Home Generalized fractional Hermite-Hadamard type inclusions for co-ordinated convex interval-valued functions
Article Open Access

Generalized fractional Hermite-Hadamard type inclusions for co-ordinated convex interval-valued functions

  • Miguel J. Vivas-Cortez , Hasan Kara , Hüseyin Budak , Muhammad Aamir Ali EMAIL logo and Saowaluck Chasreechai EMAIL logo
Published/Copyright: December 31, 2022

Abstract

In this article, we introduce the notions of generalized fractional integrals for the interval-valued functions (IVFs) of two variables. We establish Hermite-Hadamard (H-H) type inequalities and some related inequalities for co-ordinated convex IVFs by using the newly defined integrals. The fundamental benefit of these inequalities is that these can be turned into classical H-H inequalities and Riemann-Liouville fractional H-H inequalities, and new k -Riemann-Liouville fractional H-H inequalities can be obtained for co-ordinated convex IVFs without having to prove each one separately.

MSC 2010: 26D10; 26D15; 26A51

1 Introduction

The interval-valued analysis is a particular case of set-valued analysis. In the 1950s and 1960s, some mathematicians focused on interval analysis to put bounds on rounding errors and measurement errors in mathematical computation, and thus, they developed numerical methods that yielded more effective results. To put it in a different way, this theory was improved as an attempt to eliminate the interval uncertainty that shows up in a great many mathematical and computer models of some deterministic problems. The main purpose of interval calculus is to determine the upper and lower endpoints for the interval of values of a mapping that has one or more variables. For example, one can make sure that the temperature is somewhere between 19 and 2 1 C degrees by using interval arithmetic, instead of measuring the temperature of the weather as 2 0 C by using standard arithmetic. We also note that the interval analysis is a special case of set-valued analysis, that is, the work of the sets that form the basis of mathematical analysis and general topology.

The first book on interval analysis was written by Moore, who is known as the first user of intervals in computational mathematics [1]. After this book, several researchers began to investigate the theory and applications of interval analysis. Recently, it has had many applications because of this, and interval analysis is a useful tool in various areas interested intensely in uncertain data.

What is more, several certain inequalities have been studied for interval-valued functions (IVFs) in recent years, such as Hermite-Hadamard (H-H), and Ostrowski. In [2,3], Chalco-Cano et al. established Ostrowski-type inequalities for IVFs by utilizing the Hukuhara derivative for IVFs. However, inequalities were studied for more general set-valued maps. For example, in [4,5,6, 7,8,9], the authors gave the H-H inequalities.

In recent years, some inequalities based on IVFs have been worked on by mathematicians. For instance, Sadowska [9] established the following H-H inequality for IVFs by using convexity:

Theorem 1

[9] If Φ : [ ϱ , ς ] R I + is an interval-valued convex function such that Φ ( ϑ ) = [ Φ ̲ ( ϑ ) , Φ ¯ ( ϑ ) ] , then we have:

(1) Φ ϱ + ς 2 1 ς ϱ ( IR ) ϱ ς Φ ( ξ ) d ξ Φ ( ϱ ) + Φ ( ς ) 2 .

It is obvious that if Φ ̲ ( ϑ ) = Φ ¯ ( ϑ ) in inclusion (1), then we have the following H-H inequality for convex functions (see [10,11, 12,13,14]):

Φ ϱ + ς 2 1 ς ϱ ϱ ς Φ ( ξ ) d ξ Φ ( ϱ ) + Φ ( ς ) 2 .

What has more, Budak et al. derived fractional H-H type inequalities with the help of interval-valued Riemann-Liouville fractional integrals in [15]. In [16], Tunç proved some H-H type inequalities for fractional integrals of a IVFs with respect to the real-valued function. In [17], the authors gave some applications of fractional integrals. Zhao et al. first presented a new definition of interval-valued fractional integral that is called “interval-valued generalized fractional integrals (GFIs)” in [18]. Then the authors proved some results that generalize some well-known H-H type inequalities for IVFs. On the other hand, Zhao et al., in [19], introduced the concept of interval-valued co-ordinated convex functions, and they established some H-H inequalities for this kind of function on the rectangle in the plane. In [20], Riemann-Liouville fractional integrals of two variables IVFs are defined. They established fractional H-H and some related inequalities for interval-valued co-ordinated convex functions. In [21,22, 23,24], Khan et al. established different and new variants of H-H inequalities for IVFs. Moreover, in [25], Kara et al. defined interval-valued left-sided and right-sided generalized Riemann-Liouville fractional double integrals and established inequalities of H-H type for co-ordinated interval-valued convex functions.

Inspired by the ongoing studies, we define GFIs for the IVFs of two variables to develop some new H-H type inequalities for co-ordinated interval-valued convex functions. The fundamental benefit of these inequalities is that these can be turned into classical H-H inequalities for co-ordinated convex IVFs [19], Riemann-Liouville fractional H-H inequalities for co-ordinated convex IVFs [20], and new k -Riemann-Liouville fractional H-H inequalities can be obtained for co-ordinated convex IVFs without having to prove each one separately.

The structure of this article is as follows: The principles of interval-valued calculus, as well as other relevant research in this discipline, are briefly discussed in Section 2. We use GFIs for IVFs of two variables to prove H-H type inequalities for co-ordinated convex IVFs in Section 3. In Section 4, we prove several H-H inequalities for the product of two convex IVFs that are co-ordinated. The relationship between the findings given here and similar findings in the literature is also taken into account. Section 5 presents some research suggestions for the future.

2 Fractional integral of IVFs

In this section, we recall some basics of interval-valued calculus and related inequalities.

Lupulescu defined the left-sided Riemann-Liouville fractional integral with interval values in [26].

Definition 1

For an IVF Φ : [ ϱ , ς ] R , where Φ ( ϑ ) = [ Φ ̲ ( ϑ ) , Φ ¯ ( ϑ ) ] and let α > 0 . The left-sided Riemann-Liouville fractional integral for the IVF Φ is defined by

J ϱ + α Φ ( ξ ) = 1 Γ ( α ) ( IR ) ϱ ξ ( ξ υ ) α 1 Φ ( ϑ ) d ϑ , ξ > ϱ ,

where Γ is Euler Gamma function.

Budak et al. in [15] defined right-sided Riemann-Liouville fractional integral of IVF Φ as follows:

J ς α Φ ( ξ ) = 1 Γ ( α ) ( IR ) ξ ς ( υ ξ ) α 1 Φ ( ϑ ) d ϑ , ξ < ς ,

where Γ is the Euler Gamma function.

Theorem 2

If Φ : [ ϱ , ς ] R is an IVF such that Φ ( ϑ ) = [ Φ ̲ ( ϑ ) , Φ ¯ ( ϑ ) ] , then we have

J ϱ + α Φ ( ξ ) = [ I ϱ + α Φ ̲ ( ξ ) , I ϱ + α Φ ¯ ( ξ ) ]

and

J ς α Φ ( ξ ) = [ I ς α Φ ̲ ( ξ ) , I ς α Φ ¯ ( ξ ) ] .

Definition 2

[18] Let Φ : [ ϱ , ς ] R be an IVF such that Φ ( ϑ ) = [ Φ ̲ ( ϑ ) , Φ ¯ ( ϑ ) ] and Φ IR ( [ ϱ , ς ] ) . Then, the interval-valued left-sided and right-sided GFIs of a function Φ , respectively, are given as follows:

I φ ϱ + Φ ( ξ ) = 1 Γ ( α ) ( IR ) ϱ ξ φ ( ξ ϑ ) ξ ϑ Φ ( ϑ ) d ϑ , ξ > ϱ

and

I φ ς Φ ( ξ ) = 1 Γ ( α ) ( IR ) ξ ς φ ( ϑ ξ ) ϑ ξ Φ ( ϑ ) d ϑ , ξ < ς .

Throughout this study, for clarity, we define

Λ ( ξ ) = ( IR ) 0 ξ φ ( ( ς ϱ ) ϑ ) ϑ d ϑ , Δ ( η ) = ( IR ) 0 η ψ ( ( ι ζ ) υ ) υ d υ .

Theorem 3

[18] If Φ : [ ϱ , ς ] R + is a convex IVF such that Φ ( ϑ ) = [ Φ ̲ ( ϑ ) , Φ ¯ ( ϑ ) ] , then we have the following inclusion for the GFIs:

(2) Φ ϱ + ς 2 1 2 Λ ( 1 ) [ I φ ϱ + Φ ( ς ) + I φ ϱ + Φ ( ϱ ) ] Φ ( ϱ ) + Φ ( ς ) 2 .

Theorem 4

[18] If Φ , Ω : [ ϱ , ς ] R + are two convex IVFs such that Φ ( ϑ ) = [ Φ ̲ ( ϑ ) , Φ ¯ ( ϑ ) ] and Ω ( ϑ ) = [ Ω ̲ ( ϑ ) , Ω ¯ ( ϑ ) ] , then we have the following inclusion for the GFIs:

(3) [ I φ ϱ + Φ ( ς ) Ω ( ς ) + I φ ς Φ ( ϱ ) Ω ( ϱ ) ] J 1 A ( ϱ , ς ) + J 2 ( ϱ , ς ) ,

where

J 1 = 0 1 φ ( ( ς ϱ ) ϑ ) ϑ ( 2 t 2 2 t + 1 ) d ϑ , J 2 = 0 1 φ ( ( ς ϱ ) ϑ ) ϑ ( 2 t 2 t 2 ) d ϑ ,

and

A ( ϱ , ς ) = Φ ( ϱ ) Ω ( ϱ ) + Φ ( ς ) Ω ( ς ) , ( ϱ , ς ) = Φ ( ϱ ) Ω ( ς ) + Φ ( ς ) Ω ( ϱ ) .

Theorem 5

[18] If Φ , Ω : [ ϱ , ς ] R + are two convex IVFs such that Φ ( ϑ ) = [ Φ ̲ ( ϑ ) , Φ ¯ ( ϑ ) ] and Ω ( ϑ ) = [ Ω ̲ ( ϑ ) , Ω ¯ ( ϑ ) ] , then we have the following inclusion for the GFIs:

(4) 2 Φ ϱ + ς 2 Ω ϱ + ς 2 1 2 Λ ( 1 ) [ I φ ϱ + Φ ( ς ) Ω ( ς ) + I φ ς Φ ( ϱ ) Ω ( ϱ ) ] + 1 2 Λ ( 1 ) [ J 2 A ( ϱ , ς ) + J 1 ( ϱ , ς ) ] ,

where J 1 , J 2 , A ( ϱ , ς ) , and ( ϱ , ς ) are defined as in Theorem 4.

Now recall the interval-valued double integral notion introduced by Zhao et al. in [27].

Theorem 6

[27] Let Δ = [ ϱ , ς ] × [ ζ , ι ] . If Φ : Δ R is ID-integrable on Δ , then we have

( ID ) Δ Φ ( υ , ϑ ) d A = ( IR ) ϱ ς ( IR ) ζ ι Φ ( υ , ϑ ) d s d t .

By applying the concepts of Lupulescu [26] and Zhao et al. [27] about interval-valued integrals, the authors defined the following interval-valued Riemann-Liouville double fractional integrals of a function Φ ( ξ , η ) :

Definition 3

[20] Let Φ L 1 ( [ ϱ , ς ] × [ ζ , ι ] ) . The Riemann-Liouville integrals J ϱ + , ζ + α , β , J ϱ + , ι α , β , + J ς , ζ + α , β , and J ς , ι α , β of order α , β > 0 with ϱ , ζ 0 are defined by

J ϱ + , ζ + α , β Φ ( ξ , η ) = 1 Γ ( α ) Γ ( β ) ( IR ) ϱ ξ ζ η ( ξ ϑ ) α 1 ( η υ ) β 1 Φ ( ϑ , υ ) d s d t , ξ > ϱ , η > ζ , J ϱ + , ι α , β Φ ( ξ , η ) = 1 Γ ( α ) Γ ( β ) ( IR ) ϱ ξ η ι ( ξ ϑ ) α 1 ( υ η ) β 1 Φ ( ϑ , υ ) d s d t , ξ > ϱ , η > ι , J ς , ζ + α , β Φ ( ξ , η ) = 1 Γ ( α ) Γ ( β ) ( IR ) ξ ς ζ η ( ϑ ξ ) α 1 ( η υ ) β 1 Φ ( ϑ , υ ) d s d t , ξ < ς , η > ζ , J ς , ι α , β Φ ( ξ , η ) = 1 Γ ( α ) Γ ( β ) ( IR ) ξ ς η ι ( ϑ ξ ) α 1 ( υ η ) β 1 Φ ( ϑ , υ ) d s d t , ξ < ς , η < ι ,

respectively.

Definition 4

[19] A function Φ : Δ R + is said to be co-ordinated convex IVF. If the following inclusion holds

Φ ( t x + ( 1 ϑ ) η , s u + ( 1 υ ) w ) t s Φ ( ξ , u ) + ϑ ( 1 υ ) Φ ( ξ , w ) + υ ( 1 ϑ ) Φ ( η , u ) + ( 1 υ ) ( 1 ϑ ) Φ ( η , w ) ,

for all ( ξ , η ) , ( u , w ) Δ , and υ , ϑ [ 0 , 1 ] .

Theorem 7

[20] If Φ : Δ R + is a co-ordinated convex IVF on Δ such that Φ ( ϑ ) = [ Φ ̲ ( ϑ ) , Φ ¯ ( ϑ ) ] , then the following inclusions hold:

(5) Φ ϱ + ς 2 , ζ + ι 2 Γ ( α + 1 ) 4 ( ς ϱ ) α J ϱ + α Φ ς , ζ + ι 2 + J ς α Φ ϱ , ζ + ι 2 + Γ ( β + 1 ) 4 ( ι ζ ) β J ζ + β Φ ϱ + ς 2 , ι + J ι β Φ ϱ + ς 2 , ζ Γ ( α + 1 ) Γ ( β + 1 ) 4 ( ς ϱ ) α ( ι ζ ) β [ J ϱ + , ζ + α , β Φ ( ς , ι ) + J ϱ + , ι α , β Φ ( ς , ζ ) + J ς , ζ + α , β Φ ( ϱ , ι ) + J ς , ι α , β Φ ( ϱ , ζ ) ] Γ ( α + 1 ) 8 ( ς ϱ ) α [ J ϱ + α Φ ( ς , ζ ) + J ϱ + α Φ ( ς , ι ) + J ς α Φ ( ϱ , ζ ) + J ς α Φ ( ϱ , ι ) ] + Γ ( β + 1 ) 4 ( ι ζ ) β [ J ζ + β Φ ( ϱ , ι ) + J ζ + β Φ ( ς , ι ) + J ι β Φ ( ϱ , ζ ) + J ι β Φ ( ς , ζ ) ] Φ ( ϱ , ζ ) + Φ ( ϱ , ι ) + Φ ( ς , ζ ) + Φ ( ς , ι ) 4 .

Theorem 8

[20] Let Φ , Ω : Δ [ ϱ , ς ] × [ ζ , ι ] R I + be two co-ordinated convex IVFs such that Φ ( ϑ ) = [ Φ ̲ ( ϑ ) , Φ ¯ ( ϑ ) ] and Ω ( ϑ ) = [ Ω ̲ ( ϑ ) , Ω ¯ ( ϑ ) ] , then we have following H-H type inclusions:

(6) Γ ( α + 1 ) Γ ( β + 1 ) 4 ( ς ϱ ) α ( ι ζ ) β [ J ϱ + , ζ + α , β Φ ( ς , ι ) Ω ( ς , ι ) + J ϱ + , ι α , β Φ ( ς , ζ ) Ω ( ς , ζ ) + J ς , ζ + α , β Φ ( ϱ , ι ) Ω ( ϱ , ι ) + J ς , ι α , β Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) ] 1 2 β ( β + 1 ) ( β + 2 ) 1 2 α ( α + 1 ) ( α + 2 ) K ( ϱ , ς , ζ , ι ) + 1 2 β ( β + 1 ) ( β + 2 ) α ( α + 1 ) ( α + 2 ) L ( ϱ , ς , ζ , ι ) + β ( β + 1 ) ( β + 2 ) 1 2 α ( α + 1 ) ( α + 2 ) M ( ϱ , ς , ζ , ι ) + β ( β + 1 ) ( β + 2 ) α ( α + 1 ) ( α + 2 ) N ( ϱ , ς , ζ , ι ) ,

and

(7) 4 Φ ϱ + ς 2 , ζ + ι 2 Ω ϱ + ς 2 , ζ + ι 2 Γ ( α + 1 ) Γ ( β + 1 ) 4 ( ς ϱ ) α ( ι ζ ) β [ J ϱ + , ζ + α , β Φ ( ς , ι ) Ω ( ς , ι ) + J ϱ + , ι α , β Φ ( ς , ζ ) Ω ( ς , ζ ) + J ς , ζ + α , β Φ ( ϱ , ι ) Ω ( ϱ , ι ) + J ς , ι α , β Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) ] + α 2 ( α + 1 ) ( α + 2 ) + β ( β + 1 ) ( β + 2 ) 1 2 α ( α + 1 ) ( α + 2 ) K ( ϱ , ς , ζ , ι ) + 1 2 1 2 α ( α + 1 ) ( α + 2 ) + α ( α + 1 ) ( α + 2 ) β ( β + 1 ) ( β + 2 ) L ( ϱ , ς , ζ , ι ) + 1 2 1 2 β ( β + 1 ) ( β + 2 ) + α ( α + 1 ) ( α + 2 ) β ( β + 1 ) ( β + 2 ) M ( ϱ , ς , ζ , ι ) + 1 4 α ( α + 1 ) ( α + 2 ) β ( β + 1 ) ( β + 2 ) N ( ϱ , ς , ζ , ι ) ,

where

K ( ϱ , ς , ζ , ι ) = Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) + Φ ( ς , ζ ) Ω ( ς , ζ ) + Φ ( ϱ , ι ) Ω ( ϱ , ι ) + Φ ( ς , ι ) Ω ( ς , ι ) , L ( ϱ , ς , ζ , ι ) = Φ ( ϱ , ζ ) Ω ( ς , ζ ) + Φ ( ς , ζ ) Ω ( ϱ , ζ ) + Φ ( ϱ , ι ) Ω ( ς , ι ) + Φ ( ς , ι ) Ω ( ϱ , ι ) , M ( ϱ , ς , ζ , ι ) = Φ ( ϱ , ζ ) Ω ( ϱ , ι ) + Φ ( ς , ζ ) Ω ( ς , ι ) + Φ ( ϱ , ι ) Ω ( ϱ , ζ ) + Φ ( ς , ι ) Ω ( ς , ζ ) ,

and

N ( ϱ , ς , ζ , ι ) = Φ ( ϱ , ζ ) Ω ( ς , ι ) + Φ ( ς , ζ ) Ω ( ϱ , ι ) + Φ ( ϱ , ι ) Ω ( ς , ζ ) + Φ ( ς , ι ) Ω ( ϱ , ζ ) .

3 Generalized H-H type inclusions for co-ordinated convex IVFs

In this section, we present the definitions of GFIs for IVFs of two variables and prove H-H type inclusions for co-ordinated convex IVFs via newly defined integrals. For brevity, we use the notations Φ ( ξ , η ) = [ Φ ̲ ( ξ , η ) , Φ ¯ ( ξ , η ) ] and Ω ( ξ , η ) = [ Ω ̲ ( ξ , η ) , Ω ¯ ( ξ , η ) ] throughout the article:

Definition 5

Let Φ ℐℛ ( [ ϱ , ς ] × [ ζ , ι ] ) . The interval-valued GFIs are defined by

I φ , ψ ϱ + , ζ + Φ ( ξ , η ) = ( IR ) ϱ ξ ζ η φ ( ξ ϑ ) ξ ϑ ψ ( η υ ) η υ Φ ( ϑ , υ ) d s d t , ξ > ϱ , η > ζ , I φ , ψ ϱ + , ι Φ ( ξ , η ) = ( IR ) ϱ ξ η ι φ ( ξ ϑ ) ξ ϑ ψ ( υ η ) υ η Φ ( ϑ , υ ) d s d t , ξ > ϱ , η < ι , I φ , ψ ς , ζ + Φ ( ξ , η ) = ( IR ) ξ ς ζ η φ ( ϑ ξ ) ϑ ξ ψ ( η υ ) η υ Φ ( ϑ , υ ) d s d t , ξ < ς , η > ζ ,

and

I φ , ψ ς , ι Φ ( ξ , η ) = ( IR ) ξ ς η ι φ ( ϑ ξ ) ϑ ξ ψ ( υ η ) υ η Φ ( ϑ , υ ) d s d t , ξ < ς , η < ι .

Theorem 9

Let Φ : Δ [ ϱ , ς ] × [ ζ , ι ] R I + be co-ordinated convex IVF on Δ with ϱ < ς , ζ < ι , and Φ L 1 ( Δ ) such that Φ ( ξ , η ) = [ Φ ̲ ( ξ , η ) , Φ ¯ ( ξ , η ) ] . Then one has the following inclusions:

(8) Φ ϱ + ς 2 , ζ + ι 2 1 4 Λ ( 1 ) I φ ϱ + Φ ς , ζ + ι 2 + ς I φ Φ ϱ , ζ + ι 2 + 1 4 Δ ( 1 ) I φ ζ + Φ ϱ + ς 2 , ι + I ψ ι Φ ϱ + ς 2 , ζ 1 Λ ( 1 ) Δ ( 1 ) [ I φ , ψ ϱ + , ζ + Φ ( ς , ι ) + I φ , ψ ϱ + , ι Φ ( ς , ζ ) + I φ , ψ ς , ζ + Φ ( ϱ , ι ) + I φ , ψ ς , ι Φ ( ϱ , ζ ) ] 1 8 Λ ( 1 ) [ I φ ϱ + Φ ( ς , ζ ) + I φ ϱ + Φ ( ς , ι ) + I φ ς Φ ( ϱ , ζ ) + I φ ς Φ ( ϱ , ι ) ] + 1 8 Δ ( 1 ) [ I φ ζ + Φ ( ϱ , ι ) + I φ ζ + Φ ( ς , ι ) + I φ ι Φ ( ϱ , ζ ) + I φ ι Φ ( ς , ζ ) ] Φ ( ϱ , ζ ) + Φ ( ϱ , ι ) + Φ ( ς , ζ ) + Φ ( ς , ι ) 4 .

Proof

Since Φ : Δ R I + is a convex IVF on co-ordinates, it follows that the mapping Ω ξ : [ ζ , ι ] R I + , Ω ξ ( η ) = Φ ( ξ , η ) , is convex on [ ζ , ι ] for all ξ [ ζ , ι ] for all ξ [ ϱ , ς ] . Then by using inclusion (2), for all ξ [ ϱ , ς ] , we can write

Ω ξ ζ + ι 2 1 2 Δ ( 1 ) [ I φ ζ + Ω ξ ( ι ) + I φ ι I φ Ω ξ ( ζ ) ] Ω ξ ( ζ ) + Ω ξ ( ι ) 2 .

That is,

(9) Φ ξ , ζ + ι 2 1 2 Δ ( 1 ) ( IR ) ζ ι φ ( ι η ) ι η Φ ( ξ , η ) d η + ( IR ) ζ ι φ ( η ζ ) η ζ Φ ( ξ , η ) d η Φ ( ξ , ζ ) + Φ ( ξ , ι ) 2

for all ξ [ ϱ , ς ] . Then by multiplying both sides of (9) by φ ( ς ξ ) ς ξ and φ ( ξ ϱ ) ξ ϱ and integrating with respect to ξ over [ ϱ , ς ] , we have

(10) ( IR ) ϱ ς φ ( ς ξ ) ς ξ Φ ξ , ζ + ι 2 d ξ 1 2 Δ ( 1 ) ( IR ) ϱ ς ζ ι φ ( ς ξ ) ς ξ φ ( ι η ) ι η Φ ( ξ , η ) d ξ d η + ( IR ) ϱ ς ζ ι φ ( ς ξ ) ς ξ φ ( η ζ ) η ζ Φ ( ξ , η ) d ξ d η 1 2 ( IR ) ϱ ς φ ( ς ξ ) ς ξ Φ ( ξ , ζ ) d ξ + ( IR ) ϱ ς φ ( ς ξ ) ς ξ Φ ( ξ , ι ) d ξ

and

(11) ( IR ) ϱ ς φ ( ξ ϱ ) ξ ϱ Φ ξ , ζ + ι 2 d ξ 1 2 Δ ( 1 ) ( IR ) ϱ ς ζ ι φ ( ξ ϱ ) ξ ϱ φ ( ι η ) ι η Φ ( ξ , η ) d ξ d η + ( IR ) ϱ ς ζ ι φ ( ξ ϱ ) ξ ϱ φ ( η ζ ) η ζ Φ ( ξ , η ) d ξ d η 1 2 ( IR ) ϱ ς φ ( ξ ϱ ) ξ ϱ Φ ( ξ , ζ ) d ξ + ( IR ) ϱ ς φ ( ξ ϱ ) ξ ϱ Φ ( ξ , ι ) d ξ .

By the similar argument applied for the mapping Ω η : [ ϱ , ς ] R I + , Ω η : Φ ( ξ , η ) , we have

(12) ( IR ) ζ ι φ ( ι η ) ι η Φ ϱ + ς 2 , η d η 1 2 Λ ( 1 ) ( IR ) ϱ ς ζ ι φ ( ς ξ ) ς ξ φ ( ι η ) ι η Φ ( ξ , η ) d ξ d η + ( IR ) ϱ ς ζ ι φ ( ξ ϱ ) ξ ϱ φ ( ι η ) ι η Φ ( ξ , η ) d ξ d η 1 2 ( IR ) ζ ι φ ( ι η ) ι η Φ ( ϱ , η ) d η + ( IR ) ζ ι φ ( ι η ) ι η Φ ( ς , η ) d η

and

(13) ( IR ) ζ ι φ ( η ζ ) η ζ Φ ϱ + ς 2 , η d η 1 2 Λ ( 1 ) ( IR ) ϱ ς ζ ι φ ( ς ξ ) ς ξ φ ( η ζ ) η ζ Φ ( ξ , η ) d ξ d η + ( IR ) ϱ ς ζ ι φ ( η ζ ) η ζ φ ( ι η ) ι η Φ ( ξ , η ) d ξ d η 1 2 ( IR ) ϱ ς φ ( η ζ ) η ζ Φ ( ϱ , η ) d η + ( IR ) ϱ ς φ ( η ζ ) η ζ Φ ( ς , η ) d η .

By adding inclusions (10)–(13), we have

1 Λ ( 1 ) I φ ϱ + Φ ς , ζ + ι 2 + I φ ς Φ ϱ , ζ + ι 2 + 1 Δ ( 1 ) I φ ζ + Φ ϱ + ς 2 , ι + I ψ ι Φ ϱ + ς 2 , ζ ( IR ) 0 1 φ ( ( ς ϱ ) ϑ ) ϑ d ϑ 1 Λ ( 1 ) Δ ( 1 ) [ I φ , ψ ϱ + , ζ + Φ ( ς , ι ) + I φ , ψ ϱ + , ι Φ ( ς , ζ ) + I φ , ψ ς , ζ + Φ ( ϱ , ι ) + I φ , ψ ς , ι Φ ( ϱ , ζ ) ] 1 2 Λ ( 1 ) [ I φ ϱ + Φ ( ς , ζ ) + I φ ϱ + Φ ( ς , ι ) + I φ ς Φ ( ϱ , ζ ) + I φ ς Φ ( ϱ , ι ) ] + 1 2 Δ ( 1 ) [ I φ ζ + Φ ( ϱ , ι ) + I φ ζ + Φ ( ς , ι ) + I φ ι Φ ( ϱ , ζ ) + I φ ι Φ ( ς , ζ ) ] ,

which gives the second and the third inclusions in (8).

Now, by using the first inclusion in (2), we also have

Φ ϱ + ς 2 , ζ + ι 2 1 2 Λ ( 1 ) ( IR ) ϱ ς φ ( ς ξ ) ς ξ Φ ξ , ζ + ι 2 d ξ + ( IR ) ϱ ς φ ( ξ ϱ ) ξ ϱ Φ ξ , ζ + ι 2 d ξ

and

Φ ϱ + ς 2 , ζ + ι 2 1 2 Δ ( 1 ) ( IR ) ζ ι φ ( ι η ) ι η Φ ϱ + ς 2 , η d η + ( IR ) ζ ι φ ( η ζ ) η ζ Φ ϱ + ς 2 d η .

Adding the aforementioned inclusions, we have

Φ ϱ + ς 2 , ζ + ι 2 1 4 Λ ( 1 ) I φ ϱ + Φ ς , ζ + ι 2 + I φ ς Φ ϱ , ζ + ι 2 + 1 4 Δ ( 1 ) I φ ζ + Φ ϱ + ς 2 , ι + ι I ψ Φ ϱ + ς 2 , ζ ,

which gives the first inclusion in (8).

Finally, by using the second inclusion in (2), we can also state,

1 2 Λ ( 1 ) ( IR ) ϱ ς φ ( ς ξ ) ς ξ Φ ( ξ , ζ ) d ξ + ( IR ) ϱ ς φ ( ξ ϱ ) ξ ϱ Φ ( ξ , ζ ) d ξ Φ ( ϱ , ζ ) + Φ ( ς , ζ ) 2 1 2 Λ ( 1 ) ( IR ) ϱ ς φ ( ς ξ ) ς ξ Φ ( ξ , ι ) d ξ + ( IR ) ϱ ς φ ( ξ ϱ ) ξ ϱ Φ ( ξ , ι ) d ξ Φ ( ϱ , ι ) + Φ ( ς , ι ) 2 1 2 Δ ( 1 ) ( IR ) ζ ι φ ( ι η ) ι η Φ ( ϱ , η ) d η + ( IR ) ζ ι φ ( η ζ ) η ζ Φ ( ϱ , η ) d η Φ ( ϱ , ζ ) + Φ ( ϱ , ι ) 2

and

1 2 Δ ( 1 ) ( IR ) ζ ι φ ( ι η ) ι η Φ ( ς , η ) d η + ( IR ) ζ ι φ ( η ζ ) η ζ Φ ( ς , η ) d η Φ ( ς , ζ ) + Φ ( ς , ι ) 2 .

By adding the last four inclusions, we obtain

(14) 1 8 Λ ( 1 ) [ I φ ϱ + Φ ( ς , ζ ) + ϱ + φ Φ ( ς , ι ) + I φ ς Φ ( ϱ , ζ ) + I φ ς Φ ( ϱ , ι ) ] + 1 8 Δ ( 1 ) [ I φ ζ + Φ ( ϱ , ι ) + I φ ζ + Φ ( ς , ι ) + I φ ι Φ ( ϱ , ζ ) + I φ ι Φ ( ς , ζ ) ] Φ ( ϱ , ζ ) + Φ ( ϱ , ι ) + Φ ( ς , ζ ) + Φ ( ς , ι ) 4 ,

and the proof is ended.□

Remark 1

Under the assumption of Theorem 9 with φ ( ϑ ) = ϑ and ψ ( υ ) = υ , Theorem 9 reduces to [19, Theorem 7].

Remark 2

Under the assumption of Theorem 9 with φ ( ϑ ) = ϑ α Γ ( α ) and ψ ( υ ) = υ β Γ ( β ) , the inclusion (8) reduces to inclusion (5).

4 Generalized fractional H-H type inclusions for product of co-ordinated convex IVFs

In this section, we establish H-H type inclusions for the product of co-ordinated convex IVFs via the GFIs. Throughout this section, we suppose I 1 and I 2 as follows:

I 1 = 0 1 ψ ( ( ι ζ ) υ ) υ ( 2 s 2 2 s + 1 ) d υ

and

I 2 = 0 1 ψ ( ( ι ζ ) υ ) υ ( 2 s 2 s 2 ) d υ .

Theorem 10

Let Φ , Ω : Δ [ ϱ , ς ] × [ ζ , ι ] R I + be two co-ordinated convex IVFs on Δ , then we have the following H-H type inclusion for the GFIs:

[ I φ , ψ ϱ + , ζ + Φ ( ς , ι ) Ω ( ς , ι ) + I φ , ψ ϱ + , ι Φ ( ς , ζ ) Ω ( ς , ζ ) ] + [ I φ , ψ ς , ζ + Φ ( ϱ , ι ) Ω ( ϱ , ι ) + I φ , ψ ς , ι Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) ] I 1 J 1 K ( ϱ , ς , ζ , ι ) + I 1 J 2 L ( ϱ , ς , ζ , ι ) + I 2 J 1 M ( ϱ , ς , ζ , ι ) + I 2 J 2 N ( ϱ , ς , ζ , ι ) ,

where K ( ϱ , ς , ζ , ι ) , L ( ϱ , ς , ζ , ι ) , M ( ϱ , ς , ζ , ι ) and N ( ϱ , ς , ζ , ι ) are the same as in Theorem 8, and J 1 and J 2 are defined in Theorem 4.

Proof

Since Φ and Ω are co-ordinated convex IVFs on Δ , if we define the mappings Φ ξ : [ ζ , ι ] R I + , Φ ξ ( η ) = Φ ( ξ , η ) , and Ω ξ : [ ζ , ι ] R I + , Ω ξ ( η ) = Ω ( ξ , η ) , then Φ ξ ( η ) and Ω ξ ( η ) are convex on [ ζ , ι ] for all ξ [ ϱ , ς ] . If we apply the inclusion (3) for the convex functions Φ ξ ( η ) and Ω ξ ( η ) , then we have

(15) [ I ψ ζ + Φ ξ ( ι ) Ω ξ ( ι ) + I ψ ι Φ ξ ( ζ ) Ω ξ ( ζ ) ] I 1 [ Φ ξ ( ζ ) Ω ξ ( ζ ) + Φ ξ ( ι ) Ω ξ ( ι ) ] + I 2 [ Φ ξ ( ζ ) Ω ξ ( ι ) + Φ ξ ( ι ) Ω ξ ( ζ ) ] .

That is,

(16) ( IR ) ζ ι ψ ( ( ι η ) υ ) υ Φ ( ξ , η ) Ω ( ξ , η ) d η + ( IR ) ζ ι ψ ( ( η ζ ) υ ) υ Φ ( ξ , η ) Ω ( ξ , η ) d η I 1 [ Φ ( ξ , ζ ) Ω ( ξ , ζ ) + Φ ( ξ , ι ) Ω ( ξ , ι ) ] + I 2 [ Φ ( ξ , ζ ) Ω ( ξ , ι ) + Φ ( ξ , ι ) Ω ( ξ , ζ ) ] .

By multiplying inclusion (16) by φ ( ( ς ξ ) ϑ ) ϑ and integrating the resulting inclusion with respect to ξ from ϱ to ς , we obtain

(17) [ I φ , ψ ϱ + , ζ + Φ ( ς , ι ) Ω ( ς , ι ) + I φ , ψ ϱ + , ι Φ ( ς , ζ ) Ω ( ς , ζ ) ] I 1 [ I φ ϱ + Φ ( ς , ζ ) Ω ( ς , ζ ) + I φ ϱ + Φ ( ς , ι ) Ω ( ς , ι ) ] + I 2 [ I φ ϱ + Φ ( ς , ζ ) Ω ( ς , ι ) + I φ ϱ + Φ ( ς , ι ) Ω ( ς , ζ ) ] .

Similarly, by multiplying inclusion (16) by φ ( ξ ϱ ) ξ ϱ and integrating the resulting inclusion with respect to ξ on [ ϱ , ς ] , we have

(18) [ I φ , ψ ς , ζ + Φ ( ϱ , ι ) Ω ( ϱ , ι ) + I φ , ψ ς , ι Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) ] I 1 [ I φ ς Φ ( ϱ , ζ ) Ω ( ς , ζ ) + I φ ς Φ ( ϱ , ι ) Ω ( ϱ , ι ) ] + I 2 [ I φ ς Φ ( ϱ , ζ ) Ω ( ϱ , ι ) + I φ ς Φ ( ϱ , ι ) Ω ( ϱ , ζ ) ] .

From inclusions (17) and (18), we obtain

(19) [ I φ , ψ ϱ + , ζ + Φ ( ς , ι ) Ω ( ς , ι ) + I φ , ψ ϱ + , ι Φ ( ς , ζ ) Ω ( ς , ζ ) + I φ , ψ ς , ζ + Φ ( ϱ , ι ) Ω ( ϱ , ι ) + I φ , ψ ς , ι Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) ] I 1 [ I φ ϱ + Φ ( ς , ζ ) Ω ( ς , ζ ) + I φ ϱ + Φ ( ς , ι ) Ω ( ς , ι ) ] + I 1 [ I φ ς Φ ( ϱ , ζ ) Ω ( ς , ζ ) + I φ ς Φ ( ϱ , ι ) Ω ( ϱ , ι ) ] + I 2 [ I φ ϱ + Φ ( ς , ζ ) Ω ( ς , ι ) + I φ ϱ + Φ ( ς , ι ) Ω ( ς , ζ ) ] + I 2 [ I φ ς Φ ( ϱ , ζ ) Ω ( ϱ , ι ) + I φ ς Φ ( ϱ , ι ) Ω ( ϱ , ζ ) ] .

For each term of the right-hand side of (19), by inclusion (3), we have

(20) [ I φ ϱ + Φ ( ς , ζ ) Ω ( ς , ζ ) + I φ ϱ + Φ ( ς , ι ) Ω ( ς , ι ) ] J 1 [ Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) + Φ ( ς , ζ ) Ω ( ς , ζ ) ] + J 2 [ Φ ( ϱ , ζ ) Ω ( ς , ζ ) + Φ ( ς , ζ ) Ω ( ϱ , ζ ) ] ,

(21) [ I φ ς Φ ( ϱ , ζ ) Ω ( ς , ζ ) + I φ ς Φ ( ϱ , ι ) Ω ( ϱ , ι ) ] J 1 [ Φ ( ϱ , ι ) Ω ( ϱ , ι ) + Φ ( ς , ι ) Ω ( ς , ι ) ] + J 2 [ Φ ( ϱ , ι ) Ω ( ς , ι ) + Φ ( ς , ζ ) Ω ( ϱ , ι ) ] ,

(22) [ I φ ϱ + Φ ( ς , ζ ) Ω ( ς , ι ) + I φ ϱ + Φ ( ς , ι ) Ω ( ς , ι ) ] J 1 [ Φ ( ϱ , ζ ) Ω ( ϱ , ι ) + Φ ( ς , ζ ) Ω ( ς , ς ) ] + J 2 [ Φ ( ϱ , ζ ) Ω ( ς , ι ) + Φ ( ς , ζ ) Ω ( ϱ , ι ) ] ,

and

(23) [ I φ ς Φ ( ϱ , ζ ) Ω ( ϱ , ι ) + I φ ς Φ ( ϱ , ι ) Ω ( ϱ , ζ ) ] J 1 [ Φ ( ϱ , ι ) Ω ( ϱ , ζ ) + Φ ( ς , ι ) Ω ( ς , ζ ) ] + J 2 [ Φ ( ϱ , ι ) Ω ( ς , ζ ) + Φ ( ς , ι ) Ω ( ϱ , ζ ) ] .

If we substitute the inclusions (20)–(23) in (19), we obtain the desired inclusion (10).□

Remark 3

Under the assumption of Theorem 10 with φ ( ϑ ) = ϑ and ψ ( υ ) = υ , Theorem 10 reduces to [19, Theorem 8].

Remark 4

Under the assumption of Theorem 10 with φ ( ϑ ) = ϑ α Γ ( α ) and ψ ( υ ) = υ β Γ ( β ) , inclusion (10) reduces to inclusion (6).

Remark 5

If we choose Ω ( ξ , η ) = 1 for all ( ξ , η ) Δ in Theorem 10, then we have the following inclusion:

[ I φ , ψ ϱ + , ζ + Φ ( ς , ι ) + I φ , ψ ϱ + , ι Φ ( ς , ζ ) + I φ , ψ ς , ζ + Φ ( ϱ , ι ) + I φ , ψ ς , ι Φ ( ϱ , ζ ) ] ( Φ ( ϱ , ζ ) + Φ ( ϱ , ι ) + Φ ( ς , ζ ) + Φ ( ς , ι ) ) [ I 1 J 1 + I 2 J 1 + I 1 J 2 + I 2 J 2 ] .

Proof

For Ω ( ξ , η ) = 1 , we have

K ( ϱ , ς , ζ , ι ) = L ( ϱ , ς , ζ , ι ) = M ( ϱ , ς , ζ , ι ) = N ( ϱ , ς , ζ , ι ) = Φ ( ϱ , ζ ) + Φ ( ϱ , ι ) + Φ ( ς , ζ ) + Φ ( ς , ι ) .

It follows that

I 1 J 1 K ( ϱ , ς , ζ , ι ) + I 1 J 2 L ( ϱ , ς , ζ , ι ) + I 2 J 1 M ( ϱ , ς , ζ , ι ) + I 2 J 2 N ( ϱ , ς , ζ , ι ) = ( Φ ( ϱ , ζ ) + Φ ( ϱ , ι ) + Φ ( ς , ζ ) + Φ ( ς , ι ) ) [ I 1 J 1 + I 2 J 1 + I 1 J 2 + I 2 J 2 ] ,

which completes the proof.□

Theorem 11

Let Φ , Ω : Δ [ ϱ , ς ] × [ ζ , ι ] R I + be two co-ordinated convex IVFs on Δ , then we have the following H-H type inclusion for GFIs:

(24) 4 Φ ϱ + ς 2 , ζ + ι 2 Ω ϱ + ς 2 , ζ + ι 2 1 4 Λ ( 1 ) Δ ( 1 ) [ I φ , ψ ϱ + , ζ + Φ ( ς , ι ) Ω ( ς , ι ) + I φ , ψ ϱ + , ι Φ ( ς , ζ ) Ω ( ς , ζ ) + I φ , ψ ς , ζ + Φ ( ϱ , ι ) Ω ( ϱ , ι ) + I φ , ψ ς , ι Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) ] + 1 4 Λ ( 1 ) Δ ( 1 ) { [ J 2 I 1 + I 2 J 1 + J 2 I 2 ] K ( ϱ , ς , ζ , ι ) + [ J 1 I 1 + J 2 I 2 + J 1 I 2 ] L ( ϱ , ς , ζ , ι ) + [ J 2 I 2 + J 1 I 1 + J 2 I 1 ] M ( ϱ , ς , ζ , ι ) + [ J 1 I 2 + J 2 I 1 + J 1 I 1 ] N ( ϱ , ς , ζ , ι ) } ,

where K ( ϱ , ς , ζ , ι ) , L ( ϱ , ς , ζ , ι ) , M ( ϱ , ς , ζ , ι ) , and N ( ϱ , ς , ζ , ι ) are defined as shown in Theorem 8.

Proof

Since Φ and Ω are co-ordinated convex IVFs on Δ , by the inclusion (4), we have

(25) 2 Φ ϱ + ς 2 , ζ + ι 2 Ω ϱ + ς 2 , ζ + ι 2 1 2 Λ ( 1 ) ( IR ) ϱ ς φ ( ς ξ ) ς ξ Φ ξ , ζ + ι 2 Ω ξ , ζ + ι 2 d ξ + ( IR ) ϱ ς φ ( ξ ϱ ) ξ ϱ Φ ξ , ζ + ι 2 Ω ξ , ζ + ι 2 d ξ + J 2 2 Λ ( 1 ) Φ ϱ , ζ + ι 2 Ω ϱ , ζ + ι 2 + Φ ς , ζ + ι 2 Ω ς , ζ + ι 2 + J 1 2 Λ ( 1 ) Φ ϱ , ζ + ι 2 Ω ς , ζ + ι 2 + Φ ς , ζ + ι 2 Ω ϱ , ζ + ι 2

and

(26) 2 Φ ϱ + ς 2 , ζ + ι 2 Ω ϱ + ς 2 , ζ + ι 2 1 2 Δ ( 1 ) ( IR ) ζ ι ψ ( ι η ) ι η Φ ϱ + ς 2 , η Ω ϱ + ς 2 , η d η + ( IR ) ζ ι ψ ( η ζ ) η ζ Φ ϱ + ς 2 , η Ω ϱ + ς 2 , η d η + I 2 2 Δ ( 1 ) Φ ϱ + ς 2 , ζ Ω ϱ + ς 2 , ζ + Φ ϱ + ς 2 , ι Ω ϱ + ς 2 , ι + I 1 2 Δ ( 1 ) Φ ϱ + ς 2 , ζ Ω ϱ + ς 2 , ι + Φ ϱ + ς 2 , ι Ω ϱ + ς 2 , ζ .

From inclusions (25) and (26), we obtain the following inclusion:

(27) 8 Φ ϱ + ς 2 , ζ + ι 2 Ω ϱ + ς 2 , ζ + ι 2 1 2 Λ ( 1 ) ( IR ) ϱ ς φ ( ς ξ ) ς ξ 2 Φ ξ , ζ + ι 2 Ω ξ , ζ + ι 2 d ξ + ( IR ) ϱ ς φ ( ξ ϱ ) ξ ϱ 2 Φ ξ , ζ + ι 2 Ω ξ , ζ + ι 2 d ξ × 1 2 Δ ( 1 ) ( IR ) ζ ι ψ ( ι η ) ι η 2 Φ ϱ + ς 2 , η Ω ϱ + ς 2 , η d η + ( IR ) ζ ι ψ ( η ζ ) η ζ 2 Φ ϱ + ς 2 , η Ω ϱ + ς 2 , η d η + J 2 2 Λ ( 1 ) 2 Φ ϱ , ζ + ι 2 Ω ϱ , ζ + ι 2 + 2 Φ ς , ζ + ι 2 Ω ς , ζ + ι 2 + J 1 2 Λ ( 1 ) 2 Φ ϱ , ζ + ι 2 Ω ς , ζ + ι 2 + 2 Φ ς , ζ + ι 2 Ω ϱ , ζ + ι 2 + I 2 2 Δ ( 1 ) 2 Φ ϱ + ς 2 , ζ Ω ϱ + ς 2 , ζ + 2 Φ ϱ + ς 2 , ι Ω ϱ + ς 2 , ι + I 1 2 Δ ( 1 ) 2 Φ ϱ + ς 2 , ζ Ω ϱ + ς 2 , ι + 2 Φ ϱ + ς 2 , ι Ω ϱ + ς 2 , ζ .

Since the mappings Φ ξ : [ ζ , ι ] R , Φ ξ ( η ) = Φ ( ξ , η ) , and Ω ξ : [ ζ , ι ] R , Ω ξ ( η ) = Ω ( ξ , η ) , by applying inclusion (4), we have

(28) 2 Φ ϱ , ζ + ι 2 Ω ϱ , ζ + ι 2 1 2 Δ ( 1 ) [ I ψ ζ + Φ ( ϱ , ι ) Ω ( ϱ , ι ) + I ψ ι Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) ] + I 2 2 Δ ( 1 ) [ Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) + Φ ( ϱ , ι ) Ω ( ϱ , ι ) ] + I 1 2 Δ ( 1 ) [ Φ ( ϱ , ζ ) Ω ( ϱ , ι ) + Φ ( ϱ , ι ) Ω ( ϱ , ζ ) ] ,

(29) 2 Φ ς , ζ + ι 2 Ω ς , ζ + ι 2 1 2 Δ ( 1 ) [ I ψ ζ + Φ ( ς , ι ) Ω ( ς , ι ) + I ψ ι Φ ( ς , ζ ) Ω ( ς , ζ ) ] + I 2 2 Δ ( 1 ) [ Φ ( ς , ζ ) Ω ( ς , ζ ) + Φ ( ς , ι ) Ω ( ς , ι ) ] + I 1 2 Δ ( 1 ) [ Φ ( ς , ζ ) Ω ( ς , ι ) + Φ ( ς , ι ) Ω ( ς , ζ ) ] ,

(30) 2 Φ ϱ , ζ + ι 2 Ω ς , ζ + ι 2 1 2 Δ ( 1 ) [ I ψ ζ + Φ ( ϱ , ι ) Ω ( ς , ι ) + I ψ ι Φ ( ϱ , ζ ) Ω ( ς , ζ ) ] + I 2 2 Δ ( 1 ) [ Φ ( ϱ , ζ ) Ω ( ς , ζ ) + Φ ( ϱ , ι ) Ω ( ς , ι ) ] + I 1 2 Δ ( 1 ) [ Φ ( ϱ , ζ ) Ω ( ς , ι ) + Φ ( ϱ , ι ) Ω ( ς , ζ ) ] ,

and

(31) 2 Φ ς , ζ + ι 2 Ω ϱ , ζ + ι 2 1 2 Δ ( 1 ) [ I ψ ζ + Φ ( ς , ι ) Ω ( ϱ , ι ) + I ψ ι Φ ( ς , ζ ) Ω ( ϱ , ζ ) ] + I 2 2 Δ ( 1 ) [ Φ ( ς , ζ ) Ω ( ϱ , ζ ) + Φ ( ς , ι ) Ω ( ϱ , ι ) ] + I 1 2 Δ ( 1 ) [ Φ ( ς , ζ ) Ω ( ϱ , ι ) + Φ ( ς , ι ) Ω ( ϱ , ζ ) ] .

Similarly, since the mappings Φ η : [ ϱ , ς ] R , Φ η ( ξ ) = Φ ( ξ , η ) and Ω η : [ ϱ , ς ] R , Ω η ( ξ ) = Ω ( ξ , η ) , by applying inclusion (4), we have

(32) 2 Φ ϱ + ς 2 , ζ Ω ϱ + ς 2 , ζ 1 2 Λ ( 1 ) [ I φ ϱ + Φ ( ς , ζ ) Ω ( ς , ζ ) + I φ ς Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) ] + J 2 2 Λ ( 1 ) [ Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) + Φ ( ς , ζ ) Ω ( ς , ζ ) ] + J 1 2 Λ ( 1 ) [ Φ ( ϱ , ζ ) Ω ( ς , ζ ) + Φ ( ς , ζ ) Ω ( ϱ , ζ ) ] ,

(33) 2 Φ ϱ + ς 2 , ι Ω ϱ + ς 2 , ι 1 2 Λ ( 1 ) [ I φ ϱ + Φ ( ς , ι ) Ω ( ς , ι ) + I φ ς Φ ( ϱ , ι ) Ω ( ϱ , ι ) ] + J 2 2 Λ ( 1 ) [ Φ ( ϱ , ι ) Ω ( ϱ , ι ) + Φ ( ς , ι ) Ω ( ς , ι ) ] + J 1 2 Λ ( 1 ) [ Φ ( ϱ , ι ) Ω ( ς , ι ) + Φ ( ς , ι ) Ω ( ϱ , ι ) ] ,

(34) 2 Φ ϱ + ς 2 , ζ Ω ϱ + ς 2 , ι 1 2 Λ ( 1 ) [ I φ ϱ + Φ ( ς , ζ ) Ω ( ς , ι ) + I φ ς Φ ( ϱ , ζ ) Ω ( ϱ , ι ) ] + J 2 2 Λ ( 1 ) [ Φ ( ϱ , ζ ) Ω ( ϱ , ι ) + Φ ( ς , ζ ) Ω ( ς , ι ) ] + J 1 2 Λ ( 1 ) [ Φ ( ϱ , ζ ) Ω ( ς , ι ) + Φ ( ς , ζ ) Ω ( ϱ , ι ) ] ,

and

(35) 2 Φ ϱ + ς 2 , ι Ω ϱ + ς 2 , ζ 1 2 Λ ( 1 ) [ I φ ϱ + Φ ( ς , ι ) Ω ( ς , ζ ) + I φ ς Φ ( ϱ , ι ) Ω ( ϱ , ζ ) ] + J 2 2 Λ ( 1 ) [ Φ ( ϱ , ι ) Ω ( ϱ , ζ ) + Φ ( ς , ι ) Ω ( ς , ζ ) ] + J 1 2 Λ ( 1 ) [ Φ ( ϱ , ι ) Ω ( ς , ζ ) + Φ ( ς , ι ) Ω ( ϱ , ζ ) ] .

On the other hand, by applying inclusion (4), we obtain

(36) 1 2 Λ ( 1 ) ( IR ) ϱ ς φ ( ς ξ ) ς ξ 2 Φ ξ , ζ + ι 2 Ω ξ , ζ + ι 2 d ξ 1 4 Λ ( 1 ) Δ ( 1 ) ( IR ) ϱ ς ζ ι φ ( ς ξ ) ς ξ ψ ( ι η ) ι η Φ ( ξ , η ) Ω ( ξ , η ) d ξ d η + ( IR ) ϱ ς ζ ι φ ( ς ξ ) ς ξ ψ ( η ζ ) η ζ Φ ( ξ , η ) Ω ( ξ , η ) d ξ d η + I 2 4 Λ ( 1 ) Δ ( 1 ) ( IR ) ϱ ς φ ( ς ξ ) ς ξ [ Φ ( ξ , ζ ) Ω ( ξ , ζ ) + Φ ( ξ , ι ) Ω ( ξ , ι ) ] d ξ + I 1 4 Λ ( 1 ) Δ ( 1 ) ( IR ) ϱ ς φ ( ς ξ ) ς ξ [ Φ ( ξ , ζ ) Ω ( ξ , ι ) + Φ ( ξ , ι ) Ω ( ξ , ζ ) ] d ξ

= 1 4 Λ ( 1 ) Δ ( 1 ) [ I φ , ψ ϱ + , ζ + Φ ( ς , ι ) Ω ( ς , ι ) + I φ , ψ ϱ + , ι Φ ( ς , ζ ) Ω ( ς , ζ ) ] + I 2 4 Λ ( 1 ) Δ ( 1 ) [ I φ ϱ + Φ ( ς , ζ ) Ω ( ς , ζ ) + I φ ϱ + Φ ( ς , ι ) Ω ( ς , ι ) ] + I 1 4 Λ ( 1 ) Δ ( 1 ) [ I φ ϱ + Φ ( ς , ζ ) Ω ( ς , ι ) + I φ ϱ + Φ ( ς , ι ) Ω ( ς , ζ ) ] .

Similarly, we also have

(37) 1 2 Λ ( 1 ) ( IR ) ϱ ς φ ( ξ ϱ ) ξ ϱ 2 Φ ξ , ζ + ι 2 Ω ξ , ζ + ι 2 d ξ 1 4 Λ ( 1 ) Δ ( 1 ) [ I φ ς , ζ + Φ ( ϱ , ι ) Ω ( ϱ , ι ) + I φ ς , ι I φ Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) ] + I 2 4 Λ ( 1 ) Δ ( 1 ) [ I φ ς Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) + I φ ς Φ ( ϱ , ι ) Ω ( ϱ , ι ) ] + I 1 4 Λ ( 1 ) Δ ( 1 ) [ I φ ς Φ ( ϱ , ζ ) Ω ( ϱ , ι ) + I φ ς Φ ( ϱ , ι ) Ω ( ϱ , ζ ) ] ,

(38) 1 2 Δ ( 1 ) ( IR ) ζ ι ψ ( ι η ) ι η 2 Φ ϱ + ς 2 , η Ω ϱ + ς 2 , η d η 1 4 Λ ( 1 ) Δ ( 1 ) [ I φ , ψ ϱ + , ζ + Φ ( ς , ι ) Ω ( ς , ι ) + I φ , ψ ς , ζ + Φ ( ϱ , ι ) Ω ( ϱ , ι ) ] + J 2 4 Λ ( 1 ) Δ ( 1 ) [ I ψ ζ + Φ ( ϱ , ι ) Ω ( ϱ , ι ) + I ψ ζ + Φ ( ς , ι ) Ω ( ς , ι ) ] + J 1 4 Λ ( 1 ) Δ ( 1 ) [ I ψ ζ + Φ ( ϱ , ι ) Ω ( ς , ι ) + I ψ ζ + Φ ( ς , ι ) Ω ( ϱ , ι ) ] ,

and

(39) 1 2 Δ ( 1 ) ( IR ) ζ ι ψ ( η ζ ) η ζ 2 Φ ϱ + ς 2 , η Ω ϱ + ς 2 , η d η 1 4 Λ ( 1 ) Δ ( 1 ) [ I φ , ψ ϱ + , ι Φ ( ς , ζ ) Ω ( ς , ζ ) + I φ , ψ ς , ι Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) ] + J 2 4 Λ ( 1 ) Δ ( 1 ) [ I ψ ι Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) + I ψ ι Φ ( ς , ζ ) Ω ( ς , ζ ) ] + J 1 4 Λ ( 1 ) Δ ( 1 ) [ I ψ ι Φ ( ϱ , ζ ) Ω ( ς , ζ ) + I ψ ι Φ ( ς , ζ ) Ω ( ϱ , ζ ) ] .

By substituting inclusions (28)–(39) in (27), we obtain the following inclusion:

(40) 8 Φ ϱ + ς 2 , ζ + ι 2 Ω ϱ + ς 2 , ζ + ι 2 1 4 Λ ( 1 ) Δ ( 1 ) [ I φ , ψ ϱ + , ζ + Φ ( ς , ι ) Ω ( ς , ι ) + I φ , ψ ϱ + , ι Φ ( ς , ζ ) Ω ( ς , ζ ) + I φ , ψ ς , ζ + Φ ( ϱ , ι ) Ω ( ϱ , ι ) + I φ , ψ ς , ι Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) ] + J 2 4 Λ ( 1 ) Δ ( 1 ) { [ I ψ ζ + Φ ( ϱ , ι ) Ω ( ϱ , ι ) + I ψ ζ + Φ ( ς , ι ) Ω ( ς , ι ) ] + [ I ψ ι Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) + I ψ ι Φ ( ς , ζ ) Ω ( ς , ζ ) ] } + J 1 4 Λ ( 1 ) Δ ( 1 ) { [ I ψ ζ + Φ ( ϱ , ι ) Ω ( ς , ι ) + I ψ ζ + Φ ( ς , ι ) Ω ( ϱ , ι ) ] + [ I ψ ι Φ ( ϱ , ζ ) Ω ( ς , ζ ) + I ψ ι Φ ( ς , ζ ) Ω ( ϱ , ζ ) ] }

+ I 2 4 Λ ( 1 ) Δ ( 1 ) { [ I φ ϱ + Φ ( ς , ζ ) Ω ( ς , ζ ) + I φ ϱ + Φ ( ς , ι ) Ω ( ς , ι ) ] + [ I φ ς Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) + I φ ς Φ ( ϱ , ι ) Ω ( ϱ , ι ) ] } + I 1 4 Λ ( 1 ) Δ ( 1 ) { [ I φ ϱ + Φ ( ς , ζ ) Ω ( ς , ι ) + I φ ϱ + Φ ( ς , ι ) Ω ( ς , ζ ) ] + [ I φ ς Φ ( ϱ , ζ ) Ω ( ϱ , ι ) + I φ ς Φ ( ϱ , ι ) Ω ( ϱ , ζ ) ] } + J 2 I 2 2 Λ ( 1 ) Δ ( 1 ) K ( ϱ , ς , ζ , ι ) + J 2 I 1 2 Λ ( 1 ) Δ ( 1 ) M ( ϱ , ς , ζ , ι ) + J 1 I 2 2 Λ ( 1 ) Δ ( 1 ) L ( ϱ , ς , ζ , ι ) + J 1 I 1 2 Λ ( 1 ) Δ ( 1 ) N ( ϱ , ς , ζ , ι ) .

By using inclusion (3), we have the following inclusions:

(41) [ I ψ ζ + Φ ( ϱ , ι ) Ω ( ϱ , ι ) + I ψ ζ + Φ ( ς , ι ) Ω ( ς , ι ) ] + [ I ψ ι Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) + I ψ ι Φ ( ς , ζ ) Ω ( ς , ζ ) ] I 1 K ( ϱ , ς , ζ , ι ) + I 2 M ( ϱ , ς , ζ , ι ) ,

(42) [ I ψ ζ + Φ ( ϱ , ι ) Ω ( ς , ι ) + I ψ ζ + Φ ( ς , ι ) Ω ( ϱ , ι ) ] + [ I ψ ι Φ ( ϱ , ζ ) Ω ( ς , ζ ) + I ψ ι Φ ( ς , ζ ) Ω ( ϱ , ζ ) ] I 1 L ( ϱ , ς , ζ , ι ) + I 2 N ( ϱ , ς , ζ , ι ) ,

(43) [ I φ ϱ + Φ ( ς , ζ ) Ω ( ς , ζ ) + I φ ϱ + Φ ( ς , ι ) Ω ( ς , ι ) ] + [ I φ ς Φ ( ϱ , ζ ) Ω ( ϱ , ζ ) + I φ ς Φ ( ϱ , ι ) Ω ( ϱ , ι ) ] J 1 K ( ϱ , ς , ζ , ι ) + J 2 L ( ϱ , ς , ζ , ι ) ,

and

(44) [ I φ ϱ + Φ ( ς , ζ ) Ω ( ς , ι ) + I φ ϱ + Φ ( ς , ι ) Ω ( ς , ζ ) ] + [ I φ ς Φ ( ϱ , ζ ) Ω ( ϱ , ι ) + I φ ς Φ ( ϱ , ι ) Ω ( ϱ , ζ ) ] J 1 M ( ϱ , ς , ζ , ι ) + J 2 N ( ϱ , ς , ζ , ι ) .

If we substitute inclusions (41)–(44) in (40) and divide the resulting inclusion by 2, then we obtain the desired result (24). This completes the proof.□

Remark 6

Under the assumption of Theorem 11 with φ ( ϑ ) = ϑ and ψ ( υ ) = υ , Theorem 11 reduces to [19, Theorem 9].

Remark 7

Under the assumption of Theorem 10 with φ ( ϑ ) = ϑ α Γ ( α ) and ψ ( υ ) = υ β Γ ( β ) , inclusion (10) reduces to inclusion (7).

Corollary 1

If we choose Ω ( ξ , η ) = 1 for all ( ξ , η ) Δ in Theorem 10, then we have the following inclusion:

4 Φ ϱ + ς 2 , ζ + ι 2 1 4 Λ ( 1 ) Δ ( 1 ) [ I φ , ψ ϱ + , ζ + Φ ( ς , ι ) + I φ , ψ ϱ + , ι Φ ( ς , ζ ) + I φ , ψ ς , ζ + Φ ( ϱ , ι ) + I φ , ψ ς , ι Φ ( ϱ , ζ ) ] + 3 [ Φ ( ϱ , ζ ) + Φ ( ϱ , ι ) + Φ ( ς , ζ ) + Φ ( ς , ι ) ] 4 Λ ( 1 ) Δ ( 1 ) [ J 1 I 1 + J 1 I 2 + J 2 I 1 + J 2 I 2 ] .

Proof

For Ω ( ξ , η ) = 1 , we have

K ( ϱ , ς , ζ , ι ) = L ( ϱ , ς , ζ , ι ) = M ( ϱ , ς , ζ , ι ) = N ( ϱ , ς , ζ , ι ) = Φ ( ϱ , ζ ) + Φ ( ϱ , ι ) + Φ ( ς , ζ ) + Φ ( ς , ι ) .

It follows that

[ J 2 I 1 + I 2 J 1 + J 2 I 2 ] K ( ϱ , ς , ζ , ι ) + [ J 1 I 1 + J 2 I 2 + J 1 I 2 ] L ( ϱ , ς , ζ , ι ) + [ J 2 I 2 + J 1 I 1 + J 2 I 1 ] M ( ϱ , ς , ζ , ι ) + [ J 1 I 2 + J 2 I 1 + J 1 I 1 ] N ( ϱ , ς , ζ , ι ) = [ Φ ( ϱ , ζ ) + Φ ( ϱ , ι ) + Φ ( ς , ζ ) + Φ ( ς , ι ) ] 4 Λ ( 1 ) Δ ( 1 ) { [ J 2 I 1 + I 2 J 1 + J 2 I 2 ] + [ J 1 I 1 + J 2 I 2 + J 1 I 2 ] + [ J 2 I 2 + J 1 I 1 + J 2 I 1 ] + [ J 1 I 2 + J 2 I 1 + J 1 I 1 ] } ,

which completes the proof.□

5 Concluding remarks

In this study, we presented a new GFIs for co-ordinated IVFs and utilizing this new integral, and we established H-H type inclusions for co-ordinated convex IVFs. It is also proved that the newly established inequalities can be converted into classical H-H inequalities for interval-valued co-ordinated convex functions, Riemann-Liouville fractional H-H inequalities interval-valued co-ordinated convex functions, and k -Riemann-Liouville fractional H-H inequalities interval-valued co-ordinated convex functions. Interested readers can find more new integral inclusions by using our newly defined integral, and they can study other type convexity of IVFs.

Acknowledgement

The authors are thankful to the Nanjing Normal University for wonderful research environment provided to the researchers.

  1. Funding information: This work was also supported by King Mongkut’s University of Technology North Bangkok, Contract no. KMUTNB-63-KNOW-018.

  2. Author contributions: All authors contributed equally to the writing of this article. All authors read and approved the final manuscript.

  3. Conflict of interest: The authors state no conflict of interests.

  4. Data availability statement: Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

[1] R. E. Moore, Interval Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. Search in Google Scholar

[2] Y. Chalco-Cano, A. Flores-Franulic, and H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math. 31 (2012), no. 3, 457–472, DOI: https://doi.org/10.1590/S1807-03022012000300002. Search in Google Scholar

[3] Y. Chalco-Cano, W. A. Lodwick, and W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput. 19 (2015), 3293–3300, DOI: https://doi.org/10.1007/s00500-014-1483-6. 10.1007/s00500-014-1483-6Search in Google Scholar

[4] A. G. Azpeitia, Convex functions and the Hadamard inclusion, Rev. Colombiana Mat. 28 (1994), 7–12. Search in Google Scholar

[5] F. Chen and S. Wu, Several complementary inclusions to inclusions of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl. 9 (2016), no. 2, 705–716, DOI: http://doi.org/10.22436/jnsa.009.02.32. 10.22436/jnsa.009.02.32Search in Google Scholar

[6] F. C. Mitroi, N. Kazimierz, and S. Wąsowicz, Hermite-Hadamard inequalities for convex set-valued functions, Demonstr. Math. 46 (2013), no. 4, 655–662, DOI: https://doi.org/10.1515/dema-2013-0483. 10.1515/dema-2013-0483Search in Google Scholar

[7] K. Nikodem, J. L. Sánchez, and L. Sánchez, Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps, Math. AEterna 4 (2014), no. 8, 979–987. Search in Google Scholar

[8] Z. Pavić, Improvements of the Hermite-Hadamard inequality, J. Inequal. Appl. 2015 (2015), 222, DOI: https://doi.org/10.1186/s13660-015-0742-0. 10.1186/s13660-015-0742-0Search in Google Scholar

[9] E. Sadowska, Hadamard inequality and a refinement of Jensen inequality for set-valued functions, Results Math. 32 (1997), 332–337, DOI: https://doi.org/10.1007/BF03322144. 10.1007/BF03322144Search in Google Scholar

[10] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. Search in Google Scholar

[11] P. O. Mohammed, H. Aydi, A. Kashuri, Y. S. Hamed, and K. M. Abualjana, Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels, Symmetry 13 (2021), no. 4, 550, DOI: https://doi.org/10.3390/sym13040550. 10.3390/sym13040550Search in Google Scholar

[12] J. E. Pečarić, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992. Search in Google Scholar

[13] K.-L. Tseng and S.-R. Hwang, New Hermite-Hadamard inclusions and their applications, Filomat 30 (2016), no. 14, 3667–3680. 10.2298/FIL1614667TSearch in Google Scholar

[14] D. Zhao, M. A. Ali, A. Kashuri, and H. Budak, Generalized fractional integral inequalities of Hermite-Hadamard type for harmonically convex functions, Adv. Differential Equations 2020 (2020), 1–14, DOI: https://doi.org/10.1186/s13662-020-02589-x. 10.1186/s13662-020-02589-xSearch in Google Scholar

[15] H. Budak, T. Tunç, and M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Amer. Math. Soc. 148 (2020), no. 2, 705–718. 10.1090/proc/14741Search in Google Scholar

[16] T. Tunç, Hermite-Hadamard type Inequalities for Interval-valued Fractional Integrals with Respect to Another Function, Available from: https://www.researchgate.net/publication/338834107 (submitted, 2020). 10.1515/ms-2022-0102Search in Google Scholar

[17] S. Rashid, Z. Hammouch, H. Aydi, A. G. Ahmad, and A. M. Alsharif, Novel computations of the time-fractional Fisheras model via generalized fractional integral operators by means of the Elzaki transform, Fractal Fract. 5 (2021), no. 3, 94, DOI: https://doi.org/10.3390/fractalfract5030094. 10.3390/fractalfract5030094Search in Google Scholar

[18] D. Zhao, M. A. Ali, A. Kashri, H. Budak, and M. Z. Sarikaya, Hermite-Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals, J. Inequal. Appl. 2020 (2020), 1–38, DOI: https://doi.org/10.1186/s13660-020-02488-5. 10.1186/s13660-020-02488-5Search in Google Scholar

[19] D. Zhao, M. A. Ali, G. Murtaza, and Z. Zhang, On the Hermite-Hadamard inequalities for interval-valued co-ordinated convex functions, Adv. Differ. Equ. 2020 (2020), 1–14, DOI: https://doi.org/10.1186/s13662-020-03028-7. 10.1186/s13662-020-03028-7Search in Google Scholar

[20] H. Budak, H. Kara, M. A. Ali, S. Khan, and Y.-M. Chu, Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions, Open Math. 19 (2021), no. 1, 1081–1097, DOI: https://doi.org/10.1515/math-2021-0067. 10.1515/math-2021-0067Search in Google Scholar

[21] M. B. Khan, H. G. Zaini, J. E. Macías-Díaz, S. Treanţǎa, and M. S. Soliman, Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions, AIMS Math. 7 (2022), no. 6, 10454–10482, DOI: https://doi.org/10.3934/math.2022583. 10.3934/math.2022583Search in Google Scholar

[22] M. B. Khan, J. E. Macías-Diiiaz, and S. Treanţǎa, M. S. Soliman, and H. G. Zaini, Hermite-Hadamard inequalities in fractional calculus for left and right harmonically convex functions via interval-valued settings, Fractal and Fract. 6 (2022), no. 4, 178, DOI: https://doi.org/10.3390/fractalfract6040178. 10.3390/fractalfract6040178Search in Google Scholar

[23] M. B. Khan, S. Treanţǎa, M. S. Soliman, K. Nonlaopon, and H. G. Zaini, Some new versions of integral inequalities for left and right preinvex functions in the interval-valued settings, Mathematics 10 (2022), no. 4, 611, DOI: https://doi.org/10.3390/math10040611. 10.3390/math10040611Search in Google Scholar

[24] M. B. Khan, H. G. Zaini, S. Treanţǎa, G. Santos-García, J. E. Macías-Díaz, and M. S. Soliman, Fractional calculus for convex functions in interval-valued settings and inequalities, Symmetry 14 (2022), no. 2, 341, DOI: https://doi.org/10.3390/sym14020341. 10.3390/sym14020341Search in Google Scholar

[25] H. Kara, M. A. Ali, and H. Budak, Hermite-Hadamard-type inequalities for interval-valued coordinated convex functions involving generalized fractional integrals, Math. Methods Appl. Sci. 44 (2020), no. 1, 104–123, DOI: https://doi.org/10.1002/mma.6712. 10.1002/mma.6712Search in Google Scholar

[26] V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Sets and System 265 (2015), 63–85, DOI: https://doi.org/10.1016/j.fss.2014.04.005. 10.1016/j.fss.2014.04.005Search in Google Scholar

[27] D. Zhao, T. An, G. Ye, and W. Liu, Chebyshev type inequalitiesfor interval-valued, Fuzzy Sets and System 396 (2020), 82–101, DOI: https://doi.org/10.1016/j.fss.2019.10.006. 10.1016/j.fss.2019.10.006Search in Google Scholar

Received: 2021-11-02
Revised: 2022-05-19
Accepted: 2022-06-23
Published Online: 2022-12-31

© 2022 the author(s), published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Regular Articles
  2. A random von Neumann theorem for uniformly distributed sequences of partitions
  3. Note on structural properties of graphs
  4. Mean-field formulation for mean-variance asset-liability management with cash flow under an uncertain exit time
  5. The family of random attractors for nonautonomous stochastic higher-order Kirchhoff equations with variable coefficients
  6. The intersection graph of graded submodules of a graded module
  7. Isoperimetric and Brunn-Minkowski inequalities for the (p, q)-mixed geominimal surface areas
  8. On second-order fuzzy discrete population model
  9. On certain functional equation in prime rings
  10. General complex Lp projection bodies and complex Lp mixed projection bodies
  11. Some results on the total proper k-connection number
  12. The stability with general decay rate of hybrid stochastic fractional differential equations driven by Lévy noise with impulsive effects
  13. Well posedness of magnetohydrodynamic equations in 3D mixed-norm Lebesgue space
  14. Strong convergence of a self-adaptive inertial Tseng's extragradient method for pseudomonotone variational inequalities and fixed point problems
  15. Generic uniqueness of saddle point for two-person zero-sum differential games
  16. Relational representations of algebraic lattices and their applications
  17. Explicit construction of mock modular forms from weakly holomorphic Hecke eigenforms
  18. The equivalent condition of G-asymptotic tracking property and G-Lipschitz tracking property
  19. Arithmetic convolution sums derived from eta quotients related to divisors of 6
  20. Dynamical behaviors of a k-order fuzzy difference equation
  21. The transfer ideal under the action of orthogonal group in modular case
  22. The multinomial convolution sum of a generalized divisor function
  23. Extensions of Gronwall-Bellman type integral inequalities with two independent variables
  24. Unicity of meromorphic functions concerning differences and small functions
  25. Solutions to problems about potentially Ks,t-bigraphic pair
  26. Monotonicity of solutions for fractional p-equations with a gradient term
  27. Data smoothing with applications to edge detection
  28. An ℋ-tensor-based criteria for testing the positive definiteness of multivariate homogeneous forms
  29. Characterizations of *-antiderivable mappings on operator algebras
  30. Initial-boundary value problem of fifth-order Korteweg-de Vries equation posed on half line with nonlinear boundary values
  31. On a more accurate half-discrete Hilbert-type inequality involving hyperbolic functions
  32. On split twisted inner derivation triple systems with no restrictions on their 0-root spaces
  33. Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry
  34. Bifurcation and chaos in a discrete predator-prey system of Leslie type with Michaelis-Menten prey harvesting
  35. A posteriori error estimates of characteristic mixed finite elements for convection-diffusion control problems
  36. Dynamical analysis of a Lotka Volterra commensalism model with additive Allee effect
  37. An efficient finite element method based on dimension reduction scheme for a fourth-order Steklov eigenvalue problem
  38. Connectivity with respect to α-discrete closure operators
  39. Khasminskii-type theorem for a class of stochastic functional differential equations
  40. On some new Hermite-Hadamard and Ostrowski type inequalities for s-convex functions in (p, q)-calculus with applications
  41. New properties for the Ramanujan R-function
  42. Shooting method in the application of boundary value problems for differential equations with sign-changing weight function
  43. Ground state solution for some new Kirchhoff-type equations with Hartree-type nonlinearities and critical or supercritical growth
  44. Existence and uniqueness of solutions for the stochastic Volterra-Levin equation with variable delays
  45. Ambrosetti-Prodi-type results for a class of difference equations with nonlinearities indefinite in sign
  46. Research of cooperation strategy of government-enterprise digital transformation based on differential game
  47. Malmquist-type theorems on some complex differential-difference equations
  48. Disjoint diskcyclicity of weighted shifts
  49. Construction of special soliton solutions to the stochastic Riccati equation
  50. Remarks on the generalized interpolative contractions and some fixed-point theorems with application
  51. Analysis of a deteriorating system with delayed repair and unreliable repair equipment
  52. On the critical fractional Schrödinger-Kirchhoff-Poisson equations with electromagnetic fields
  53. The exact solutions of generalized Davey-Stewartson equations with arbitrary power nonlinearities using the dynamical system and the first integral methods
  54. Regularity of models associated with Markov jump processes
  55. Multiplicity solutions for a class of p-Laplacian fractional differential equations via variational methods
  56. Minimal period problem for second-order Hamiltonian systems with asymptotically linear nonlinearities
  57. Convergence rate of the modified Levenberg-Marquardt method under Hölderian local error bound
  58. Non-binary quantum codes from constacyclic codes over 𝔽q[u1, u2,…,uk]/⟨ui3 = ui, uiuj = ujui
  59. On the general position number of two classes of graphs
  60. A posteriori regularization method for the two-dimensional inverse heat conduction problem
  61. Orbital stability and Zhukovskiǐ quasi-stability in impulsive dynamical systems
  62. Approximations related to the complete p-elliptic integrals
  63. A note on commutators of strongly singular Calderón-Zygmund operators
  64. Generalized Munn rings
  65. Double domination in maximal outerplanar graphs
  66. Existence and uniqueness of solutions to the norm minimum problem on digraphs
  67. On the p-integrable trajectories of the nonlinear control system described by the Urysohn-type integral equation
  68. Robust estimation for varying coefficient partially functional linear regression models based on exponential squared loss function
  69. Hessian equations of Krylov type on compact Hermitian manifolds
  70. Class fields generated by coordinates of elliptic curves
  71. The lattice of (2, 1)-congruences on a left restriction semigroup
  72. A numerical solution of problem for essentially loaded differential equations with an integro-multipoint condition
  73. On stochastic accelerated gradient with convergence rate
  74. Displacement structure of the DMP inverse
  75. Dependence of eigenvalues of Sturm-Liouville problems on time scales with eigenparameter-dependent boundary conditions
  76. Existence of positive solutions of discrete third-order three-point BVP with sign-changing Green's function
  77. Some new fixed point theorems for nonexpansive-type mappings in geodesic spaces
  78. Generalized 4-connectivity of hierarchical star networks
  79. Spectra and reticulation of semihoops
  80. Stein-Weiss inequality for local mixed radial-angular Morrey spaces
  81. Eigenvalues of transition weight matrix for a family of weighted networks
  82. A modified Tikhonov regularization for unknown source in space fractional diffusion equation
  83. Modular forms of half-integral weight on Γ0(4) with few nonvanishing coefficients modulo
  84. Some estimates for commutators of bilinear pseudo-differential operators
  85. Extension of isometries in real Hilbert spaces
  86. Existence of positive periodic solutions for first-order nonlinear differential equations with multiple time-varying delays
  87. B-Fredholm elements in primitive C*-algebras
  88. Unique solvability for an inverse problem of a nonlinear parabolic PDE with nonlocal integral overdetermination condition
  89. An algebraic semigroup method for discovering maximal frequent itemsets
  90. Class-preserving Coleman automorphisms of some classes of finite groups
  91. Exponential stability of traveling waves for a nonlocal dispersal SIR model with delay
  92. Existence and multiplicity of solutions for second-order Dirichlet problems with nonlinear impulses
  93. The transitivity of primary conjugacy in regular ω-semigroups
  94. Stability estimation of some Markov controlled processes
  95. On nonnil-coherent modules and nonnil-Noetherian modules
  96. N-Tuples of weighted noncommutative Orlicz space and some geometrical properties
  97. The dimension-free estimate for the truncated maximal operator
  98. A human error risk priority number calculation methodology using fuzzy and TOPSIS grey
  99. Compact mappings and s-mappings at subsets
  100. The structural properties of the Gompertz-two-parameter-Lindley distribution and associated inference
  101. A monotone iteration for a nonlinear Euler-Bernoulli beam equation with indefinite weight and Neumann boundary conditions
  102. Delta waves of the isentropic relativistic Euler system coupled with an advection equation for Chaplygin gas
  103. Multiplicity and minimality of periodic solutions to fourth-order super-quadratic difference systems
  104. On the reciprocal sum of the fourth power of Fibonacci numbers
  105. Averaging principle for two-time-scale stochastic differential equations with correlated noise
  106. Phragmén-Lindelöf alternative results and structural stability for Brinkman fluid in porous media in a semi-infinite cylinder
  107. Study on r-truncated degenerate Stirling numbers of the second kind
  108. On 7-valent symmetric graphs of order 2pq and 11-valent symmetric graphs of order 4pq
  109. Some new characterizations of finite p-nilpotent groups
  110. A Billingsley type theorem for Bowen topological entropy of nonautonomous dynamical systems
  111. F4 and PSp (8, ℂ)-Higgs pairs understood as fixed points of the moduli space of E6-Higgs bundles over a compact Riemann surface
  112. On modules related to McCoy modules
  113. On generalized extragradient implicit method for systems of variational inequalities with constraints of variational inclusion and fixed point problems
  114. Solvability for a nonlocal dispersal model governed by time and space integrals
  115. Finite groups whose maximal subgroups of even order are MSN-groups
  116. Symmetric results of a Hénon-type elliptic system with coupled linear part
  117. On the connection between Sp-almost periodic functions defined on time scales and ℝ
  118. On a class of Harada rings
  119. On regular subgroup functors of finite groups
  120. Fast iterative solutions of Riccati and Lyapunov equations
  121. Weak measure expansivity of C2 dynamics
  122. Admissible congruences on type B semigroups
  123. Generalized fractional Hermite-Hadamard type inclusions for co-ordinated convex interval-valued functions
  124. Inverse eigenvalue problems for rank one perturbations of the Sturm-Liouville operator
  125. Data transmission mechanism of vehicle networking based on fuzzy comprehensive evaluation
  126. Dual uniformities in function spaces over uniform continuity
  127. Review Article
  128. On Hahn-Banach theorem and some of its applications
  129. Rapid Communication
  130. Discussion of foundation of mathematics and quantum theory
  131. Special Issue on Boundary Value Problems and their Applications on Biosciences and Engineering (Part II)
  132. A study of minimax shrinkage estimators dominating the James-Stein estimator under the balanced loss function
  133. Representations by degenerate Daehee polynomials
  134. Multilevel MC method for weak approximation of stochastic differential equation with the exact coupling scheme
  135. Multiple periodic solutions for discrete boundary value problem involving the mean curvature operator
  136. Special Issue on Evolution Equations, Theory and Applications (Part II)
  137. Coupled measure of noncompactness and functional integral equations
  138. Existence results for neutral evolution equations with nonlocal conditions and delay via fractional operator
  139. Global weak solution of 3D-NSE with exponential damping
  140. Special Issue on Fractional Problems with Variable-Order or Variable Exponents (Part I)
  141. Ground state solutions of nonlinear Schrödinger equations involving the fractional p-Laplacian and potential wells
  142. A class of p1(x, ⋅) & p2(x, ⋅)-fractional Kirchhoff-type problem with variable s(x, ⋅)-order and without the Ambrosetti-Rabinowitz condition in ℝN
  143. Jensen-type inequalities for m-convex functions
  144. Special Issue on Problems, Methods and Applications of Nonlinear Analysis (Part III)
  145. The influence of the noise on the exact solutions of a Kuramoto-Sivashinsky equation
  146. Basic inequalities for statistical submanifolds in Golden-like statistical manifolds
  147. Global existence and blow up of the solution for nonlinear Klein-Gordon equation with variable coefficient nonlinear source term
  148. Hopf bifurcation and Turing instability in a diffusive predator-prey model with hunting cooperation
  149. Efficient fixed-point iteration for generalized nonexpansive mappings and its stability in Banach spaces
Downloaded on 17.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/math-2022-0477/html
Scroll to top button