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Abstract: The purpose of this paper is to prove the following result. Let R be prime ring of characteristic
different from two and three, and let F : R — R be an additive mapping satisfying the relation F(x3) =
F(x®)x — xF(x)x + xF(x?) for all x € R. In this case, F is of the form 4F(x) = D(x) + gx + xq for all x € R,
where D : R — R is a derivation, and g is some fixed element from the symmetric Martindale ring
of quotients of R.
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Introduction

Throughout, R will represent an associative ring with center Z(R). Given an integer n > 1, aring R is said to
be n-torsion free, if for x € R, nx = 0 implies x = 0. The commutator xy — yx will be denoted by [x, y]. A ring
R is prime if for a, b € R, aRb = (0) implies that either a = 0 or b = 0 and is semiprime in case aRa = (0)
implies a = 0. We denote by Qpy, Qs, and C the maximal Martindale right ring of quotients, symmetric
Martindale ring of quotients, and extended centroid of a semiprime ring R, respectively (see [1], Chapter 2).
An additive mapping D : R — R is called a derivation if D(xy) = D(x)y + xD(y) holds for all pairs x,y € R
and is called a Jordan derivation in case D(x%) = D(x)x + xD(x) is fulfilled for all x € R. A derivation
D : R — Risinnerin case D is of the form D(x) = [a, x] for all x € R and some fixed a € R. Every derivation
is Jordan derivation. The converse is in general not true. A classical result of Herstein [2] asserts that any
Jordan derivation on a prime ring with characteristic different from two is a derivation. A brief proof of
Herstein theorem can be found in [3]. In [4], one can find a generalization of Herstein theorem. Cusack [5]
generalized Herstein theorem to 2-torsion free semiprime rings (see [6] for an alternative proof). Herstein
theorem has been fairly generalized by Beidar et al. [7]. For results related to Herstein theorem, we refer to
[8-11]. We proceed with the following result proved by BreSar [12] (see [13] for a generalization).

Theorem 1. Let R be a 2-torsion free semiprime ring and let D : R — R be an additive mapping satisfying
the relation.
D(xyx) = D(x)yx + xD(y)x + xyD(x) o))
for all pairs x, y € R. In this case, D is a derivation.
An additive mapping satisfying the relation (1) on an arbitrary ring is called a Jordan triple derivation.

It is easy to prove that any Jordan derivation on a 2-torsion free ring is a Jordan triple derivation, which
means that Theorem 1 generalizes Cusack’s generalization of Herstein theorem.
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Motivated by Theorem 1, Vukman et al. [14] have proved the following result (see [15] for
a generalization).

Theorem 2. Let R be a 2-torsion free semiprime ring and let F : R — R be an additive mapping satisfying the
relation

T(xyx) = T(X)yx - xT(y)x + xyT(x) @)

for all pairs x,y € R. In this case, F is of the form 2T(x) = gx + xq, where q € Q4(R) is some fixed element.

We proceed with the following functional equation:
F(xyx) = F(xy)x — xF(y)x + xF(yx), 3)

which appears naturally in the proof of Theorem 2 in [16]. One can easily prove that in case we have an
additive mapping F : R — R, where R is 2-torsion free semiprime ring, satisfying the relation (3) for all pairs
X,y € R, then F is of the form 2F(x) = D(x) + ax + xa, where D : R — R is a derivation and a € R some fixed
element (see [16] for the details). In [16], one can find the following conjecture.

Conjecture 3. Let R be a 2-torsion free semiprime ring and let F : R — R be an additive mapping satisfying the
relation (3) for all pairs x,y € R. In this case, F is of the form 2F(x) = D(x) + gx + xq for all x € R, where
D : R — R is a derivation and q € Qs(R) some fixed element.

By our knowledge, the aforementioned conjecture is still an open question. The substitution y = x
in (1), (2), and (3) gives

D(x3) = DOO)x? + xD(x)x + x2D(x), (4)

F(x3) = FOOX? — xF(O)x + x2F(x) (5)
and

F(A3) = FOA)x — xF()x + xF(x2). (6)

The relation (4) has been considered in [7] (actually, much more general situation has been considered).
A result related to (5) can be found in [15]. It is our aim in this paper to prove the following result, which
is related to the aforementioned conjecture.

Theorem 4. Let R be a prime ring of characteristic different from two and three, and let F : R — R be an
additive mapping satisfying the relation

F(3) = F(x®)x — xF(x)x + xF(x?) (7)

for all x € R. In this case, F is of the form 4F(x) = D(x) + gx + xq, where D : R — R is a derivation, and
q € Q4(R) is some fixed element.

Main results

As the main tool in this paper, we use the theory of functional identities (BreSar-Beidar-Chebotar theory).
The theory of functional identities considers set-theoretic maps on rings that satisfy some identical rela-
tions. When treating such relations, one usually concludes that the form of the mappings involved can be
described, unless the ring is very special. We refer the reader to [17] for the introductory account on the
theory of functional identities, where BreSar presents this theory and its applications to a wider audience
and to [18] for the full treatment of this theory.

Let R be an algebra over a commutative ring ¢ and let
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PO, %, ) = D Xn(Xn (2 3) (8)

meS3

be a fixed multilinear polynomial in noncommuting indeterminates x; over ¢. Here, S; stands for the
symmetric group of order 3. Let £ be a subset of R closed under p, i.e., p(%) € L for all x, %, x5 € L,
where X5 = (X, %, x3). We shall consider a mapping D : £ — R satisfying

F(p(%)) = z (F XX )X 3) — XnF X)X 3) + XnyF Xn2pXn(3))) 9)

meS3
for all x4, %, x; € L. Let us mention that the idea of considering the expression [p(%), p(3;)] in its proof is

taken from [19]. For the proof of Theorem 4, we need Theorem 5, which might be of independent interest.

Theorem 5. Let .L be a 6-free Lie subring of R closed under p. If T : £ — R is an additive mapping satisfying
(9), then there exists q € R such that 4F(x) = D(x) + xq + qx forall x € L.
Proof. For any a € R and % € £3, we have
[p(®), al = p([x, al, %, x5) + p(x, [%, al, %5) + p(x, %, [x5, al).
Thus,
Flp(s), a] = F(p([x, al, x, %)) + F(p(4, [%, al, %)) + F(p(a, x, [x, a])). (10)
By using (10), it follows that

Flp(), al= Y F([Xa» AXa@)Xaz) = Y. [Xntys AIF Cn@))Xaz) + Y, [Xa(yr AIF (n@Xn(3))

neSs neS3 neS3

+ Y FOuX@s a)Xaz) = Y. % F (Xa@» DXy + Y, XaF (Xn2)s @lXn(3)
neS; neSs mES3

+ Y FOu@pa@)Xaey» al = Y. %aF Ca@) ) al + ). X F K2 [Xnc)» @l)
neSs neS; 7ES3

= Y F(Xa@pn@» ADX%) = Y, Xy AIF @)Xz + Y. [Xarys AIF GrapXn3))

eS3 neSs mES3
Y XaF Xy QDX+ Y Xa(F (Xa@Xays @) + Y FOtaapXn2)[Xaa)
€eS3 meSs ES3
Z X )F 2 [Xn3), al.
meSs

In particular,

Flp(x%), p(35)] = Z F([XrXm2)» P(F3) DX 3) = Z [y, PIDIF (X)X 3)

meSs3 meS3
+ Z [Xn(l)s p()73)]F(Xn(2)Xn(3)) - Z Xn(l)F([Xn(z), P(}73)])Xn(3)

meS3 meSs3 (11)
+ Y XaF (X% PIDD + Y. FOr(1p%n@) X3y P(5)]

meSs meSs

z Xr[(l)F(Xn(Z)) [Xn(B)’ p(Y’j)]

meS3

for all %, y; € £3. Fori =1, 2, we have

FlXa@yXniir1)s P = =FID(F3)s Xn(iyXngin)]

= Z F([Xa(iyatis1s Yo Vo) Do) — z [Xripaisnys Yoy lFE Vo) Va3
0€S3 0€S3 (12)

+ Z [Xripaisnys Yo lF Yooy — Z YoayF (aipXativys Yoy Doz

0€S3 g€S3
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+ Z YoayF (Xa@pXm(in)s Yo oz)D) + Z F(YpaVo) [ Xn@Xatisns Yo
0€S3 0€S3
- Z yg(l)F(yo'(z))[Xﬂ(i)xﬂ(i+1)! yg(3)]
g€S3
and

FlXn2), p(Y3)] = —F[p(Y3)’ Xn(2)

= Z F([X22 Yo Vo) DVoz) — Z (X2 )s Yo) IF Vo) Vo3)

0€S3 0€S3

+ Z [X%z2) yo'(l)]F (yO'(Z)yg(3)) - z )’g(1)F ([Xn2)s yO'(Z)])yU(3)

0€S3 g€S3

+ z yg(l)F (X2 yg(z))’g@)]) + z F (ya(l)yg(z))[xﬂ(z)’ J/g(3)]

0€S3

- Z ya(])F(ya(Z))[Xn(Z), ya(3)]

0€S3

0€S3

for all y; € L3. Therefore, (11) can be written as follows:

Flp(x3), p()73)] = Z Z F ([Xn(l)xn(z)s yg(l)yU(z)])yg(3)Xﬂ(3) - Z Z [Xn(l)xn(z), yo'(l)]F (yg(z))yg@)XnG)

nmeS30€S3

+ Y Y @%@ Yoy F Opaoz)Xn ) —

nmeS30€S3

+ z Z YoarF (D19 )s Yoo3))Xn3) +

meS30€S3

= Y YeF Qo)X Yoz Xn3) —

meS30€S3

+ Y Do YooY F Cn@Xas) -

meS30€S3

+ Y XX @» Yo IF Qo) oz —

meS30€S3

+ Z Z Xn(l)yo(1)F ([Xr2)s yg(z)])yg@)xn(}) -

meS30€S3

- Z Z Xﬂ(l)F(yo'(l)yg(Z))[Xﬂ(z)’ yg(g)]xn(B) +

meS30€S3

+ Z z Xr()F (X2 3)s yg(])yg(z)]))/o'(3) -

meS30€S3

+ Z Z Xa (X2 @Xn3)s Yo IF Voo(3) —

meS30€S3

+ 20 Y X oF (aXnys Yoloz))) +

meS30€S3

- z z Xn(l)yg(1)F (yU(Z))[Xﬂ(Z)Xﬂ(3)’ ya(3)] +

meS30€S83

- Z Z XaF (@) X2 G)s Yoo Vo))

nmeS30€S3

nmeS30€S3

Z z YorrF (a0 )s Yoy DV 3)

meS30€S3

Y 2 FOralo)Daapn@s Yo Xa

meS30€S3

Z Z [Xr(1)s YooV F Cn@)%a(3)

meS30€S3

Z Z X yF ([(Xr2), ya(l)ya(z)]))’a(z)xn(3>

meS30€S3

3 XX @» Yo F Qoo oz Xn3)

meS30€S3

Z Z Xn(l)yg(1)F ([Xn2)s ya(z)yU(3)])Xﬂ(3)

meS30€S3

Z Z Xﬂ(l)yo'(l)F (yg(z))[xn(z), yg(3)]xﬂ(3)

meS30€S3

Z Z Xe([Xn@Xm3)s Yo) F Vo) Vo3)

meS30€S3

Z z Xn(l)ya(l)F([Xn(Z)xn(B)’ yg(z)])y0(3)

meS30€S3

Z z Xﬂ(l)F(ya'(l)ya(Z))[XT[(Z)XT[G)’ ya'(3)]

meS30€S3

z z F Oy 2) [Xn(3) ya(l)ya(2)y0(3)]

meS30€S3

— 143

12)

for all X3, y; € £3. On the other hand, by using [p(%), p(¥3)] = -[p(¥5), p(%)], we obtain from aforemen-

tioned identity

FIp%), p(7)]= Y. Y F(XaXa@» YoloyDXn ooz = 2., 2. Xy Yoo F O Xn3Vi )

nmeS30€S83

+ Z z [X(1)s Yoo JF n@Xn3))i(3) —

meS30€S3

+ Y X F (Xn X3 Yoo Do) +

meS30€S3

meS30€S3

Z Z X yF ([Xn2)» yU(l)ya(Z)])X”(3)yU(3)

meS30€S3

DY Fuapa@)Xa)s Yoo Vo)

meS30€S3
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Z Z Xu(F Ou@) X 3)s Yoo Vo) = Z Z XX @3 Yoy IF Qo) Vo)

meS30€S3 meS30€S3

+ Z Z [Xr (12X (3)s yg(])]F (yo(z)yg@)) - Z z Yo ([Xe@yXn2)s yg(z)])xﬂ(3)yg(3)
nmeS30€S3 nmeS30€S3

+ z Z Yol Xy Yoy JF )X 3)Vio(3) — Z Z Yo X1y Yo IF 2% (3))Vi3)
meS30€S3 nmeS30€S3

+ z Z yo'(l)xﬂ(l)F([Xﬂ(Z)’ yg(z)])xn(B)yg@) - z Z yg(l)xﬂ(l)F([Xﬂ(z)xﬂ(3)’ yo'(z)])yo'(}})
meS30€S3 meS30€S3

= Y %F @)X Yo Vo + D, D Yo WF @)X Yo o3)
meS30€S83 meS30€S3

+ 2 D Yo F @y YooYom DX = 2, X YowXas Yoo IF @ Xnc3)
meS30€S3 meS30€S3

+ Y Yol Yoo FCa@Xa3) = Y. Y. Yo F (X Yooy D%r3)
meS30€S3 nmeS30€S3

+ Z Z yo(l)xﬂ(l)F([Xﬂ(Z)xﬂG)’ )’g(z)yg(3)]) + Z z yo'(l)F (Y2 [ Xa(3)s )’g(z))’g@)]
meS30€S3 meS30€S3

- Z Z Yo F (@) [Xn3) Yoo + Z Z F(Yoplo ) X 1Xn@Xn3)s Yo
meS30€S3 meS30€S3

- Z Z Yoy (yg(z))[xﬂ(l)xﬂ(Z)xﬂG)s )’0(3)]
nmeS30€S3

for all %3, y; € £3. By comparing so obtained identities, we arrive at

0= Y Fau» Yoo Doz = F O oVo@Vo )

neS;0€S;
+ F(Vpo@)Xm@Xm@Vecpn3) — YoyF Vo) Xn@Xn@VecnG)

= X Voo X @Vo %1 3) — YomWF (Vo2 X DXn3)

+ XaWoyF Do) Xn@Vo3n3) + XaF @)V Voo 33

+ YoyF (1Y@ @Vo7m3) ~ Yo mF (@ Vo@Yo3%n )

+ Y YF (Voo XnPm@ DX Vez) = F Voo XnXma@XaGVe)

neS30€S3
+ FO@)VooXn Vo) = XnF @)oo 3 Vo)

= YoyF CaX@)VoXn Vo) — Xa@Vof (Xa@Xai)s Yo Do)

+ Yo F 0@ Xn3Vo3) + YowF Y@ XnXn@Xn3Vi3)

+ X mF Voo @)X @Xn 3V 3) — XnVorf Vo) Xn@Xn 33

+ 2 2 X F (X Yoo (13)

meS30€S3

+ X1 @XmF Vo Voz) = XV @XnF Vo2 Vo(3)

+ Xe (oo F Cn@Xn3) = XrWoaym@F Vo) VoanG)

+ Xe (oY m@F Qo@Vo3)Xm3) = Xn Vo WoVocyF Ca@)Xa()

= Xe(F (X2 Yo Vo)D) + Xa@WoryF (Xn@)s Yo Doz n3)
= X Yo (%@» Yoo DX @) = XaF (Voror Xn@ DXV (3)
+ Xn oo F Cn@)Xn Vo) — XaVeaVoF Kn@Xn(3)Ys)

+ Z Z Yo mWF (Yoo Xn@Xn3)))

nmeS30€S3
+ Yo Xmn o VoayF Cn@)Xn(3) = YoaymVoVo)F Xn@Xn )
+ YoPrmXn X F Voo3) — YoaPm Vo) Kn@)Xa3 Vo)
+ YoPa Vo G223 Vo) = Yoa m@¥a@XaF Vo) Vo)
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= YoarF Doy X2 @DXaVez) + YoayaF (Vo) Xn@DXaGVse,)
- yo'(])xﬂ(l)-F([yg(Z)! Xﬂ(z)xﬂ(3)])yo'(3) - yg(l)F Xy (2)s yo'(z)])yg(3)xﬂ(3) (13)

= Yom1PaF Vo Yo3)%n3) + Yoy @F Vo) VoaXnG)

for all %, y; € £3. By using the theory of functional identities, we can conclude that
(14)

Z Z F(X%¥@» Yoo = F X @)ooy + F Voo Xn1Xn2)

meS,0€S,;
= YoyF W)X + XaF @)oo ()
D106, Vi, ¥o) + D26, Vi, ¥o) + ViP3(, X0, Vo) + Vo Da(Xa, X0, V1) + Ap(Xa, X0, Y35 V)

and
Z z F ([Xn(Z)Xn(B), ya(z)yo(3)]) - Xn(Z)Xn(3)F()’g(2))’U(3)) + ya(z)yo(3)F(Xn(2)Xn(3)) + Xn(Z)Xﬂ(B)F(ya(z))yo@)
(15)

meS,0€S;
= Yoo )F Cr@)Xn3) = 106, V2, Y3)% + @206, Yo, V3005 + G300, 3, V3)Y, + Qu(Xa, X3, Y2)Y5 + Aq0, X3, Vs, V3)-

We also have
Z Z F(odoy Xn¥m@D) = FOpo)Xn¥n@ + Fr@Xa@Woayo

nmeS,0€$,
- Xﬂ(lf(xﬂ(z))ya(l)ya(z) + yg(l)F(Yg(z))Xn(l)Xn(z)
= xpi 0o, Yo Yo) + X py(x, YY) + )’1P3’(X1, X, ¥5) + }’zpz:(xl, X, V1) + Ay, X0, V5 V5)

and
Y D Feolsey X3 = YoloF 0a@Xa®) + XX F Yoo

me€S,0€S,;
= XX F Vo2 Vo3) + Yooz f Cn@)Xn3)
= @06, Y5, V300 + @00, V2, Y05 + @300, X3, V3)Vs + 4400, X5, Y2)V5 + Ag (X, X5, ¥s, V)

for all %, y, € £3 and pi, p{, g, g : L2 >R, i=1,2,3,4 and Ay, Ay, Ag, Ay : L — C(L). By comparing

identities (14) and (15), we arrive at

Y D (CFGaa@Woao + FObaloXaXa@ = YomF Vo)Xa¥a@ + XawF CaWoa¥o
(16)

neS,0€S,;
+ XX F WpaVo2) — YoaWoF GnXm@)+YoaVoF (n)Xn@) = Xx@Xr@F Yo)Vo)
= Xy P12 Yoy Yo2) + Xe@P2(Xa1)s Yoy Yo2) + Yoty P31y Xar()s Yo2))

+ ya(z)pll(xn(l)’ Xr(2)s yU(l)) + Al(xn(l)a Xr(2)s Yo (1) ya(z)) - 611(Xn(2), Yoy, ya(z))xn(l)
= Q) Yoy Yo X @ — BXn1)s X2 )5 Yo o1y — QX ()s Xn@)s Yoy Vo2y = F1Xa)s Xn@)s Yocrys Yo(2)

forall %, y, € L2and pi, p{, qi, g/ : £2 > R,i=1,2,3, 4and Ay, Ay, A, Ay : L* — C(L). By using equation
(16) and the theory of functional identities, it follows that
Z F (ya(l)yU(z))Xr[(l) = Yo (yg(z))xﬂ(l)) + @2(Xa1)s Yoy yg(z))

0€S,
= XM Vpay Yo) + YoM ys Yozy) + YoMBa1ys Yoery) + Am(Xn(1ys Yorys Vo))

forall i, ;€ £3,qp: L2 > R,m; : L2 > R,i=1,2,3and A, : L2 - C(L). Now setting X, Yoy Yo2) = X
17

in the aforementioned equation, we obtain
2F(x2)x — 2XF(X)x + qa(x, x, X) = xmy(x, x) + xmy(x, x) + xms(x, x) + An(x, x, X)

for all x € R.
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On the other hand, using equation (16) and the theory of functional identities, we arrive at

Z (Xn(l)F(yg(l)yg(z)) - Xn(l)F(yg(1))yg(2)) = P2(%qa), Yoy yg(z))

0€S,

= "1'0’0(1)’ Yo Xn(1) + 1, (X (0)s Yooy + 15X (0)s Yoy Vo) + Ay Yoy Yo2)

%, € L3, p: L2 Rl L2>R,i=1,23andA,: L3 CL).

Now setting X1, Vy1y Yo(2) = X, We obtain
WF(x?) — 2F(X)x — pa(X, X, X) = n{ (X, X)X + 150, X)x + ny(x, X)x + A;(x, X, X) (18)

for all x € R. Equation (13) can now be rewritten as follows:

0= Z z Xy P1(X(2)s Yoy, yU(Z))yU(B)XT[G) + Xn(2) P2(Xn(1)s Yo(1)s yg(z))ya(3)xn(3)

meS30€S3

+ Yoy P3O (1) Xn(2)s Yo Vo3 3) + Yoy Pan(1)s X (2)s Yoy Vo3 3)

+ A 1)s Xa» Yoays Yo Vo373 + Xa¥oayF Qo) Xn@Voarn3)

= XeF Voo Xm@Vo3pn3) ~ Yo F (VoYoi) Xr@DXai)

+ YoyF (a1 @)We@Vo3nG) — YoaPmaF Cn@Vo@Vo%nG)

+ Y PO Yoy Yo Xa3Vo) + %@ P20 s Yoy Yo X Vot3)

n€S;0€S;

+ YG(I)pé(Xﬂ(l)’ X2 Yo Xn(3Wo(3) + Ya(Z)pzl;(Xn(l)’ Xu(2)s Vo)) X3V (3))

+ Ao/ (X (1)s Xa(@)s Yoay Yo Xn3Wo3) + YonF On@)on Vo)

= YoyF O @)VoXn3Voz) — XaVoff (Xa@pXa)s Yo Do)

Xa W Voo Xn@Pn 3oy = Xn Vo o) Xn2PnG Vo)
Y CaVe @i Yoy Yoz) X

meS30€S3

+

+

—+

Xn(1)}’g(1)612(Xn(z), Yo2)» )’g(g))Xn@) + Xn(l)yg(l)qB(Xn(Z), Xn(3)s yg(B))yU(Z)

+

XYo@ K@) X13)s Yo Vo3) + Xn Vot AaXn@s Xn 3 Vo2 Yo3)
Xa s m@F Vo) VoapnG) + XaVeam@F Vo@Voz)XnG)

= Xe(F (X2 Yo Vo) DV 3) + XrWoyF (X Yo Doz n3)

= XY F (% @» Yo Vo)D) = XaF Voaor Xn@ DXraYo(3)
Xa W WoF r@)Xn(3We3) — XnWoYorF Xn@Xn3) Vo)

+ 2 Y Goapr @ Xy Yoz Vo)X

7€S30€S;
+ VoY@ s Yo Yo3)Xn3) + Yo m@B X Xa3)» Yo3)Vo2)

+ Ya(l)xn(l)qf;(xn(z)’ X230 Yo Wo3) T Yo mrAa (X2 X3 Yo2ys Yo3))
= Yo Vo) Cn@)Xa 3o ) + Yo mVaF Xn@Xn3))Vas)

= Yo F (Vo2y X209 @ DX 33y + YorynF (Vo Xn@ DX i3)

= Yoy F (Vo2p X223y = Yoy (X1 )s Yoy Doz 3)

= Yo P Qoo 3)Xa) + Yo @F Vo2)Vo(3773)

—+

for all %, 5 € £2, pi,p{, @i, 4 : L2 > R, i=1,2,3,4 and Ay, Ay, Ag, Ay : L* — C(L). By using the theory
of functional identities and exposing everything from the same side (left), the aforementioned equation
can now be rewritten as follows:

0= Z Z Xz (P1(Xr(2), Yo(1)» Yo(z))yae)?‘n(s) -F (yg(l)Yg(z))Xn(Z)yU(g)xﬂG)

meS30€S3
+ YoF Vo) Xn Vo3 ) + P1 (), Yoy Yo Xn Vo) — YorryF (Xn@Xm3)s Yo Doz
+ F(Yo o)X @Xn3¥o3) ~ Yo Yo@)Xn@%n3o3) + Yoy D13 Vo2 Yo3)%n

(19)
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+ Yoy @22 Yo Yo3)%13) + Yoy B3Xn2)s Xn3)s Yo3) o2y + Yoy @) Xn3)s Yo Va3
+ Vo1 a2 X2 Vo2 Yo3) — Yo mn@F Yo Woan ) + Yo Pm@F Voo)Xn )

= F([Xz Yoo DVozn3) + Yo F X Yoy Do) = YoryF (X @s Yooz DXn3)
= F(sapo2r X2 DXy HYs@VoF (n@)X2Vo) — Yoo Cn@Xn3)Vos)

+ Z z X 2)(P2(X(1), Yoy yg(z)))’g(3)xn(3) + pzl (Xr1)s Yoy yg(z))xn(3))’g(3))

nmeS30€S3

+ Z Z Xn3) Y@ Ap Xar)s X225 Yo(1ys Vo))

me€S30€S3

+ 2 Y Yoy (D3 Xn s Yo Vozn®) — X F ooz Xn@DXn3)

7€S30€S3
+ FOGya@)Vo@Vs3a@) — XaF Ca@)eYoaa@) + P3Xa@s Xa@)s Yo XaGVse)

= FO(n@)o@pm Vo) + XeF (@)oo + Xam@ OnG) Yoy Vo)X

+ XD Yoy Yoz Xa ) + Xa B @)s Xa3)s Yoz Vo2) + X084 On@)s X3 Yo)Vo3)
+ X0 q (X2 Xa3) Vo2 Yo3)) — XnWaF Cn@)Xn3e(3) + XaWaF Kn2pn)Vi3)

-F ([yg(z), Xn(l)xn(z)])xn(3)yg(3) + Xn(l)F([yg(z), Xﬂ(z)])xﬂ(3)y0'(3) - Xﬂ(l)F([yo'(z)’ Xﬂ(z)xﬂ(3)])yg'(3)
= F([@%m@» Yo DY)~ Xn 0 F Y 2Vo3)Xn3) + X @F Y2 Vo3 n3)

+ 2 D Yo a6ty Xa@ys Yoy Vo373 + POty Xa@ps Yoy Xr3o3)

nmeS30€S83

+ Z Z Yo3 X3 Ap(Xn (1) X202 Yoay» Yo))

neS30€S83

(19)

for all %, 9, € L3, pi, b, aiq : L2 > R, i=1,2,3,4 and Ay, Ay, A5, Ay : L% — C(L). Now by using the
theory of functional identities and exposing x, from the left side, we obtain

0= z z P21y, Yoryr Yo Voayn(3) + P51y Yoty Yo Xn3Vo(3)

nmeS,0€83

for all X3, y, € £3 and p,, p; : £2 — R. Again by using the theory of functional identities and exposing
everything from the right side, we obtain

0= P20 Yoy Yor2)

€S,
and
0= Z P20y Yotay Yory)-
€S,
Therefore,

0 = 2p2(x, X, X) = 2p;(x, X, X)
for all x € £ and p,, p; : £3 — R. Equation (18) can now be rewritten as follows:
WF (x?) — 2F(X)x = n{(x, X)X + n5(x, x)x + ny(x, X)x + A(x, X, X) (20)

forallx e £,n/ : £2— R,i=1,2,3and A, : L3 — C(L). Now using the theory of functional identities and
exposing x; in (19) from the left side,

0= z Z (P12 Yory Yoo 3n® — F Yoo Xne@Voan3) + Yo Vo) Xn@Vo3%n3)

7€S,0¢S;
+ P (), Yoy Yo Xn3We3) ~ YoyF (Xn@%m) Yo DVoz) + F oo Xn@Xn3Vo(3)

= YoF Do) X @Xn3Wo3) + Yoy @i G)s Yo Yo3)X%n@ + Yoy @25 Yopr Yo3))Xn3)

+ Yoy BXn s X260 Yoz Vo) + Yoy @sXn@s X125 Yo o3 + Yo taXn@s Xa s Vo2 Yoi3)
+ YoPm@F VYo% — Yoaym@F Oo)Von) = FXa@)» Yoo DVoin)
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+ Voo ([xr2)s yg(z)])yg(3)xn(3) = Yoy’ ([Xr2)s yg(z)yg(3)])xﬂ(3) - F ([yo'(l)yg'(z)’ Xn(Z)])Xno))’g@)
+ Voo oF (n@)X20Yo) ~ Yoo F Kn@Xn(3))Vi(3))
for all %, y, € £3 and p;, p{, g, g/ : £2 > R,i=1,2,3,4 and Ay, Ay, Ag, Ay : L% — C(L). The aforemen-

tioned equation can now be rewritten as (everything exposing from the right side) follows:

0= Z Z (yo'(l)ql(xﬂ(3)7 Yo 2)0 ya(3)))xn(2) + Z Z (J’g(1)512(xn(2), Yo2)2 yo'(3)) + P1(Xr(2)5 Yoy yg(z))ng)

M€S,0€S3 neS,0€S3
= FOVo)Xm@Y3) + YorF Yo Xn@Vec) = F(Xn@s Yoo Do) = Yoaym@F Vo Vo)
+ Yo @F ooz + YoF (e @» Yo Do) = YoF (Xr @5 Yooz DXn3)

+ z Z (A Xn(3)s Yo2)» yg(3))))’g(1) + z z (yg(l)q3(xﬂ(2)9 Xn(3)s yg(3)))ya(2)

meS,0€S3 meS,0€S83

+ z Z (D1C@» Yoy Yo Xa3) = FWlooy Xe@DXa3) = YoF (Xn@Xa3)» Vo))

meS,0€S83
+ FObaYo)Xn@Xa3) = Yoy Qo) Xn@Xn3) *+ Yoy @aXa)s Xn3)s Yo2) Moo Kn@)Xn(3)
= Yoo )F Cn2Xm3) Va3

for all %, y; € £3 and pibLaq,q : L2 —>R,i=1,2,3,4and Aps Apiy Agy Agr + L% — C(L). Now by using the
theory of functional identities, we obtain from the aforementioned equation:

qi1(x, x, x) = g5(x, X, x) = 0
for all x ¢ £ and qy, g5 : £3 — R. Equation (17) can now be rewritten as follows:
2F(xH)x — 2xF(x)x = xmy(x, x) + xmy(x, x) + xmz(x, X) + An(x, x, X) (21)

forallxe £,m;: £L2— R,i=1,2,3and A, : £3 — C(L). Since L is 6-free, after a finite number of steps
using equations (20) and (21), we arrive at

2) (F(xy) - xF(y)) = xf(y) + y8(x) + Ax, y)
2) (F)y - F()) = h(y)x + k(x)y + p(x, y)
forallx,y € R, f,g,h,k: L - Rand A, u : £2 — C(L). Therefore, we obtain
2F(xy) + 2F(yx) — 2XF(y) - 2yF(x) = xf(y) + yg(x) + A(x, y) (22)
and
2F(x)y + 2F(y)x = 2F(xy) = 2F(yx) = h(y)x + k()y + p(x, y). (23)

Forall,x,y € R, f,g,h,k: £L — Rand A, y : £2 — C(L). Replacing the roles of denotations x and y in (22)
and comparing so obtained identities leads to 0 = xf(y) + yg(x) — yf(x) — xg(y) + A(x, y) — A(y, x), which
yields f(x) = g(x) and A(x, y) = A(y,x) forallx,y € £, f,g: L - Rand A : £2 — C(L). Putting x for y in
(22) leads to

4F(x?) = 4xF(x) + 2xf(x) + A(x, x). (24)

Using the same arguments, it follows from (23) that h(x) = k(x) and u(x,y) = u(y, x) for all x,y € L,
h,k: L — Rand u: £2 — C(L). Therefore,

4F(x?) = 4F(x)x — 2k(x)x — u(x, x).
Comparing the aforementioned relations gives
0 = x(4F(x) + 2f (x)) + (—4(x) + 2k(xX)x + A(x, x) + u(x, x).
Hence, there existsr € R and A : £ — C(L) such that
4F(x) + 2f(x) = rx + A(x).
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Considering 2f(x) = —4F(x) + rx + A(x) in (24) gives
4F (x?) = xrx + xA(X) + A(x, x). (25)
Replacing y for x and x for x? in (22) gives
4F(3) = 2x2F (x) + 2XF(x?) + x*f (x) + xf(x2) + A(x?, x).
Using (7) in the aforementioned relation leads to
4F (x®)x — 4xF(O)x + 4xF(x?) = 22F(x) + 2XF(x2) + x3f (x) + xf (x?) + A(x2, x).
Using (24) in the aforementioned relation leads to
4xf (x)x + 3xA(x, x) = 2xf (x%) + 2A(x?, X).
Considering 2f(x) = —4F(x) + rx + A(x) and using (25) in the aforementioned relation gives
0 = —8xF(x)x + xrx? + xZrx + 3x2A(x) + 4xA(x, x) — xA(x%) — 2A(x?, x).
The complete linearization of this relation and using the theory of functional identities leads to
0 = —8F()x + 12 + xrx + 3xA(Xx) + 4A(x, x) — A(x2)
and
0 = -8F(x) + rx + xr + 3A(x).
Therefore,
8F(x) = rx + xr + 3A(x). (26)
By substituting the aforementioned equation in (7), we obtain
0 = -3A(3) - 6xA(x?) — 3x2A(x).

Since £ is a 6-free subset of R, the aforementioned identity implies A(x3) = 0, A(x?) = 0, A(x) = O for all
x € R. From equation (26), we obtain

8F(x?) = r? + x?r. (27)
Right (left) multiplication of the relation (26) by x gives, respectively,
8F(X)x = rx* + xrx (28)
and
8xF(x) = xrx + x°r. (29)
The relations (27)—(29) imply that the additive mapping F satisfies the relation
8F(x?) = 8F(x)x + 8xF(x) — 2xrx.
The aforementioned equation can now be rewritten as follows:
4F(x?) = 4F(x)x + 4xF(x) — xrx
and
4F (x?) = 4F(x)x + 4xF(x) — 2xqx, (30)
where r = 2g. Let us now introduce the mapping D : R — R by
D(x) = 4F(x) — gx — xq. 31

Obviously, the mapping D is additive. It is our aim to prove that D is a Jordan derivation. Putting x? for x in
the aforementioned relation, we obtain

D(x?) = 4F(x?) — gqx* - x%q,
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which gives, after considering the relation (30), the relation
D(x?) = 4F(x)x + 4xF(x) — 2xgx — qx* — x*q. (32)

Right (left) multiplication of the relation (31) by x gives, respectively,

D()x = 4F(x)x — gx? — xqx (33)
and

xD(x) = 4xF(x) — xgx — x*q. (34)
The relations (32)—(34) imply that the additive mapping D satisfies the relation

D(x?) = D(x)x + xD(x)
for all x € R. In other words, D is a Jordan derivation on R. According to Herstein theorem, one can conclude
that D is a derivation, which completes the proof of the theorem. O

We are now in the position to prove Theorem 4.

Proof of Theorem 4. The complete linearization of (7) gives us (9). First, suppose that R is not a PI ring
(satisfying the standard polynomial identity of degree less than 6). According to Theorem 5, then there
exists g € R such that 4F(x) = D(x) + xq + gx for all x € L.

Assume now that R is a PI ring. It is well known that in this case R has a nonzero center (see [20]).
Let ¢ be a nonzero central element. Picking any x € R and setting x; = x5 = cx and x = x in (9), we obtain

3F(c®3) = F(c*?)x + 2cF(cx?)x — ¢>F(x)x — 2cxF(cx)x + xF(cx?) + 2cxF(cx?).
Next, setting x; = %, = ¢ and x3 = x> in (9), we obtain
3F(c*3) = F(c®)x® + 4cF(cx?) — cXPF(c) - cF(c)x® — c2F()x + cXF()x — ¢XF(x?) + xX°F(c?)
for all x € R. Comparing both identities, we obtain
0 = F(c»)x® + 4cF(cx®) — oPF(c) - cF()x® - c2F(x®)x + c*F(x)x — ¢XF(x?) + x3F(c?).

Next, setting x; = x, = x and x3 = ¢? in (9), we obtain

3F(c™?) = 2¢%F (x2) + 2F(c*)x — c?F(x)x — xF(c?)x — ¢XF(x) + 2xF(c*). (35)
Next, setting x; = %, = x and x3 = ¢ in (9), we obtain

3F(cx?) = 2cF(x2) + 2F(cx)x — cF(x)x — xF(c)x — cxF(x) + 2xF(cx). (36)
In case x = ¢, we arrive at F(c3) = 2cF(c?) — ¢?F(c). Next, setting x; = x; = ¢ and x5 = x in (9), we obtain

3F(c*) = F(cH)x + 4cF(cx) — cxF(c) — c?F(x) — cF(c)x + xF(c?). (37)
Setting x; = % = ¢ and x3 = x2 in (9), we obtain

3F(c*x?) = F(c®)x? + 4¢F(cx?) — cx?F(c) — c?F(x?) — cF(c)x? + x?F(c?).
From the aforementioned equation and (36), we obtain

9F (c*x?) = 3F(c?)x? + 8¢c?F(x?) + 8cF(cx)x — 4¢c?F(x)x — 4exF(c)x — 4¢™F(x) + 8cxF(cx)
— 3¢x?F(c) — 3c?F(x?) — 3cF(c)x?* + 3x?F(c?).

Comparing aforementioned equation with (35) and using (37), we obtain
0 = c?F(x?) — c?F(x)x — cAF(x) = F(c?)x? — x?F(c?) + cF(c)x?* + xF(c®)x + cx?F(c). (38)
Complete linearization of the the aforementioned equation and setting x; = ¢ and x = x, we obtain

0 = 2¢%F(cx) + c?F(c)x — 2c3F(x) + ¢*F(c) — cxF(c?) — cF(c?)x.



DE GRUYTER On certain functional equation in prime rings =— 151

Setting ¢ = ¢? in (38) we obtain

0 = c*F(x?) — c*F()x — c¢*xF(x) — F(c®)x? — x2F(c*) + c?F(c?)x? + xF(c*)x + c23F(c?).
On other hand, multiplying equation (38) with c?, we obtain

0 = c*F(x?) — c*F(x)x — ¢*XF(x) — c?F(c?)x? — ¢X?F(c?) + 3F(c)x? + ¢XF(cH)x + c3x?F(c).
Comparing the aforementioned two equations and using F(c*) = 3¢%F(c?) — 2c3F(c), we obtain

0 = —F(cH)x% = x%F(c?) + cF(c)x? + cx?F(c) + 2xF(c?)x — 2cxF(c)x. (39)
On the other hand, adding the same two equations together, we obtain
0 = 2c2F (x?) — 2c%F (x)x — 2c*F(x) — 3F(c?)x% — 3x2F(c?) + 3cF(c)x? + 3¢cx?F(c) + 4xF(c?)x — 2cxF(c)x.

The aforementioned equation can be rewritten as follows:

0 = 2c2F(x?) — 2c2F(x)x — 2¢2XF(x) — 3F(c2)x? — 3x%F(c?) + 3¢F(c)x% + 3cx?F(c) + 6xF(c?)x
— 2XF(c?)x — 6¢xF(c)x + 4cxF(c)x.

Using the aforementioned equation and (39), we obtain

0 = 2¢2F(x?) — 2¢?F(x)x — 2cXF(x) + 4cxF(c)x — 2xF(c)x.
The aforementioned equation can now be rewritten as follows:

C?F(x?) = c?F(x)x + c*F(x) + xF(c®)x — 2cxF(c)x
and

4¢2F(x?) = 4¢F(x)x + 4¢*XF(x) — 2x(2F(c?) - 4cF(c))x.
Setting 2F(c?) — 4cF(c) = g, we arrive at

4¢°F(x?) = 4¢?F(x)x + 4¢*F(x) — 2xgx. (40)

If g = 0 than F(x) is derivation, on the other hand, if g # 0, we can conclude as follows. Let us now
introduce the mapping D : R — R by

D(x) = 4F(x) - gqx — xq. (41)

Obviously, the mapping D is additive. It is our aim to prove that D is a Jordan derivation. Putting x? for x in
the aforementioned relation, we obtain

c2D(x?) = 4¢?F(x?) - c%qx? - c™xq,
which gives, after considering the relation (40), the relation
c?D(x?) = 4¢’F()x + 4¢XF(x) - 2cxgx — c’qx? — cx%q. (42)
Right (left) multiplication of the relation (41) by x gives, respectively,
DOOx = 4F(X)x — gx? — xqx (43)
and
xD(x) = 4xF(x) — xqx — x%q. (44)
The relations (42)-(44) imply that the additive mapping D satisfies the relation
c2D(x?) = c2D(x)x + c=xD(x)

for all x € R, whence it follows D(x?) = D(x)x + xD(x) for all x € R. In other words, D is a Jordan derivation
on R. According to Herstein theorem, one can conclude that D is a derivation, which completes the proof
of the theorem. O
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