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1 Introduction and main results

Let T be a linear operator. Given a function b, the commutator T b,[ ] is defined by

T b f T bf bT f, .[ ]( ) ( ) ( )≔ −

It is very interesting that T is a pseudo-differential operator because its theory plays an important role in
many aspects of harmonic analysis and it has had quite a success in a linear setting. As one of the most
meaningful branches, the study of bilinear pseudo-differential operators was motivated not only as general-
izations of the theory of linear ones but also its natural appearance in Harmonic. This topic is continuous to
attract many researchers.

Let b be a Lipschitz function and p1 < < ∞. The estimates of the form

T b f b f f L, , for allL L
p n

Lipp p1 �[ ]( ) ( )‖ ‖ ≲ ‖ ‖ ‖ ‖ ∈ (1.1)

have been studied extensively. In particular, Calderón proved that (1.1) holds when T is a pseudo-differ-
ential operator whose kernel is homogeneous of degree of n 1− − in [1]. Coifman and Meyer showed (1.1)
when T Tσ= and σ is a symbol in the Hörmander class S1,0

1 in [2,3], and this result was later extended by
Auscher and Taylor in [4] to σ S1,1

1
�∈ , where the class S1,1

1
� , which contains S1,0

1 modulo symbols associated
with smoothing operators, consists of symbols whose Fourier transforms in the first n-dimensional variable
are appropriately compactly supported. The method in the proofs of [2,3] mainly showed that, for each
Lipschitz continuous function b on n� , T b,[ ] is a Calderón-Zygmund singular integral whose kernel con-
stants are controlled by b Lip1‖ ‖ . For another thing, Auscher and Taylor proved (1.1) in two different ways: one
method is based on the paraproducts while another is based on the Calderón-Zygmund singular integral
operator approach that relies on the T 1( ) theorem. For a more systematic study of these (and even more
general) spaces, we refer the readers to [5,6].
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Given a bilinear operatorT and a function b, the following two kinds of commutators are, respectively,
defined by

T b f g T bf g bT f g, , , ,1[ ] ( ) ( ) ( )= −

and

T b f g T f bg bT f g, , , , .2[ ] ( ) ( ) ( )= −

In 2014, Bényi and Oh proved that (1.1) is also valid for this bilinear setting in [7]. More precisely, given a
bilinear pseudo-differential operatorTσ with σ in the bilinear Hörmander classBS1.0

1 and a Lipschitz function
b on n� , it was proved in [7, Theorem 1] that T b, 1[ ] and T b, 2[ ] are bilinear Calderón-Zygmund operators.
The main aim of this article is to study (1.1) of T b j, 1, 2σ j[ ] ( )= on the products of Hardy spaces and Herz-
type spaces with σ BS1.1

1
�∈ . Before stating our main results, we need to recall some definitions and

notations.
We say that a function b defined on n� is Lipschitz continuous if

b b x b y
x y

sup .
x y

Lip
, n

1

�

∣ ( ) ( )∣

∣ ∣
‖ ‖ ≔

−

−

< ∞

∈

Let δ 0≥ , ρ 0> and m �∈ . An infinitely differentiable function σ : n n n� � � �× × → belongs to the
bilinear Hörmander class BSρ δ

m
, if for all multi-indices α β γ, , n

0�∈ there exists a positive constant Cα β γ, ,

such that

σ x ξ η C ξ η, , 1 .x
α

ξ
β

η
γ m δ α ρ β γ∣ ( )∣ ( ∣ ∣ ∣ ∣) ( )

∂ ∂ ∂ ≤ + +
+ ∣ ∣− ∣ ∣+∣ ∣

Given a σ x ξ η, , BSρ δ
m

,( ) ∈ , the bilinear pseudo-differential operator associated with σ is defined by

T f g x σ x ξ η f ξ g η e ξ η x f g, , , ˆ ˆ d d , for all , , .σ
πix ξ η n n2

n n

� �

� �

�( )( ) ( ) ( ) ( ) ( )( )
∫∫= ∈ ∈

⋅ +

In 1980, Meyer [8] first introduced the linear BSm
1,1, and corresponding boundedness of T a j, 1, 2σ j[ ] ( )=

is obtained by Bényi and Oh in [7], that is given m �∈ and r 0> , an infinitely differentiable function
σ : n n n� � � �× × → belongs to BSr

m
1.1� if

σ BS σ τ ξ η τ r ξ η, supp ˆ , , : ,m n
1,1

1 3�( ) {( ) ∣ ∣ (∣ ∣ ∣ ∣)}∈ ⊂ ∈ ≤ +

where σ̂1 denotes the Fourier transform of σ with respect to its first variable in n� , that is, σ τ ξ ηˆ , ,1( ) =

σ ξ η τ, , .( )( )⋅
̂ for all τ ξ η, , n�∈ . The class BSm

1.1� is defined as

BS BS .m

r
r

m
1,1

0, 1
7

1,1� �

( )

= ⋃

∈

Recently, many authors are interested in bilinear operators, which is a natural generalization of linear
case. With further research, Bényi and Naibo proved the boundedness for the commutators of bilinear
pseudo-differential operators and Lipschitz functions with σ BS1.1

1
�∈ on the Lebesgue spaces in [9]. In

2018, Tao and Li proved that the boundedness of the commutators of bilinear pseudo-differential operators
was also true on the classical and generalized Morrey spaces in [10]. Motivated by the results mentioned
above, a natural and interesting problem is to consider whether or not (1.1) is true on the products of Hardy
spaces and Herz-type spaces with σ BS1.1

1
�∈ . The purpose of this article is to give a surely an answer.

Our proofs are based on the pointwise estimates of the sharp maximal function proved in the next section.
Suppose that σ BS1,1

1
�∈ . Let K and Kj denote the kernel of Tσ and T b j, 1, 2σ j[ ] ( )= , respectively.

We have

K x y z e e σ x ξ η ξ η

K x y z b y b x K x y z
K x y z b z b x K x y z

, , , , d d ,

, , , , ,
, , , , .

iξ x y iη x z

1

2

( ) ( )

( ) ( ( ) ( )) ( )

( ) ( ( ) ( )) ( )

( ) ( )
∫∫=

= −

= −

⋅ − ⋅ −
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Then the following consequences are true.

Theorem A. [7, Lemma 3] If x y≠ or x z≠ , then we have

(1) K x y z C x y x z, , ,x
α

y
β

z
γ

α β γ
n α β γ

, ,
2 1∣ ( )∣ (∣ ∣ ∣ ∣)∂ ∂ ∂ ≤ − + −

− − −∣ ∣−∣ ∣−∣ ∣

(2) K x y z b x y x z y z, , .j
n

Lip
21∣ ( )∣ (∣ ∣ ∣ ∣ ∣ ∣)≲ ‖ ‖ − + − + −

−

Let m 1≥ be a positive integer and K x y y, , , m1( )… be a locally integrable function defined away from the

diagonal x y ym1= = ⋯= in n m 1�( ) + and C be a positive constant. We say that K is a multilinear Calderón-
Zygmund kernel if it satisfies the size condition that for all x y y, , , m

m m
1

1�( ) ( )… ∈
+ with x ys≠ for some

s m1 ≤ ≤ ,

K x y y C x y x y, , , m m
mn

1 1∣ ( )∣ (∣ ∣ ∣ ∣)… ≤ − + ⋯+ −
−

and satisfies the regularity condition that

K x y y K x y y C x x x y x y, , , , , ,m m m
mn

1 1 1
1∣ ( ) ( )∣ ∣ ∣(∣ ∣ ∣ ∣)… − ′ … ≤ − ′ − + ⋯+ −

− −

whenever x y x xmax 2k m k1 ∣ ∣ ∣ ∣− ≥ − ′
≤ ≤

, and also that for each fixed k with k m1 ≤ ≤ ,

K x y y y y y K x y y y y y

C x x x y x y

, , , , , , , , , , , , , ,k k k m k k k m

m
mn

1 1 1 1 1 1

1
1

∣ ( ) ( )∣

∣ ∣(∣ ∣ ∣ ∣)

… … − … ′ …

≤ − ′ − + ⋯+ −

− + − +

− −

(1.2)

whenever x y y ymax 2s m s k k1 ∣ ∣ ∣ ∣− ≥ − ′
≤ ≤

.
The statements of our main theorems are presented as follows.

Theorem 1.1. Let σ BS1,1
1

�∈ and b be a Lipschitz function on n� . Suppose that for all bounded functions ai

supported on some cubes in n� with a x xd 0in�
( )∫ = for i 1, 2= ,

T b a a x x x, , d 0σ j
α

1 2
m

�

[ ] ( )( )∫ =

for every multi-index α with α n∣ ∣ ≤ , where α α α, , 0n
n

1 �( ) ( { })= … ∈ ∪ and α αi
n

i1∣ ∣ = ∑
=

. Then T b j, 1, 2σ j[ ] ( )=

extends boundedly from H Hp n p n1 2� �( ) ( )× into H p n�( ) for p p n n, 1 , 11 2 ( )∈ / + and p with p p p1 1 11 2/ = / + /

and n p m1 1( )⌊ / − = ⌋, where s⌊ ⌋ for any s �∈ denotes the integer not greater than s.

Theorem 1.2. Let σ BS1,1
1

�∈ and b be a Lipschitz function on n� . Suppose p p0 , 11 2≤ ≤ , q q1 ,1 2< < ∞,
p p p1 1 11 2/ = / + / , q q q1 1 11 2/ = / + / . If T b j, 1, 2σ j[ ] ( )= is bounded from L Lq q1 2

× into Lq,∞ with controlled by

a Lip1‖ ‖ , then T b j, 1, 2σ j[ ] ( )= is bounded from K K˙ ˙q
n q p n

q
n q p n1 1 , 1 1 ,

1
1 1

2
2 2

� �( ) ( )
( ) ( )

×

− / − /

into WK̇ .q
n q p n2 1 ,
2

�( )
( )− /

Throughout this article, for p1 ≤ ≤ ∞, p′ is the conjugate index of p, that is, p p1 1 1/ + / ′ = . B x R,( )

denotes the ball centered at x with radius R 0> and f f y ydB B x R B x R
1
, ,

( )
∣ ( )∣ ( )

∫= . The boundedness of com-
mutators on product of Hardy spaces is presented in Section 2. The boundedness of commutators on
product of Herz-type spaces is given in Section 3.

2 Boundedness on product of Hardy spaces

Definition 2.1. [11] Let p 0, 1( ]∈ . The Hardy space H p n�( ) is defined by

H f φ f φ f L: sup ,p n n

t
t

p n

0
� � ��( ) { ( ) ( ) ∣ ∣ ( )}≡ ∈ ≡ ∗ ∈

+

>
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where φ n��( )∈ with φ x xd 1n�
( )∫ = , and for any y n�∈ and t 0,( )∈ ∞ , φ y t φ y tt

n( ) ( )= /
− . Moreover, define

f φ f .H Lp n p n� �( )( ) ( )‖ ‖ ≡ ‖ ‖
+

It is known that the definition of Hardy space H p n�( ) does not depend on the choice of φ (see [11]).

Definition 2.2. [12] Let p 0, 1( ]∈ and q 1,[ ]∈ ∞ with p q≠ . For s �∈ satisfying s n p1 1( )≥ ⌊ / − ⌋, a real-
valued function a x( ) is called a p q s, ,( )-atom centered at x0 if
(i) a Lq n�( )∈ and is supported in a cube Q centered at x0;
(ii) a QL

q p1 1q n� ∣ ∣( )‖ ‖ ≤
/ − / ;

(iii) a x x xd 0α
n�

( )∫ = for every multi-index α with α s∣ ∣ ≤ .

Let H p q s n
fin

, , �( ) be the set of all finite linear combinations of p q s, ,( )-atoms. For any f H p q s n
fin

, , �( )∈ , define

f λ f λ a k a p q s: , , are , , atoms .H
i

k

i
p

p

i

k

i i i i
k

1

1

1
1p q s n

fin
, , ��

⎧

⎨
⎩

⎛

⎝
⎜ ∣ ∣

⎞

⎠
⎟ { } ( )

⎫

⎬
⎭

( ) ∑ ∑‖ ‖ ≡ = ∈ -

=

/

=

=

Denote by n��( ) the set of all continuous. Meda et al. proved the following result in [13], which ensures that
a bounded linear operator on H p q s n

fin
, , �( ) with q < ∞ or H p q s n n

fin
, , � ��( ) ( )∩ can be extended to be a bounded

operator on H p n�( ).

Lemma 2.1. [13] Let p 0, 1( ]∈ , q 1,[ ]∈ ∞ with p q≠ and s �∈ satisfying s n p1 1( )≥ ⌊ / − ⌋. The quasi-norms

H p q s n
fin

, , �( )‖⋅‖ and Hp n�( )‖⋅‖ are equivalent on H p q s n
fin

, , �( ) where q < ∞ and on H p q s n n
fin

, , � ��( ) ( )∩ when q = ∞.

To prove Theorem 1.2, we need the boundedness of T a j, 1, 2σ j[ ] ( )= on products of Lebesgue spaces.

Lemma 2.2. [9] If σ BSm
1,1�∈ and b is a Lipschitz function on n� , then the commutators T b j, 1, 2σ j[ ] ( )= are

bilinear Calderón-Zygmund operators. In particular, T b j, , 1, 2σ j[ ] = are bounded from L Lp p1 2
× into L p for

p p p
1 1 1

1 2
= + and p p1 ,1 2< < ∞ and verify appropriate end-point boundedness properties. Moreover, the

corresponding norms of the operators are controlled by b Lip1‖ ‖ .

Lemma 2.3. Let σ BS1,1
1

�∈ and b be a Lipschitz function on n� . Suppose that a1 is a p , , 01( )∞ -atom
supported on Q1 and a2 be a p , , 02( )∞ -atom supported on Q2, with p p n n, 1, 11 2 ( ]∈ / + . Then
(i) for any y Q2 c

1( )∈ ,

T b a a y b Q Q
y x

, , ,σ j
Q

n1 2 Lip 2
1

1

1
p

n p
1

1
2

1 1
1

1

∣[ ] ( )( )∣ ∣ ∣
∣ ∣

∣ ∣
≲ ‖ ‖

−

−

+ −

+

while for any y Q2 c
2( )∈ ,

T b a a y b Q Q
y x

, , ;σ j
Q

n1 2 Lip 1
2

1

1
p

n p
1

1
2

1 1
1

2

∣[ ] ( )( )∣ ∣ ∣
∣ ∣

∣ ∣
≲ ‖ ‖

−

−

+ −

+

(ii) for any y Q y Q2 2c c
1 2( ) ( )∈ ∩ ∈ ,

T b a a y b Q Q
y x y x

Q Q
y x y x

, , min , ;σ j
Q Q

n
Q Q

n1 2 Lip
1

1
2

1

2 1
2

1
1

1

2 1

n p p n p p
1

1 1
1

1
2

1 2

1 1
2

1
1

1 2

∣[ ] ( )( )∣
⎧

⎨
⎩

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

⎫

⎬
⎭

( ) ( )

≲ ‖ ‖

− + − − + −

+ − −

+

+ − −

+

(iii) for any cube R n�∈

φ T b a a x x b R Q Q Q Q, , d min , .σ j 1 2 Lip 1 2 1 2p p p p1
1
2

1
2

1
1

1
2

1
2

1
2

1
1

�

[ ] ( )( ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣{ }∫ ≲ ‖ ‖
+ − − − −
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Proof of Lemma 2.3. To obtain the conclusion of Lemma 2.3, we only prove (ii) and (iii). Together with (1.2),
Theorem A and the vanishing moment of a1, it follows that for any y Q y Q2 2c c

1 2( ) ( )∈ ∩ ∈ ,

T b a a y K y z z K y x z a z a z z z

b
z x

y z y z
a z a z z z

b l Q
y x y x

a

b Q Q
y x y x

, , , , , , d d

d d

.

σ j j j Q

Q
n

Q Q
n

k
k L

Q Q
n

1 2 1 2 2 1 1 2 2 1 2

Lip
1

1 2
2 1 1 1 2 2 1 2

Lip
1

2 1
1

2

Lip
1

1
2

1

2 1

n

n

n

n p p

2

1

1

2

1

1

1 2

1

1

1 1
1

1
2

1 2

�

�

�

∣[ ] ( )( )∣ ∣ ( ) ( ∣∣ ( )∣∣ ( )∣

∣ ∣

(∣ ∣ ∣ ∣)
∣ ( )∣∣ ( )∣

( )

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

( )

( )

( )

∫ )

∫

∏

( )

( )

≲ −

≲ ‖ ‖

−

− + −

≲ ‖ ‖

− + −

‖ ‖

≲ ‖ ‖

− + −

+

+

=

+ − −

+

Similarly, applying the vanishing moment of a2, we obtain

T b a a y b Q Q
y x y x

, , ,σ j
Q Q

n1 2 Lip
2

1
1

1

2 1

n p p
1

1 1
2

1
1

1 2

∣[ ] ( )( )∣ ∣
∣ ∣ ∣ ∣

∣ ∣ ∣ ∣( )

≲ ‖

− + −

+ − −

+

and conclusion (ii) follows directly.
To prove conclusion (iii), we first observe that for any g L n

loc
1 �( )∈ and x n�∈ ,

φ g x M g x ,( )( ) ( )( )≲
+

where M is the Hardy-Littlewood maximal operator. By Hölder’s inequality, the fact φ+ is bounded on
L n2 �( ), Lemma 2.1 and the size condition of a1 and a2, we have

φ T b a a x x R φ T b a a

b R a a

b R Q Q

, , d , ,

,

R

σ j σ j L

L L

1 2 1 2

Lip 1 1

Lip 1 2

n

n n

p p

1
2 2

1
1
2 2

1
1
2

1
2

1
1

1
2

�

� �

[ ] ( )( ) ∣ ∣ [ ] ( )

∣ ∣

∣ ∣ ∣ ∣ ∣ ∣

( )

( ) ( )

∫ ≲ ‖ ‖

≲ ‖ ‖ ‖ ‖ ‖ ‖

≲ ‖ ‖

+ +

− −

∞

and similarly,

φ T b a a x d b R Q Q, , .
R

σ j 1 2 Lip 1 2p p1
1
2

1
1

1
2

1
2[ ] ( )( ) ∣ ∣ ∣ ∣ ∣ ∣∫ ≲ ‖ ‖

+ − −

This leads conclusion (iii) and completes the proof of Lemma 2.3. □

Lemma 2.4. [14] Let p 0, 1( ]∈ . Then there exists a positive constant Cp such that for all finite collections of

cubes Qk k
K

1{ }
=

in n� and all nonnegative integrable functions gk with g Qsupp k k( ) ∈ ,

g C
Q

g x x χ1 d ,
k

K

k
L

p
k

K

k
Q

k Q

L
1 1p n

k

k

p n�
�

⎡

⎣

⎢
⎢ ∣ ∣

( )
⎤

⎦

⎥
⎥

( )
( )

∫∑ ∑≤

= =

∗

where Qk
∗ denotes the cube with the same center as Qk and n2 its side-length.

Proof of Theorem 1.1. By Lemma 2.1 and a density argument, it suffices to prove that T b j, 1, 2σ j[ ] ( )=

is bounded from H Hp n n p n n
fin

, ,0
fin

, ,01 2� � � �� �( ) ( ) ( ) ( )( ) ( )∩ × ∩

∞ ∞ into H p n�( ), i 1, 2= , we decompose fi as

f x λ a x ,i
k

i k i k, ,
i

i i( ) ( )∑=

where ai k, i are p , , 0i( )∞ -atoms in Definition 2.2. This means that ai k, i are functions supported in cubes Qi k, i

and satisfy the properties a Qi k L
n

i k
p

, ,
1

i i
i�( ) ∣ ∣‖ ‖ ≤

− /
∞ and a xd 0

Q i k,
i ki

i
,

∫ = . Without loss of generality, we may

assume that for fixed Q k1, 1 andQ k2, 2, l Q l Qk k1, 2,1 2( ) ( )≤ . It is easy to see that there exists a cube Rk k,1 2 such that
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Q Q R R Q Qk k k k k k k k1, 2, , , 1, 2,1 2 1 2 1 2 1 2( ) ( )∩ ⊂ ⊂ ⊂ ∩

∗ ∗ ∗ ∗∗ ∗∗

and R C Qk k k, 1 1,1 2 1∣ ∣ ∣ ∣≥ , where C 0, 11 ( )∈ is a constant independent of Rk k,1 2 and Qi k, i with i 1, 2= . Our purpose
is to show

λ λ φ T b a a b λ, , .
k k

k k σ j k k

L i k
i k

p
p

1, 2, 1, 2, Lip
1

2

,

1

p n i

i
i

i

1 2

1 2 1 2
1

�

∣ ∣∣ [[ ] ]
⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

( )

( )∑∑ ∏ ∑≲ ‖ ‖
+

=

/

(2.1)

For this goal, we write

λ λ φ T b a a

λ λ φ T b a a χ

λ λ φ T b a a χ

λ λ φ T b a a χ

λ λ φ T b a a χ

E

, ,

, ,

, ,

, ,

, ,

.

k k
k k σ j k k

L

k k
k k σ j k k Q Q

L

k k
k k σ j k k Q Q

L

k k
k k σ j k k Q Q

L

k k
k k σ j k k Q Q

L

i
i

1, 2, 1, 2,

1, 2, 1, 2,

1, 2, 1, 2,

1, 2, 1, 2,

1, 2, 1, 2,

1

4

p n

k k
p n

k
c

k
c

p n

k
c

k
p n

k k
c

p n

1 2

1 2 1 2

1 2

1 2 1 2 1, 1 2, 2

1 2

1 2 1 2 1, 1 2, 2

1 2

1 2 1 2 1, 1 2, 2

1 2

1 2 1 2 1, 1 2, 2

�

�

�

�

�

∣ ∣∣ [[ ] ]

∣ ∣∣ [[ ] ]

∣ ∣∣ [[ ] ]

∣ ∣∣ [[ ] ]

∣ ∣∣ [[ ] ]

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

∑∑

∑∑

∑∑

∑∑

∑∑

∑

( ) ( )

( )

( )

≲

+

+

+

≔

+

+

∩

+

∩

+

∩

+

∩

=

∗ ∗

∗ ∗

∗ ∗

∗ ∗

It follows from Lemma 2.4, (iii) of Lemma 2.3 and Hölder’s inequality that

E λ λ
R

φ T b a a x xχ

b λ λ
R

Q Q χ

b λ Q χ

b λ

1 , , d

1

.

k k
k k

k k
R

σ j k k R

L

k k
k k

k k
k k R

L

i k
i k i k

i p
Q

i k
i k
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Our desired estimate for E2 now follows directly.
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which, via Hölder’s inequality and Lemma 2.2, leads to that
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The estimate for E32
2 is straightforward. In fact, by (i) of Lemma 2.3 and the fact p n n 11 ( )> / + , we obtain
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Another application of (i) of Lemma 2.3 gives us that
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This estimate for E k
32 with k 1, 2, 3= gives us that
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which, together with the estimates for E31, proves that
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The estimates for Ei with i 1, 2, 3, 4= show that inequality (2.1) holds. This completes the proof of Theorem
1.1. □

3 Boundedness on product of Herz-type spaces

For k �∈ and measurable function f x( ) on n� , let m σ f x E f x σ, :k k( ) ∣{ ∣ ( ) ∣}∣= ∈ > . For k �∈ , let m σ f˜ ,k( ) =

m σ f,k( ) andm σ f x B f x σ˜ , 0, 1 :k0( ) ∣{ ( ) ∣ ( ) ∣}∣= ∈ > . In this section, we shall prove Theorem 1.2. In order to do
this, let us recall some definitions.
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From this, we can obtain

I λ

λ

λ b f f

b f f

sup 2 2

sup 2

sup 4 2

.

λ k

N
kn q p knp q

p

λ

n N

λ

kn
K K

K K

2
0

2 1
1

0

2

0
Lip

2
1 ˙ 2 ˙

Lip 1 ˙ 2 ˙

λ

λ

q
n q p n

q
n q p n

q
n q p n

q
n q p n

1
1

1 1 1 , 1
2

1 1 2 , 2

1
1

1 1 1 , 1
2

1 1 2 , 2

� �

� �

⎜ ⎟
⎛

⎝

⎞

⎠

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

∑≲

=

≲ ⋅ ‖ ‖ ‖ ‖ ‖ ‖

= ‖ ‖ ‖ ‖ ‖ ‖

>
=−∞

⌊ ⌋

− / /

/

>

⌊ ⌋

>

−

− / − /

− / − /

From the similar way of I2, the proof of I3 and I4 can be deduced. Combining all estimates on I1, I2, I3 and I4,
the desired result can be established. This completes the proof of Theorem 1.2. □
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