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Abstract: The purpose of this paper is to prove the following result. Let R be prime ring of characteristic
different from two and three, and let F R R: → be an additive mapping satisfying the relation F x3( ) =

F x x xF x x xF x2 2( ) ( ) ( )− + for all x R∈ . In this case, F is of the form F x D x qx xq4 ( ) ( )= + + for all x R∈ ,
where D R R: → is a derivation, and q is some fixed element from the symmetric Martindale ring
of quotients of R.
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Introduction

Throughout, R will represent an associative ring with center Z R( ). Given an integer n 1> , a ring R is said to
be n-torsion free, if for x R∈ , nx 0= implies x 0= . The commutator xy yx− will be denoted by x y,[ ]. A ring
R is prime if for a b R, ∈ , aRb 0( )= implies that either a 0= or b 0= and is semiprime in case aRa 0( )=

implies a 0= . We denote by Q Q, ,mr s and C the maximal Martindale right ring of quotients, symmetric
Martindale ring of quotients, and extended centroid of a semiprime ring R, respectively (see [1], Chapter 2).
An additive mapping D R R: → is called a derivation if D xy D x y xD y( ) ( ) ( )= + holds for all pairs x y R, ∈

and is called a Jordan derivation in case D x D x x xD x2( ) ( ) ( )= + is fulfilled for all x R∈ . A derivation
D R R: → is inner in case D is of the form D x a x,( ) [ ]= for all x R∈ and some fixed a R∈ . Every derivation
is Jordan derivation. The converse is in general not true. A classical result of Herstein [2] asserts that any
Jordan derivation on a prime ring with characteristic different from two is a derivation. A brief proof of
Herstein theorem can be found in [3]. In [4], one can find a generalization of Herstein theorem. Cusack [5]
generalized Herstein theorem to 2-torsion free semiprime rings (see [6] for an alternative proof). Herstein
theorem has been fairly generalized by Beidar et al. [7]. For results related to Herstein theorem, we refer to
[8–11]. We proceed with the following result proved by Brešar [12] (see [13] for a generalization).

Theorem 1. Let R be a 2-torsion free semiprime ring and let D R R: → be an additive mapping satisfying
the relation.

D xyx D x yx xD y x xyD x( ) ( ) ( ) ( )= + + (1)

for all pairs x y R, ∈ . In this case, D is a derivation.

An additive mapping satisfying the relation (1) on an arbitrary ring is called a Jordan triple derivation.
It is easy to prove that any Jordan derivation on a 2-torsion free ring is a Jordan triple derivation, which
means that Theorem 1 generalizes Cusack’s generalization of Herstein theorem.
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Motivated by Theorem 1, Vukman et al. [14] have proved the following result (see [15] for
a generalization).

Theorem 2. Let R be a 2-torsion free semiprime ring and let F R R: → be an additive mapping satisfying the
relation

T xyx T x yx xT y x xyT x( ) ( ) ( ) ( )= − + (2)

for all pairs x y R, ∈ . In this case, F is of the form T x qx xq2 ( ) = + , where q Q Rs( )∈ is some fixed element.

We proceed with the following functional equation:

F xyx F xy x xF y x xF yx ,( ) ( ) ( ) ( )= − + (3)

which appears naturally in the proof of Theorem 2 in [16]. One can easily prove that in case we have an
additive mapping F R R: ,→ where R is 2-torsion free semiprime ring, satisfying the relation (3) for all pairs
x y R, ∈ , then F is of the form F x D x ax xa2 ,( ) ( )= + + where D R R: → is a derivation and a R∈ some fixed
element (see [16] for the details). In [16], one can find the following conjecture.

Conjecture 3. Let R be a 2-torsion free semiprime ring and let F R R: → be an additive mapping satisfying the
relation (3) for all pairs x y R, ∈ . In this case, F is of the form F x D x qx xq2 ( ) ( )= + + for all x R∈ , where
D R R: → is a derivation and q Q Rs( )∈ some fixed element.

By our knowledge, the aforementioned conjecture is still an open question. The substitution y x=

in (1), (2), and (3) gives

D x D x x xD x x x D x ,3 2 2( ) ( ) ( ) ( )= + + (4)

F x F x x xF x x x F x3 2 2( ) ( ) ( ) ( )= − + (5)

and

F x F x x xF x x xF x .3 2 2( ) ( ) ( ) ( )= − + (6)

The relation (4) has been considered in [7] (actually, much more general situation has been considered).
A result related to (5) can be found in [15]. It is our aim in this paper to prove the following result, which
is related to the aforementioned conjecture.

Theorem 4. Let R be a prime ring of characteristic different from two and three, and let F R R: → be an
additive mapping satisfying the relation

F x F x x xF x x xF x3 2 2( ) ( ) ( ) ( )= − + (7)

for all x R∈ . In this case, F is of the form F x D x qx xq4 ( ) ( )= + + , where D R R: → is a derivation, and
q Q Rs( )∈ is some fixed element.

Main results

As the main tool in this paper, we use the theory of functional identities (Brešar-Beidar-Chebotar theory).
The theory of functional identities considers set-theoretic maps on rings that satisfy some identical rela-
tions. When treating such relations, one usually concludes that the form of the mappings involved can be
described, unless the ring is very special. We refer the reader to [17] for the introductory account on the
theory of functional identities, where Brešar presents this theory and its applications to a wider audience
and to [18] for the full treatment of this theory.

Let R be an algebra over a commutative ring ϕ and let
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p x x x x x x, ,
π

π π π1 2 3 1 2 3
3�

( ) ( ) ( ) ( )∑=

∈

(8)

be a fixed multilinear polynomial in noncommuting indeterminates xi over ϕ. Here, 3� stands for the
symmetric group of order 3. Let � be a subset of R closed under p, i.e., p x̄3 �( ) ∈ for all x x x, ,1 2 3 �∈ ,
where x x x x¯ , ,3 1 2 3( )= . We shall consider a mapping D R: � → satisfying

F p x F x x x x F x x x F x x¯
π

π π π π π π π π π3 1 2 3 1 2 3 1 2 3
3�

( ( )) ( ( ) ( ) ( ))( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑= − +

∈

(9)

for all x x x, ,1 2 3 �∈ . Let us mention that the idea of considering the expression p x p y,3 3[ ( ) ( )] in its proof is
taken from [19]. For the proof of Theorem 4, we need Theorem 5, which might be of independent interest.

Theorem 5. Let � be a 6-free Lie subring of R closed under p. IfT R: � → is an additive mapping satisfying
(9), then there exists q R∈ such that F x D x xq qx4 ( ) ( )= + + for all x �∈ .

Proof. For any a R∈ and x̄3
3�∈ , we have

p x a p x a x x p x x a x p x x x a¯ , , , , , , , , , , .3 1 2 3 1 2 3 1 2 3[ ( ) ] ([ ] ) ( [ ] ) ( [ ])= + +

Thus,

F p x a F p x a x x F p x x a x F p x x x a¯ , , , , , , , , , , .3 1 2 3 1 2 3 1 2 3[ ( ) ] ( ([ ] )) ( ( [ ] )) ( ( [ ]))= + + (10)

By using (10), it follows that
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In particular,
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(11)

for all x y¯ , ¯3 3
3�∈ . For i 1, 2= , we have

F x x p y F p y x x
F x x y y y x x y F y y

x x y F y y y F x x y y

, ¯ ¯ ,
, ,

, ,
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and
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for all ȳ3
3�∈ . Therefore, (11) can be written as follows:
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for all x y¯ , ¯3 3
3�∈ . On the other hand, by using p x p y p y p x¯ , ¯ ¯ , ¯3 3 3 3[ ( ) ( )] [ ( ) ( )]= − , we obtain from aforemen-
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for all x y¯ , ¯3 3
3�∈ . By comparing so obtained identities, we arrive at
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for all x y¯ , ¯3 3
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On the other hand, using equation (16) and the theory of functional identities, we arrive at
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of functional identities and exposing everything from the same side (left), the aforementioned equation
can now be rewritten as follows:
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

([ ]) ([ ]) ([ ])

([ ]) ( ) ( ) )

( ( ) ( ) )

( ( ))

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

+ + +

+ − +

− + −

− + −

+ + ′

+

+ −

+ − + ′

− + + ′

+ ′ + ′ + ′

+ − +

− + −

− − +

+ + ′

+

∈ ∈

∈ ∈

′

∈ ∈

′

∈ ∈

∈ ∈

(19)

for all x y¯ , ¯3 3
3�∈ , p p q q R, , , :i i i i

3�′ ′ → , i 1, 2, 3, 4= and λ λ λ λ C, , , :p p q q
4� �( )→

′ ′
. Now by using the

theory of functional identities and exposing x2 from the left side, we obtain

p x y y y x p x y y x y0 , , , ,
π σ

π σ σ σ π π σ σ π σ2 1 1 2 3 3 2 1 1 2 3 3
2 3� �

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∑= + ′

∈ ∈

for all x y¯ , ¯3 3
3�∈ and p p R, :2 2

3�′ → . Again by using the theory of functional identities and exposing
everything from the right side, we obtain

p x y y0 , ,
σ

π σ σ2 1 1 2
2�

( )( ) ( ) ( )∑=

∈

and

p x y y0 , , .
σ

π σ σ2 1 1 2
2�

( )( ) ( ) ( )∑= ′

∈

Therefore,

p x x x p x x x0 2 , , 2 , ,2 2( ) ( )= = ′

for all x �∈ and p p R, :2 2
3�′ → . Equation (18) can now be rewritten as follows:

xF x xF x x n x x x n x x x n x x x λ x x x2 2 , , , , ,n
2

1 2 3( ) ( ) ( ) ( ) ( ) ( )− = ′ + ′ + ′ + ′ (20)

for all x �∈ , n R:i
2�′ → , i 1, 2, 3= and λ C:n

3� �( )′ → . Now using the theory of functional identities and
exposing x1 in (19) from the left side,

p x y y y x F y y x y x y F y x y x

p x y y x y y F x x y y F y y x x y
y F y x x y y q x y y x y q x y y x
y q x x y y y q x x y y y λ x x y y
y x F y y x y x F y y x F x y y y x

0 , ,

, , ,
, , , ,

, , , , , , ,
,

π σ
π σ σ σ π σ σ π σ π σ σ π σ π

π σ σ π σ σ π π σ σ σ σ π π σ

σ σ π π σ σ π σ σ π σ π σ σ π

σ π π σ σ σ π π σ σ σ q π π σ σ

σ π σ σ π σ π σ σ π π σ σ σ π

1 2 1 2 3 3 1 2 2 3 3 1 2 2 3 3

1 2 1 2 3 3 1 2 3 2 3 1 2 2 3 3

1 2 2 3 3 1 1 3 2 3 2 1 2 2 2 3 3

1 3 2 3 3 2 1 4 2 3 2 3 1 2 3 2 3

1 2 2 3 3 1 2 2 3 3 2 1 2 3 3

2 3� �

( ( ) ( ) ( )

( ) ([ ]) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ([ ])

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

∑ ∑= − +

+ ′ − +

− + +

+ + +

+ − −

∈ ∈
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y F x y y x y F x y y x F y y x x y
y y F x x y y y F x x y

, , ,σ π σ σ π σ π σ σ π σ σ π π σ

σ σ π π σ σ σ π π σ

1 2 2 3 3 1 2 2 3 3 1 2 2 3 3

1 2 2 3 3 1 2 2 3 3

([ ]) ([ ]) ([ ])

( ) ( ) )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

+ − −

+ −

for all x y¯ , ¯3 3
3�∈ and p p q q R, , , :i i i i

3�′ ′ → , i 1, 2, 3, 4= and λ λ λ λ C, , , :p p q q
4� �( )→

′ ′
. The aforemen-

tioned equation can now be rewritten as (everything exposing from the right side) follows:

y q x y y x y q x y y p x y y y

F y y x y y F y x y F x y y y y x F y y
y x F y y y F x y y y F x y y x

λ x x y y y y q x x y y

p x y y x F y y x x y F x x y

F y y x x y F y x x y q x x y y y F x x

y y F x x y

0 , , , , , ,

,
, ,

, , , , ,

, , , ,

, ,

π σ
σ π σ σ π

π σ
σ π σ σ π σ σ σ

σ σ π σ σ σ π σ π σ σ σ σ π σ σ

σ π σ σ σ π σ σ σ π σ σ π

π σ
q π π σ σ σ

π σ
σ π π σ σ

π σ
π σ σ π σ σ π π σ π π σ

σ σ π π σ σ π π σ π π σ σ σ π π

σ σ π π σ

1 1 3 2 3 2 1 2 2 2 3 1 2 1 2 3

1 2 2 3 1 2 2 3 2 1 2 3 1 2 2 3

1 2 2 3 1 2 2 3 1 2 2 3 3

2 3 2 3 1 1 3 2 3 3 2

1 2 1 2 3 1 2 2 3 1 2 3 2

1 2 2 3 1 2 2 3 1 4 2 3 2 1 2 2 3

1 2 2 3 3

2 3 2 3

2 3 2 3

2 3

� � � �

� � � �

� �

( ( )) ( ( ) ( )

( ) ( ) ([ ]) ( )

( ) ([ ]) ([ ]))

( ( )) ( ( ))

( ( ) ([ ]) ([ ])

( ) ( ) ( ) ( )

( ))

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

= + +

− + − −

+ + −

+ +

+ ′ − −

+ − + +

−

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

∈ ∈

for all x y¯ , ¯3 3
3�∈ and p p q q R, , , :i i i i

3�′ ′ → , i 1, 2, 3, 4= and λ λ λ λ C, , , :p p q q
4� �( )→

′ ′
. Now by using the

theory of functional identities, we obtain from the aforementioned equation:

q x x x q x x x, , , , 01 3( ) ( )= =

for all x �∈ and q q R, :1 3
3� → . Equation (17) can now be rewritten as follows:

F x x xF x x xm x x xm x x xm x x λ x x x2 2 , , , , ,m
2

1 2 3( ) ( ) ( ) ( ) ( ) ( )− = + + + (21)

for all x �∈ , m R:i
2� → , i 1, 2, 3= and λ C:m

3� �( )→ . Since � is 6-free, after a finite number of steps
using equations (20) and (21), we arrive at

F xy xF y xf y yg x λ x y2 ,( ( ) ( )) ( ) ( ) ( )∑ − = + +

F x y F xy h y x k x y μ x y2 ,( ( ) ( )) ( ) ( ) ( )∑ − = + +

for all x y R, ∈ , f g h k R, , , : � → and λ μ C, : 2� �( )→ . Therefore, we obtain

F xy F yx xF y yF x xf y yg x λ x y2 2 2 2 ,( ) ( ) ( ) ( ) ( ) ( ) ( )+ − − = + + (22)

and

F x y F y x F xy F yx h y x k x y μ x y2 2 2 2 , .( ) ( ) ( ) ( ) ( ) ( ) ( )+ − − = + + (23)

For all, x y R, ∈ , f g h k R, , , : � → and λ μ C, : 2� �( )→ . Replacing the roles of denotations x and y in (22)
and comparing so obtained identities leads to xf y yg x yf x xg y λ x y λ y x0 , ,( ) ( ) ( ) ( ) ( ) ( )= + − − + − , which
yields f x g x( ) ( )= and λ x y λ y x, ,( ) ( )= for all x y, �∈ , f g R, : � → and λ C: 2� �( )→ . Putting x for y in
(22) leads to

F x xF x xf x λ x x4 4 2 , .2( ) ( ) ( ) ( )= + + (24)

Using the same arguments, it follows from (23) that h x k x( ) ( )= and μ x y μ y x, ,( ) ( )= for all x y, �∈ ,
h k R, : � → and μ C: 2� �( )→ . Therefore,

F x F x x k x x μ x x4 4 2 , .2( ) ( ) ( ) ( )= − −

Comparing the aforementioned relations gives

x F x f x x k x x λ x x μ x x0 4 2 4 2 , , .( ( ) ( )) ( ( ) ( )) ( ) ( )= + + − + + +

Hence, there exists r R∈ and λ C: � �( )→ such that

F x f x rx λ x4 2 .( ) ( ) ( )+ = +
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Considering f x F x rx λ x2 4( ) ( ) ( )= − + + in (24) gives

F x xrx xλ x λ x x4 , .2( ) ( ) ( )= + + (25)

Replacing y for x and x for x2 in (22) gives

F x x F x xF x x f x xf x λ x x4 2 2 , .3 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )= + + + +

Using (7) in the aforementioned relation leads to

F x x xF x x xF x x F x xF x x f x xf x λ x x4 4 4 2 2 , .2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )− + = + + + +

Using (24) in the aforementioned relation leads to

xf x x xλ x x xf x λ x x4 3 , 2 2 , .2 2( ) ( ) ( ) ( )+ = +

Considering f x F x rx λ x2 4( ) ( ) ( )= − + + and using (25) in the aforementioned relation gives

xF x x xrx x rx x λ x xλ x x xλ x λ x x0 8 3 4 , 2 , .2 2 2 2 2( ) ( ) ( ) ( ) ( )= − + + + + − −

The complete linearization of this relation and using the theory of functional identities leads to

F x x rx xrx xλ x λ x x λ x0 8 3 4 ,2 2( ) ( ) ( ) ( )= − + + + + −

and

F x rx xr λ x0 8 3 .( ) ( )= − + + +

Therefore,

F x rx xr λ x8 3 .( ) ( )= + + (26)

By substituting the aforementioned equation in (7), we obtain

λ x xλ x x λ x0 3 6 3 .3 2 2( ) ( ) ( )= − − −

Since � is a 6-free subset of R, the aforementioned identity implies λ x 03( ) = , λ x 02( ) = , λ x 0( ) = for all
x R∈ . From equation (26), we obtain

F x rx x r8 .2 2 2( ) = + (27)

Right (left) multiplication of the relation (26) by x gives, respectively,

F x x rx xrx8 2( ) = + (28)

and

xF x xrx x r8 .2( ) = + (29)

The relations (27)–(29) imply that the additive mapping F satisfies the relation

F x F x x xF x xrx8 8 8 2 .2( ) ( ) ( )= + −

The aforementioned equation can now be rewritten as follows:

F x F x x xF x xrx4 4 42( ) ( ) ( )= + −

and

F x F x x xF x xqx4 4 4 2 ,2( ) ( ) ( )= + − (30)

where r q2= . Let us now introduce the mapping D R R: → by

D x F x qx xq4 .( ) ( )= − − (31)

Obviously, the mapping D is additive. It is our aim to prove that D is a Jordan derivation. Putting x2 for x in
the aforementioned relation, we obtain

D x F x qx x q4 ,2 2 2 2( ) ( )= − −
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which gives, after considering the relation (30), the relation

D x F x x xF x xqx qx x q4 4 2 .2 2 2( ) ( ) ( )= + − − − (32)

Right (left) multiplication of the relation (31) by x gives, respectively,

D x x F x x qx xqx4 2( ) ( )= − − (33)

and

xD x xF x xqx x q4 .2( ) ( )= − − (34)

The relations (32)–(34) imply that the additive mapping D satisfies the relation

D x D x x xD x2( ) ( ) ( )= +

for all x R∈ . In other words, D is a Jordan derivation on R. According to Herstein theorem, one can conclude
that D is a derivation, which completes the proof of the theorem. □

We are now in the position to prove Theorem 4.

Proof of Theorem 4. The complete linearization of (7) gives us (9). First, suppose that R is not a PI ring
(satisfying the standard polynomial identity of degree less than 6). According to Theorem 5, then there
exists q R∈ such that F x D x xq qx4 ( ) ( )= + + for all x �∈ .

Assume now that R is a PI ring. It is well known that in this case R has a nonzero center (see [20]).
Let c be a nonzero central element. Picking any x R∈ and setting x x cx1 2= = and x x3 = in (9), we obtain

F c x F c x x cF cx x c xF x x cxF cx x xF c x cxF cx3 2 2 2 .2 3 2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )= + − − + +

Next, setting x x c1 2= = and x x3
3

= in (9), we obtain

F c x F c x cF cx cx F c cF c x c F x x c xF x x c xF x x F c3 42 3 2 3 3 3 3 2 2 2 2 2 3 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= + − − − + − +

for all x R∈ . Comparing both identities, we obtain

F c x cF cx cx F c cF c x c F x x c xF x x c xF x x F c0 4 .2 3 3 3 3 2 2 2 2 2 3 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= + − − − + − +

Next, setting x x x1 2= = and x c3
2

= in (9), we obtain

F c x c F x F c x x c F x x xF c x c xF x xF c x3 2 2 2 .2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )= + − − − + (35)

Next, setting x x x1 2= = and x c3 = in (9), we obtain

F cx cF x F cx x cF x x xF c x cxF x xF cx3 2 2 2 .2 2( ) ( ) ( ) ( ) ( ) ( ) ( )= + − − − + (36)

In case x c= , we arrive at F c cF c c F c23 2 2( ) ( ) ( )= − . Next, setting x x c1 2= = and x x3 = in (9), we obtain

F c x F c x cF cx cxF c c F x cF c x xF c3 4 .2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )= + − − − + (37)

Setting x x c1 2= = and x x3
2

= in (9), we obtain

F c x F c x cF cx cx F c c F x cF c x x F c3 4 .2 2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )= + − − − +

From the aforementioned equation and (36), we obtain

F c x F c x c F x cF cx x c F x x cxF c x c xF x cxF cx
cx F c c F x cF c x x F c

9 3 8 8 4 4 4 8
3 3 3 3 .

2 2 2 2 2 2 2 2

2 2 2 2 2 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= + + − − − +

− − − +

Comparing aforementioned equation with (35) and using (37), we obtain

c F x c F x x c xF x F c x x F c cF c x xF c x cx F c0 .2 2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − − − − + + + (38)

Complete linearization of the the aforementioned equation and setting x c1 = and x x2 = , we obtain

c F cx c F c x c F x c xF c cxF c cF c x0 2 2 .2 2 3 2 2 2( ) ( ) ( ) ( ) ( ) ( )= + − + − −
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Setting c c2
= in (38) we obtain

c F x c F x x c xF x F c x x F c c F c x xF c x c x F c0 .4 2 4 4 4 2 2 4 2 2 2 4 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − − − − + + +

On other hand, multiplying equation (38) with c2, we obtain

c F x c F x x c xF x c F c x c x F c c F c x c xF c x c x F c0 .4 2 4 4 2 2 2 2 2 2 3 2 2 2 3 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − − − − + + +

Comparing the aforementioned two equations and using F c c F c c F c3 24 2 2 3( ) ( ) ( )= − , we obtain

F c x x F c cF c x cx F c xF c x cxF c x0 2 2 .2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )= − − + + + − (39)

On the other hand, adding the same two equations together, we obtain

c F x c F x x c xF x F c x x F c cF c x cx F c xF c x cxF c x0 2 2 2 3 3 3 3 4 2 .2 2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − − − − + + + −

The aforementioned equation can be rewritten as follows:

c F x c F x x c xF x F c x x F c cF c x cx F c xF c x
xF c x cxF c x cxF c x

0 2 2 2 3 3 3 3 6
2 6 4 .

2 2 2 2 2 2 2 2 2 2 2

2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

= − − − − + + +

− − +

Using the aforementioned equation and (39), we obtain

c F x c F x x c xF x cxF c x xF c x0 2 2 2 4 2 .2 2 2 2 2( ) ( ) ( ) ( ) ( )= − − + −

The aforementioned equation can now be rewritten as follows:

c F x c F x x c xF x xF c x cxF c x22 2 2 2 2( ) ( ) ( ) ( ) ( )= + + −

and

c F x c F x x c xF x x F c cF c x4 4 4 2 2 4 .2 2 2 2 2( ) ( ) ( ) ( ( ) ( ))= + − −

Setting F c cF c q2 42( ) ( )− = , we arrive at

c F x c F x x c xF x xqx4 4 4 2 .2 2 2 2( ) ( ) ( )= + − (40)

If q 0= than F x( ) is derivation, on the other hand, if q 0≠ , we can conclude as follows. Let us now
introduce the mapping D R R: → by

D x F x qx xq4 .( ) ( )= − − (41)

Obviously, the mapping D is additive. It is our aim to prove that D is a Jordan derivation. Putting x2 for x in
the aforementioned relation, we obtain

c D x c F x c qx c x q4 ,2 2 2 2 2 2 2 2( ) ( )= − −

which gives, after considering the relation (40), the relation

c D x c F x x c xF x c xqx c qx c x q4 4 2 .2 2 2 2 2 2 2 2 2( ) ( ) ( )= + − − − (42)

Right (left) multiplication of the relation (41) by x gives, respectively,

D x x F x x qx xqx4 2( ) ( )= − − (43)

and

xD x xF x xqx x q4 .2( ) ( )= − − (44)

The relations (42)–(44) imply that the additive mapping D satisfies the relation

c D x c D x x c xD x2 2 2 2( ) ( ) ( )= +

for all x R∈ , whence it follows D x D x x xD x2( ) ( ) ( )= + for all x R∈ . In other words, D is a Jordan derivation
on R. According to Herstein theorem, one can conclude that D is a derivation, which completes the proof
of the theorem. □
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