4 a 00 m + k v n , 2 2 3 ε k v n , 2 2 + 2 ε b 0 M 0 ( C ( m u 2 ) ) ( a ( x ) m + k u n , 2 , m + k u n , 2 ) 3 ε a 00 b 0 M 0 4 m + k u n , 2 2 2 ε 2 ( a ( x ) m + k u n , 2 , m + k u n , 2 ) ε 2 a 00 m + k u n , 2 2 + ε 3 k u n , 2 2 i = 1 m k ( 1 α i ) a 00 4 ( 1 α i ) ( m k ) 1 + α i 1 α i ( C m k i a i C i ) 2 1 α i v n , 2 2 + 2 ε i = 1 m k ( 1 α i ) a 00 8 α i ( m k ) α i α i 1 2 ( m k ) a 00 b 0 M 0 ( C m k i a i C i ) 2 1 1 α i v n , 2 2 + 2 ( ε 1 a 00 1 b 0 M 0 ) 1 1 α i i = 1 m k ( 1 α i ) a 00 8 α i ( m k ) α i α i 1 ( C m k i a i C i ( 1 + m u 2 q ) ) 2 1 α i v n , 2 2 + 4 ε 1 a 00 1 b 0 a 0 2 M 0 ( 1 + m u 2 q ) 2 w ( t ) 2 m + k h 2 + 2 λ n + 1 m a 00 k f ( x , t ) 2 + 2 C k 1 ( r 01 p ( τ , w ) + ϕ 5 ( x ) 2 ) + 5 a 00 1 a 0 2 w ( t ) 2 m + k h 2 + 2 ε w ( t ) 2 k h 2 + 4 a 00 1 w ( t ) 2 i = 1 m k ( C m k i a i ) 2 λ 1 i m + k h 2 .

Then there is a positive constant σ 1 (4.73) can be reduced to

(4.74) d d t [ k v n , 2 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) ( a ( x ) m + k u n , 2 , m + k u n , 2 ) + ε 2 k u n , 2 2 ] + σ 1 [ k v n , 2 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) ( a ( x ) m + k u n , 2 , m + k u n , 2 ) + ε 2 k u n , 2 2 ] C k 4 ( 1 + w ( t ) 2 ) + 2 λ n + 1 m a 00 k f ( x , t ) 2 .

when k = m , (4.74) also holds.□

Integrating (4.74) over ( τ t , τ ) with t 0 , we get for all n N k 1

(4.75) k v n , 2 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) ( a ( x ) m + k u n , 2 , m + k u n , 2 ) + ε 2 k u n , 2 2 e σ 1 t [ k v n , 2 ( τ t ) 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) ( a ( x ) m + k u n , 2 ( τ t ) , m + k u n , 2 ( τ t ) ) + ε 2 k u n , 2 ( τ t ) 2 ] + e σ 1 τ τ t τ e σ 1 ξ C k 4 ( 1 + w ( ξ ) 2 ) d ξ + 2 λ 1 m a 00 e σ 1 τ τ t τ e σ 1 ξ k f ( x , ξ ) 2 d ξ .

Replacing w by θ τ w in (4.75), we obtain for every t R + , τ R , w Ω 1 , n N k 1

(4.76) k v n , 2 ( τ , τ t , θ τ w ) 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) × ( a ( x ) m + k u n , 2 ( τ , τ t , θ τ w ) , m + k u n , 2 ( τ , τ t , θ τ w ) ) + ε 2 k u n , 2 ( τ , τ t , θ τ w ) 2 e σ 1 t [ k v n , 2 ( τ t ) 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) ( a ( x ) m + k u n , 2 ( τ t ) , m + k u n , 2 ( τ t ) ) + ε 2 k u n , 2 ( τ t ) 2 ] + e σ 1 τ τ t τ e σ 1 ξ C k 4 ( 1 + w ( ξ ) 2 ) d ξ + 2 λ 1 m a 00 e σ 1 τ τ t τ e σ 1 ξ k f ( x , ξ ) 2 d ξ .

From (3.8), h V m + k , f ( x , t ) satisfies ( F 1 ) Lemma 4.1 and ( u τ t , v τ t ) B k ( τ t , θ τ w ) for t +

(4.77) e σ 1 t [ k v n , 2 ( τ t ) 2 + ( b 0 M 0 ( C ( m u 2 ) ) ε ) ( a ( x ) m + k u n , 2 ( τ t ) , m + k u n , 2 ( τ t ) ) + ε 2 k u n , 2 ( τ t ) 2 ] 0 .

Combining (4.69), (4.70), (4.76), (4.77), and Lemma 4.1, we can get the conclusion of Lemma 4.2.

Lemma 4.2 is proved.

5 The existence of the family of random attractors

In this section, we shall prove the existence of the family of random pullback attractors for system (3.8). From Lemma 4.1, we know that for P a.e. D k = { D k ( τ , w ) : τ R , w Ω 1 } D k and w Ω 1 , there exists T k = T k ( D k , w ) such that for all t T k

(5.1) v ( τ , τ t , θ τ w , v τ t ) V k 2 + m + k u ( τ , τ t , θ τ w , u τ t ) V m + k 2 r 1 k ( τ , w ) .

Let

(5.2) B k ( τ , w ) = { ( u , v ) V m + k × V k : v V k 2 + u V m + k 2 r 1 k ( τ , w ) } .

Then, by (5.2), B k = { B k ( τ , w ) } w Ω 1 are the closed absorption sets of Φ k in X k . We are now ready to prove the asymptotic compactness of Φ k in X k .

Lemma 5.1

Suppose M satisfies ( M ) , h ( x ) V m + k ( Ω ) , (3.2)–(3.6) hold f ( x , t ) satisfies, ( F 1 ) , then Φ k is asymptotically compact in X k , that is, for every τ R , w Ω 1 , the sequence { Φ k ( t i , τ t i , θ t i w , ( u τ , i , v τ , i ) ) } has a convergent subsequence in X k provided t i and

( u τ , i , v τ , i ) D k ( τ t i , θ t i w ) ; D k = { D k ( τ , w ) : τ R , w Ω 1 } D k .

Proof

We first let t i , it follows from Lemma 4.1 that there exist i 1 = i 1 ( τ , w , D k ) > 0 such that for every i i 1

(5.3) v ( τ , τ t i , θ τ w , v τ ) V k 2 + u ( τ , τ t i , θ τ w , u τ ) V m + k 2 r 1 k ( τ , w ) ,

next by using Lemma 4.2 for η k > 0 , there are i k 2 = i k 2 ( η k , w , B k ) and N k = N k ( η k , w ) > 0 such that for every i k i k 2

(5.4) ( I P n ) v ( τ , τ t k i , θ τ w , v τ ) V k 2 + ( I P n ) u ( τ , τ t k i , θ τ w , u τ ) V m + k 2 η k .

By using (5.3), we find that { P N k ( u ( τ , τ t i , w ) , v ( τ , τ t i , w ) ) } is bounded in P N k X k and P N k X k is finite dimensional, which associates with (5.4) implies that { ( u ( τ , τ t i , w ) , v ( τ , τ t i , w ) ) } is precompact in X k .□

Theorem 5.2

Suppose M satisfies ( M ) , h ( x ) V m + k ( Ω ) , (3.2)–(3.6) hold f ( x , t ) satisfies ( F 1 ) , then the family of cocycles Φ k generated by (3.8) has a family of pullback D k attractors { A k } = { { A k ( τ , w ) } D k ( k = 1 , 2 , , m ) } in X k and can be expressed as follows:

A k ( τ , w ) = τ 0 t τ Φ k ( t , τ t , θ t w , B k ( τ t , θ t w ) ) ¯ , τ R , w Ω 1 .

Proof

From (5.2), Lemmas 5.1 and 2.10, the conclusion of Theorem 5.2 can be obtained.

Theorem 5.2 is proved.□

Note 5.3

Theorem 5.2 shows the family of cocycles Φ k generated by (3.8) has a unique pullback attractor A k , respectively, in the space X k ( k = 0 , 1 , , m ) , which together form a family of pullback attractors { A k } . At the same time, according to Lemma 4.1 and (5.2) and the tight embedding of X k X 0 , k = 1 , 2 , , m , get the corresponding a family of pullback attractors { A k } , which is ( X k , X 0 ) the family of random weak attractors, which means that the family of cocycles Φ k has uniformly asymptotically compact absorption sets B k ( τ , w ) X 0 , k = 1 , 2 , , m , where B k ( τ , w ) are the bounded sets in X k , i.e., Φ k are asymptotically compact in X 0 .

Acknowledgements

The authors thank the referees for valuable comments and suggestions, which improved the presentation of this manuscript.

  1. Funding information: This work was partially supported by the fundamental research fund of Yunnan Education Department (2020J0908) and the basic science (NATURAL SCIENCE) research project of colleges and universities in Jiangsu Province (21KJB110013).

  2. Conflict of interest: The authors state no conflict of interest.

  3. Data availability statement: No data, models,or code are generated or used during the study.

References

[1] I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations 252 (2011), no. 2, 1229–1262, https://doi.org/10.1016/j.jde.2011.08.022. Search in Google Scholar

[2] Z. Yang and P. Ding, Long-time dynamics of the Kirchhoff equation with strong damping and critical nonlinearity on RN, J. Math. Anal. Appl. 434 (2016), no. 2, 1826–1851, https://doi.org/10.1016/j.jmaa.2015.10.013. Search in Google Scholar

[3] Z. Yang and Z. Liu, Exponential attractor for the Kirchhoff equations with strong nonlinear damping and supercritical nonlinearity, Appl. Math. Lett. 46 (2015), 127–132, https://doi.org/10.1016/j.aml.2015.02.019. Search in Google Scholar

[4] G. Lin, P. Lv, and R. Lou, Exponential attractors and inertial manifolds for a class of nonlinear generalized Kirchhoff-Boussinesq model, Far East J. Math. Sci. 101 (2017), no. 9, 1913–1945, https://doi.org/10.17654/MS101091913. Search in Google Scholar

[5] H. Ma, J. Zhang, and C. Zhong, Attractors for the degenerate Kirchhoff wave model with strong damping: Existence and the fractal dimension, J. Math. Anal. Appl. 484 (2020), 123670, https://doi.org/10.1016/j.jmaa.2019.123670.10.1016/j.jmaa.2019.123670Search in Google Scholar

[6] Y. Li, Z. Yang, and P. Ding, Regular solutions and strong attractors for the Kirchhoff wave model with structural nonlinear damping, Appl. Math. Lett. 104 (2020), 106258, https://doi.org/10.1016/j.aml.2020.106258. Search in Google Scholar

[7] K. Ono, Global existence, decay and blow up of solutions for some mildly degenerate nonlinear Kirchhoff strings, J. Differential Equations 137 (1997), no. 2, 273–301, https://doi.org/10.1006/jdeq.1997.3263. Search in Google Scholar

[8] S. A. Messaoudi and B. Said Houari, A blow-up result for a higher-order nonlinear Kirchhoff-type hyperbolic equation, Appl. Math. Lett. 20 (2007), no. 8, 866–871, https://doi.org/10.1016/j.aml.2006.08.018. Search in Google Scholar

[9] F. Li, Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation, Appl. Math. Lett. 17 (2004), no. 12, 1409–1414, https://doi.org/10.1016/j.am1.2003.07.014. Search in Google Scholar

[10] P. G. Papadopoulos and N. M. Stavrakakis, Global existence and blow-up results for an equation of Kirchhoff type on RN, Topol. Methods Nonlinear Anal. 17 (2001), no. 1, 91–109, https://doi.org/10.12775/TMNA.2001.006. Search in Google Scholar

[11] H. Chen and G. Liu, Well-posedness for a class of Kirchhoff equations with damping and memory terms, IMA J. Appl. Math. 80 (2015), no. 6, 1808–1836, https://doi.org/10.1093/imamat/hxv018. Search in Google Scholar

[12] H. Li, Y. You, and J. Tu, Random attractors and averaging for nonautonomous stochastic wave equations with nonlinear damping, J. Differential Equations 258 (2015), no. 1, 148–190, https://doi.org/10.1016/j.jde.2014.09.007. Search in Google Scholar

[13] S. Zhou and M. Zhao, Random attractors for damped nonautonomous wave equations with memory and white noise, Nonlinear Anal. 120 (2015), 202–226, https://doi.org/10.1016/j.na.2015.03.009. Search in Google Scholar

[14] B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations 246 (2008), no. 6, 2506–2537, https://doi.org/10.1016/j.jde.2008.10.012. Search in Google Scholar

[15] Z. Wang, S. Zhou, and A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl. 12 (2011), no. 6, 3468–3482, https://doi.org/10.1016/j.nonrwa.2011.06.008. 10.1016/j.nonrwa.2011.06.008Search in Google Scholar

[16] B. Wang, Random attractors for nonautonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst. 34 (2014), no. 1, 269–300, https://doi.org/10.3934/dcds.2014.34.269. Search in Google Scholar

[17] Z. Wang and S. Zhou, Random attractor for stochastic nonautonomous damped wave equation with critical exponent, Discrete Contin. Dyn. Syst. 37 (2016), no. 1, 545–573, https://doi.org/10.3934/dcds.2017022. Search in Google Scholar

[18] Z. Wang, S. Zhou, and A. Gu, Random attractor of the stochastic strongly damped wave equation, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 4, 1649–1658, https://doi.org/10.1016/j.cnsns.2011.09.001. Search in Google Scholar

[19] S. Zhou, F. Yin, and Z. Ouyang, random attractor for damped nonlinear wave equations with white noise, SIAM J. Appl. Dyn. Syst. 4 (2005), no. 4, 883–903, https://doi.org/10.1137/050623097. Search in Google Scholar

[20] H. Yao and J. Zhang, Random attractors for nonautonomous stochastic wave equations with nonlinear damping and white noise, Adv. Difference Equ. 2020 (2020), 221, https://doi.org/10.1186/s13662-020-02664-3. Search in Google Scholar

[21] M. A. Ragusa, Parabolic systems with noncontinuous coefficients, Conference Publications 2003 (2003), 727–733. Search in Google Scholar

[22] E. Guariglia, Primality, fractality, and image analysis, Entropy 21 (2019), no. 3, 304, https://doi.org/10.3390/e21030304. 10.3390/e21030304Search in Google Scholar PubMed PubMed Central

[23] S. Gala and M. A. Ragusa, A new regularity criterion for strong solutions to the Ericksen-Leslie system, Appl. Math. 43 (2016), no. 1, 95–103, https://doi.org/10.4064/am2281-1-2016. Search in Google Scholar

[24] E. Guariglia, Harmonic Sierpinski gasket and applications, Entropy 20 (2018), no. 9, 714, https://doi.org/10.3390/E20090714. 10.3390/e20090714Search in Google Scholar PubMed PubMed Central

[25] P. G. Papadopoulos, M. Karamolengos, and A. Pappas, Global existence and energy decay for mildly degenerate Kirchhoffas equations on RN, J. Interdiscip. Math. 12 (2009), no. 6, 767–783, https://doi.org/10.1080/09720502.2009.10700663. 10.1080/09720502.2009.10700663Search in Google Scholar

[26] N. I. Karachalios and N. M. Stavrakakis, Existence of a global attractor for semilinear dissipative wave equations on RN, J. Differential Equations 157 (1999), no. 1, 183–205, https://doi.org/10.1006/jdeq.1999.3618. Search in Google Scholar

[27] Y. Li, A. Gu, and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations 258 (2015), no. 2, 504–534, https://doi.org/10.1016/j.jde.2014.09.021. Search in Google Scholar

[28] Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations 245 (2008), no. 7, 1775–1800, https://doi.org/10.1016/j.jde.2008.06.031. 10.1016/j.jde.2008.06.031Search in Google Scholar

[29] J. Limaco, H. R. Clark, and L. A. Medeiros, On damped Kirchhoff equation with variable coefficients, J. Math. Anal. Appl. 307 (2004), no. 2, 641–655, https://doi.org/10.1016/j.jmaa.2004.12.032. Search in Google Scholar

[30] M. A. Ragusa, A. Razani, and F. Safari, Existence of radial solutions for a p(x)p(x)-Laplacian Dirichlet problem, Adv. Difference Equ. 2021 (2021), 215, https://doi.org/10.1186/s13662-021-03369-x. Search in Google Scholar

[31] S. Zhang, J. Zhang, and H. Wang, Global attractors for Kirchhoff wave equation with nonlinear damping and memory, Bound. Value Probl. 2020 (2020), 116, https://doi.org/10.1186/s13661-020-01413-5. Search in Google Scholar

[32] G. Zhou, Random attractor for the 3D viscous primitive equations driven by fractional noises, J. Differential Equations 266 (2019), no. 11, 7569–7637, https://doi.org/10.1016/j.jde.2018.12.009. Search in Google Scholar

[33] B. Gess, W. Liu, and A. Schenke, Random attractors for locally monotone stochastic partial differential equations, J. Differential Equations 269 (2020), no. 4, 3414–3455, https://doi.org/10.1016/j.jde.2020.03.002. Search in Google Scholar

[34] G. Lin and Y. Chen, A family of global attractors for the higher-order Kirchhoff-type equations and its dimension estimation, Amer. J. Appl. Math. 8 (2020), no. 6, 300–310. 10.11648/j.ajam.20200806.12Search in Google Scholar

[35] G. Lin and Y. Jin, Long-time behavior of solutions for a class of nonlinear higher order Kirchhoff equation, Amer. J. Appl. Math. 7 (2019), no. 1, 21–29, https://doi.org/10.11648/j.ajam.20190701.14. Search in Google Scholar

Received: 2021-06-20
Revised: 2021-07-18
Accepted: 2021-07-19
Published Online: 2022-03-10

© 2022 Penghui Lv et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Regular Articles
  2. A random von Neumann theorem for uniformly distributed sequences of partitions
  3. Note on structural properties of graphs
  4. Mean-field formulation for mean-variance asset-liability management with cash flow under an uncertain exit time
  5. The family of random attractors for nonautonomous stochastic higher-order Kirchhoff equations with variable coefficients
  6. The intersection graph of graded submodules of a graded module
  7. Isoperimetric and Brunn-Minkowski inequalities for the (p, q)-mixed geominimal surface areas
  8. On second-order fuzzy discrete population model
  9. On certain functional equation in prime rings
  10. General complex Lp projection bodies and complex Lp mixed projection bodies
  11. Some results on the total proper k-connection number
  12. The stability with general decay rate of hybrid stochastic fractional differential equations driven by Lévy noise with impulsive effects
  13. Well posedness of magnetohydrodynamic equations in 3D mixed-norm Lebesgue space
  14. Strong convergence of a self-adaptive inertial Tseng's extragradient method for pseudomonotone variational inequalities and fixed point problems
  15. Generic uniqueness of saddle point for two-person zero-sum differential games
  16. Relational representations of algebraic lattices and their applications
  17. Explicit construction of mock modular forms from weakly holomorphic Hecke eigenforms
  18. The equivalent condition of G-asymptotic tracking property and G-Lipschitz tracking property
  19. Arithmetic convolution sums derived from eta quotients related to divisors of 6
  20. Dynamical behaviors of a k-order fuzzy difference equation
  21. The transfer ideal under the action of orthogonal group in modular case
  22. The multinomial convolution sum of a generalized divisor function
  23. Extensions of Gronwall-Bellman type integral inequalities with two independent variables
  24. Unicity of meromorphic functions concerning differences and small functions
  25. Solutions to problems about potentially Ks,t-bigraphic pair
  26. Monotonicity of solutions for fractional p-equations with a gradient term
  27. Data smoothing with applications to edge detection
  28. An ℋ-tensor-based criteria for testing the positive definiteness of multivariate homogeneous forms
  29. Characterizations of *-antiderivable mappings on operator algebras
  30. Initial-boundary value problem of fifth-order Korteweg-de Vries equation posed on half line with nonlinear boundary values
  31. On a more accurate half-discrete Hilbert-type inequality involving hyperbolic functions
  32. On split twisted inner derivation triple systems with no restrictions on their 0-root spaces
  33. Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry
  34. Bifurcation and chaos in a discrete predator-prey system of Leslie type with Michaelis-Menten prey harvesting
  35. A posteriori error estimates of characteristic mixed finite elements for convection-diffusion control problems
  36. Dynamical analysis of a Lotka Volterra commensalism model with additive Allee effect
  37. An efficient finite element method based on dimension reduction scheme for a fourth-order Steklov eigenvalue problem
  38. Connectivity with respect to α-discrete closure operators
  39. Khasminskii-type theorem for a class of stochastic functional differential equations
  40. On some new Hermite-Hadamard and Ostrowski type inequalities for s-convex functions in (p, q)-calculus with applications
  41. New properties for the Ramanujan R-function
  42. Shooting method in the application of boundary value problems for differential equations with sign-changing weight function
  43. Ground state solution for some new Kirchhoff-type equations with Hartree-type nonlinearities and critical or supercritical growth
  44. Existence and uniqueness of solutions for the stochastic Volterra-Levin equation with variable delays
  45. Ambrosetti-Prodi-type results for a class of difference equations with nonlinearities indefinite in sign
  46. Research of cooperation strategy of government-enterprise digital transformation based on differential game
  47. Malmquist-type theorems on some complex differential-difference equations
  48. Disjoint diskcyclicity of weighted shifts
  49. Construction of special soliton solutions to the stochastic Riccati equation
  50. Remarks on the generalized interpolative contractions and some fixed-point theorems with application
  51. Analysis of a deteriorating system with delayed repair and unreliable repair equipment
  52. On the critical fractional Schrödinger-Kirchhoff-Poisson equations with electromagnetic fields
  53. The exact solutions of generalized Davey-Stewartson equations with arbitrary power nonlinearities using the dynamical system and the first integral methods
  54. Regularity of models associated with Markov jump processes
  55. Multiplicity solutions for a class of p-Laplacian fractional differential equations via variational methods
  56. Minimal period problem for second-order Hamiltonian systems with asymptotically linear nonlinearities
  57. Convergence rate of the modified Levenberg-Marquardt method under Hölderian local error bound
  58. Non-binary quantum codes from constacyclic codes over 𝔽q[u1, u2,…,uk]/⟨ui3 = ui, uiuj = ujui
  59. On the general position number of two classes of graphs
  60. A posteriori regularization method for the two-dimensional inverse heat conduction problem
  61. Orbital stability and Zhukovskiǐ quasi-stability in impulsive dynamical systems
  62. Approximations related to the complete p-elliptic integrals
  63. A note on commutators of strongly singular Calderón-Zygmund operators
  64. Generalized Munn rings
  65. Double domination in maximal outerplanar graphs
  66. Existence and uniqueness of solutions to the norm minimum problem on digraphs
  67. On the p-integrable trajectories of the nonlinear control system described by the Urysohn-type integral equation
  68. Robust estimation for varying coefficient partially functional linear regression models based on exponential squared loss function
  69. Hessian equations of Krylov type on compact Hermitian manifolds
  70. Class fields generated by coordinates of elliptic curves
  71. The lattice of (2, 1)-congruences on a left restriction semigroup
  72. A numerical solution of problem for essentially loaded differential equations with an integro-multipoint condition
  73. On stochastic accelerated gradient with convergence rate
  74. Displacement structure of the DMP inverse
  75. Dependence of eigenvalues of Sturm-Liouville problems on time scales with eigenparameter-dependent boundary conditions
  76. Existence of positive solutions of discrete third-order three-point BVP with sign-changing Green's function
  77. Some new fixed point theorems for nonexpansive-type mappings in geodesic spaces
  78. Generalized 4-connectivity of hierarchical star networks
  79. Spectra and reticulation of semihoops
  80. Stein-Weiss inequality for local mixed radial-angular Morrey spaces
  81. Eigenvalues of transition weight matrix for a family of weighted networks
  82. A modified Tikhonov regularization for unknown source in space fractional diffusion equation
  83. Modular forms of half-integral weight on Γ0(4) with few nonvanishing coefficients modulo
  84. Some estimates for commutators of bilinear pseudo-differential operators
  85. Extension of isometries in real Hilbert spaces
  86. Existence of positive periodic solutions for first-order nonlinear differential equations with multiple time-varying delays
  87. B-Fredholm elements in primitive C*-algebras
  88. Unique solvability for an inverse problem of a nonlinear parabolic PDE with nonlocal integral overdetermination condition
  89. An algebraic semigroup method for discovering maximal frequent itemsets
  90. Class-preserving Coleman automorphisms of some classes of finite groups
  91. Exponential stability of traveling waves for a nonlocal dispersal SIR model with delay
  92. Existence and multiplicity of solutions for second-order Dirichlet problems with nonlinear impulses
  93. The transitivity of primary conjugacy in regular ω-semigroups
  94. Stability estimation of some Markov controlled processes
  95. On nonnil-coherent modules and nonnil-Noetherian modules
  96. N-Tuples of weighted noncommutative Orlicz space and some geometrical properties
  97. The dimension-free estimate for the truncated maximal operator
  98. A human error risk priority number calculation methodology using fuzzy and TOPSIS grey
  99. Compact mappings and s-mappings at subsets
  100. The structural properties of the Gompertz-two-parameter-Lindley distribution and associated inference
  101. A monotone iteration for a nonlinear Euler-Bernoulli beam equation with indefinite weight and Neumann boundary conditions
  102. Delta waves of the isentropic relativistic Euler system coupled with an advection equation for Chaplygin gas
  103. Multiplicity and minimality of periodic solutions to fourth-order super-quadratic difference systems
  104. On the reciprocal sum of the fourth power of Fibonacci numbers
  105. Averaging principle for two-time-scale stochastic differential equations with correlated noise
  106. Phragmén-Lindelöf alternative results and structural stability for Brinkman fluid in porous media in a semi-infinite cylinder
  107. Study on r-truncated degenerate Stirling numbers of the second kind
  108. On 7-valent symmetric graphs of order 2pq and 11-valent symmetric graphs of order 4pq
  109. Some new characterizations of finite p-nilpotent groups
  110. A Billingsley type theorem for Bowen topological entropy of nonautonomous dynamical systems
  111. F4 and PSp (8, ℂ)-Higgs pairs understood as fixed points of the moduli space of E6-Higgs bundles over a compact Riemann surface
  112. On modules related to McCoy modules
  113. On generalized extragradient implicit method for systems of variational inequalities with constraints of variational inclusion and fixed point problems
  114. Solvability for a nonlocal dispersal model governed by time and space integrals
  115. Finite groups whose maximal subgroups of even order are MSN-groups
  116. Symmetric results of a Hénon-type elliptic system with coupled linear part
  117. On the connection between Sp-almost periodic functions defined on time scales and ℝ
  118. On a class of Harada rings
  119. On regular subgroup functors of finite groups
  120. Fast iterative solutions of Riccati and Lyapunov equations
  121. Weak measure expansivity of C2 dynamics
  122. Admissible congruences on type B semigroups
  123. Generalized fractional Hermite-Hadamard type inclusions for co-ordinated convex interval-valued functions
  124. Inverse eigenvalue problems for rank one perturbations of the Sturm-Liouville operator
  125. Data transmission mechanism of vehicle networking based on fuzzy comprehensive evaluation
  126. Dual uniformities in function spaces over uniform continuity
  127. Review Article
  128. On Hahn-Banach theorem and some of its applications
  129. Rapid Communication
  130. Discussion of foundation of mathematics and quantum theory
  131. Special Issue on Boundary Value Problems and their Applications on Biosciences and Engineering (Part II)
  132. A study of minimax shrinkage estimators dominating the James-Stein estimator under the balanced loss function
  133. Representations by degenerate Daehee polynomials
  134. Multilevel MC method for weak approximation of stochastic differential equation with the exact coupling scheme
  135. Multiple periodic solutions for discrete boundary value problem involving the mean curvature operator
  136. Special Issue on Evolution Equations, Theory and Applications (Part II)
  137. Coupled measure of noncompactness and functional integral equations
  138. Existence results for neutral evolution equations with nonlocal conditions and delay via fractional operator
  139. Global weak solution of 3D-NSE with exponential damping
  140. Special Issue on Fractional Problems with Variable-Order or Variable Exponents (Part I)
  141. Ground state solutions of nonlinear Schrödinger equations involving the fractional p-Laplacian and potential wells
  142. A class of p1(x, ⋅) & p2(x, ⋅)-fractional Kirchhoff-type problem with variable s(x, ⋅)-order and without the Ambrosetti-Rabinowitz condition in ℝN
  143. Jensen-type inequalities for m-convex functions
  144. Special Issue on Problems, Methods and Applications of Nonlinear Analysis (Part III)
  145. The influence of the noise on the exact solutions of a Kuramoto-Sivashinsky equation
  146. Basic inequalities for statistical submanifolds in Golden-like statistical manifolds
  147. Global existence and blow up of the solution for nonlinear Klein-Gordon equation with variable coefficient nonlinear source term
  148. Hopf bifurcation and Turing instability in a diffusive predator-prey model with hunting cooperation
  149. Efficient fixed-point iteration for generalized nonexpansive mappings and its stability in Banach spaces
Downloaded on 7.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/math-2022-0003/html
Scroll to top button