Home Mathematics ๐“œ๐“-convergence and lim-inf๐“œ-convergence in partially ordered sets
Article Open Access

๐“œ๐“-convergence and lim-inf๐“œ-convergence in partially ordered sets

  • Tao Sun , Qingguo Li EMAIL logo and Nianbai Fan
Published/Copyright: September 18, 2018

Abstract

In this paper, we first introduce the notion of ๐“œ๐“-convergence in posets as an unified form of O-convergence and O2-convergence. Then, by studying the fundamental properties of ๐“œ๐“-topology which is determined by ๐“œ๐“-convergence according to the standard topological approach, an equivalent characterization to the ๐“œ๐“-convergence being topological is established. Finally, the lim-inf๐“œ-convergence in posets is further investigated, and a sufficient and necessary condition for lim-inf๐“œ-convergence to be topological is obtained.

MSC 2010: 54A20; 06A06

1 Introduction, Notations and Preliminaries

The concept of O-convergence in partially ordered sets (posets, for short) was introduced by Birkhoff [1], Frink [2] and Mcshane [3]. It is defined as follows: a net (xi)iโˆˆI in a poset P is said to O-converge tox โˆˆ P if there exist subsets D and F of P such that

  1. D is directed and F is filtered;

  2. sup D = x = inf F;

  3. for every d โˆˆ D and e โˆˆ F, d โฉฝ xi โฉฝ e holds eventually, i.e., there exists i0 โˆˆ I such that d โฉฝ xi โฉฝ e for all i โฉพ i0.

As what has been showed in [4], the O-convergence (Note: in [4], the O-convergence is called order-convergence) in a general poset P may not be topological, i.e., it is possible that P can not be endowed with a topology such that the O-convergence and the associated topological convergence are consistent. Hence, much work has been done to characterize those special posets in which the O-convergence is topological. The most recent result in [5] shows that the O-convergence in a poset which satisfies Condition (โ–ณ) is topological if and only if the poset is ๐“ž-doubly continuous. This means that for a special class of posets, a sufficient and necessary condition for O-convergence being topological is obtained.

As a direct generalization of O-convergence, O2-convergence in posets has been discussed in [11] from the order-theoretical point of view. It is defined as follows: a net (xi)iโˆˆI in a poset P is said to O2-converge tox โˆˆ P if there exist subsets A and B of P such that

  1. sup A = x = inf B;

  2. for every a โˆˆ A and b โˆˆ B, a โฉฝ xi โฉฝ b holds eventually.

In fact, the O2-convergence is also not topological generally. To clarify those special posets in which the O2-convergence is topological, Zhao and Li [6] showed that for any poset P satisfying Condition (โˆ—), O2-convergence is topological if and only if P is ฮฑ-doubly continuous. As a further result, Li and Zou [7] proved that the O2-convergence in a poset P is topological if and only if P is O2-doubly continuous. This result demonstrates the equivalence between the O2-convergence being topological and the O2-double continuity of a given poset.

On the other hand, Zhou and Zhao [8] have defined the lim-inf๐“œ-convergence in posets to generalize lim-inf-convergence and lim-inf2-convergence [4]. They also found that the lim-inf๐“œ-convergence in a poset is topological if and only if the poset is ฮฑ(๐“œ)-continuous when some additional conditions are satisfied (see [8], Theorem 3.1). This result clarified some special conditions of posets under which the lim-inf๐“œ-convergence is topological. However, to the best of our knowledge, the equivalent characterization to the lim-inf๐“œ-convergence in general posets being topological is still unknown.

One goal of this paper is to propose the notion of ๐“œ๐“-convergence in posets which can unify O-convergence and O2-convergence and search the equivalent characterization to the ๐“œ๐“-convergence being topological. More precisely,

  1. Given a general poset P, we hope to clarify the order-theoretical condition of P which is sufficient and necessary for the ๐“œ๐“-convergence being topological.

  2. Given a poset P satisfying such condition, we hope to provide a topology that can be equipped on P such that the ๐“œ๐“-convergence and the associated topological convergence agree.

Another goal is to look for the equivalent characterization to the lim-inf๐“œ-convergence being topological. More precisely,

  1. Given a general poset P, we expect to present a sufficient and necessary condition of P which can precisely serve as an order-theoretical condition for the lim-inf๐“œ-convergence being topological.

  2. Given a poset P satisfying such condition, we expect to give a topology on P such that the lim-inf๐“œ-convergence and the associated topological convergence are consistent.

To accomplish those goals, motivated by the ideal of introducing the Z-subsets system [9] for defining Z-continuous posets, we propose the notion of ๐“œ๐“-doubly continuous posets and define the ๐“œ๐“-topology on posets in Section 2. Based on the study of the basic properties of the ๐“œ๐“-topology, it is proved that the ๐“œ๐“-convergence in a poset P is topological if and only if P is an ๐“œ๐“-doubly continuous poset if and only if the ๐“œ๐“-convergence and the topological convergence with respect to ๐“œ๐“-topology are consistent. In Section 3, by introducing the notion of ฮฑ*(๐“œ)-continuous posets and presenting the fundamental properties of ๐“œ-topology which is induced by the lim-inf๐“œ-convergence, we show that the lim-inf๐“œ-convergence in a poset P is topological if and only if P is an ฮฑ*(๐“œ)-continuous poset if and only if the lim-inf๐“œ-convergence and the topological convergence with respect to ๐“œ-topology are consistent.

Some conventional notations will be used in the paper. Given a setX, F โŠ‘ X means that F is a finite subset of X. Given a topological space (X, ๐“ฃ) and a net (xi)iโˆˆI in X, we take (xi)iโˆˆIโ†’Tx to mean the net (xi)iโˆˆI converges to x โˆˆ P with respect to the topology ๐“ฃ.

Let P be a poset and x โˆˆ P. โ†‘ x and โ†“ x are always used to denote the principal filter {y โˆˆ P : y โฉพ x} and the principal ideal {z โˆˆ P : z โฉฝ x} of P, respectively. Given a poset P and A โІ P, by writing sup A we mean that the least upper bound of A in P exists and equals to sup A โˆˆ P; dually, by writing inf A we mean that the greatest lower bound of A in P exists and equals to inf A โˆˆ P. And the set A is called an upper set if A = โ†‘A = {b โˆˆ P; (โˆƒa โˆˆ A) a โฉฝ b}, the lower set is defined dually.

For a poset P, we succinctly denote

  1. ๐“Ÿ(P) = {A : A โІ P}; ๐“Ÿ0(P) = ๐“Ÿ(P)/{โˆ…};

  2. ๐““(P) = {D โˆˆ ๐“Ÿ(P): D is a directed subset of P};

  3. ๐“•(P) = {F โˆˆ ๐“Ÿ(P): F is a filtered subset of P};

  4. ๐“›(P) = {L โˆˆ ๐“Ÿ(P): L โŠ‘ P}; ๐“›0(P) = ๐“›(P)/{โˆ…};

  5. ๐“ข0(P) = {{x} : x โˆˆ P}.

To make this paper self-contained, we briefly review the following notions:

Definition 1.1

([5]). LetPbe a poset andx, y, z โˆˆ P. We sayyโ‰ช๐“žxif for every net (xi)iโˆˆIinPwhichO-converges tox โˆˆ P, xi โฉพ yholds eventually; dually, we sayzโŠฒ๐“žxif for every net (xi)iโˆˆIinPwhichO-converges tox โˆˆ P, xi โฉฝ zholds eventually.

Definition 1.2

([5]). A posetPis said to be ๐“ž-doubly continuous if for everyx โˆˆ P, the set {a โˆˆ P : aโ‰ช๐“žx} is directed, the set {b โˆˆ P : bโŠฒ๐“žx} is filtered and sup{a โˆˆ P : aโ‰ช๐“žx} = x = inf{b โˆˆ P : bโŠฒ๐“žx}.

Condition (โ–ณ). AposetPis said to satisfy Condition(โ–ณ) if

  1. for anyx, y, z โˆˆ P, xโ‰ช๐“žy โฉฝ zimpliesxโ‰ช๐“žz;

  2. for anyw, s, t โˆˆ P, wโŠฒ๐“žs โฉพ timplieswโŠฒ๐“žt.

Definition 1.3

([6]). LetPbe a poset andx, y, z โˆˆ P. We sayyโ‰ชฮฑxif for every net (xi)iโˆˆIinPwhichO2-converges tox โˆˆ P, xi โฉพ yholds eventually; dually, we sayzโŠฒฮฑxif for every net (xi)iโˆˆIinPwhichO2-converges tox โˆˆ P, xi โฉฝ zholds eventually.

Definition 1.4

([7]). A posetPis said to beO2-doubly continuous if for everyx โˆˆ P,

  1. sup{a โˆˆ P : aโ‰ชฮฑx} = x = inf{b โˆˆ P : bโŠฒฮฑx};

  2. for anyy, z โˆˆ Pwithyโ‰ชฮฑxandzโŠฒฮฑx, there existA โŠ‘ {a โˆˆ P : aโ‰ชฮฑx} andB โŠ‘ {b โˆˆ P : bโŠฒฮฑx} such thatyโ‰ชฮฑcandzโŠฒฮฑcfor eachc โˆˆ โ‹‚{โ†‘a โˆฉ โ†“b: a โˆˆ A & b โˆˆ B}.

2 ๐“œ๐“-topology on posets

Based on the introduction of ๐“œ๐“-convergence in posets, the ๐“œ๐“-topology can be defined on posets. In this section, we first define the ๐“œ๐“-double continuity for posets. Then, we show the equivalence between the ๐“œ๐“-convergence being topological and the ๐“œ๐“-double continuity of a given poset.

A PMN-space is a triplet (P, ๐“œ,๐“) which consists of a poset P and two subfamily ๐“œ,๐“ โІ ๐“Ÿ(P).

All PMN-spaces (P, ๐“œ,๐“) considered in this section are assumed to satisfy the following conditions:

  1. If P has the least element โŠฅ, then {โŠฅ} โˆˆ ๐“œ;

  2. If P has the greatest element โŠค, then {โŠค} โˆˆ ๐“;

  3. โˆ… โˆ‰ ๐“œ and โˆ… โˆ‰ ๐“.

Definition 2.1

Let (P, ๐“œ,๐“) be aPMN-space. Anet (xi)iโˆˆIinPis said to ๐“œ๐“-converge to x โˆˆ Pif there existM โˆˆ ๐“œ andN โˆˆ ๐“ satisfying:

  1. sup M = x = inf N;

  2. xi โˆˆ โ†‘m โˆฉ โ†“neventually for everym โˆˆ Mand everyn โˆˆ N.

In this case, we will write(xi)iโˆˆIโ†’MNx.

Remark 2.2

Let (P, ๐“œ,๐“) be aPMN-space.

  1. If ๐“œ = ๐““(P) and ๐“ = ๐“•(P), then a net(xi)iโˆˆIโ†’MNx โˆˆ Pif and only if itO-converges tox. That is to say, O-convergence is a particular case of ๐“œ๐“-convergence.

  2. If ๐“œ = ๐“ = ๐“Ÿ0(P), then a net(xi)iโˆˆIโ†’MNx โˆˆ Pif and only if itO2-converges tox. That is to say, O2-convergence is a special case of ๐“œ๐“-convergence.

  3. If ๐“œ = ๐“ = ๐“›0(P), then a net(xi)iโˆˆIโ†’MNx โˆˆ Pif and only ifxi = xholds eventually.

  4. The ๐“œ๐“-convergent point of a net (xi)iโˆˆIinP, if exists, is unique.

    Indeed, suppose that(xi)iโˆˆIโ†’MNx1and(xi)iโˆˆIโ†’MNx2.Then there existAk โˆˆ ๐“œ andBk โˆˆ ๐“ such that sup Ak = xk = inf Bkandak โฉฝ xi โฉฝ bkholds eventually for everyak โˆˆ Akandbk โˆˆ Bk (k = 1, 2). This implies that for anya1 โˆˆ A1, a2 โˆˆ A2, b1 โˆˆ B1andb2 โˆˆ B2, there existsi0 โˆˆ Isuch thata1 โฉฝ xi0 โฉฝ b2anda2 โฉฝ xi0 โฉฝ b1. Thus we have sup A1 = x1 โฉฝ inf B2 = x2and sup A2 = x2 โฉฝ inf B1 = x1. Thereforex1 = x2.

  5. For anyA โˆˆ ๐“œ andB โˆˆ ๐“ with sup A = inf B = x โˆˆ P, we denoteF(A,B)x = {โ‹‚{โ†‘a โˆฉ โ†“b : a โˆˆ A0 & b โˆˆ B0}: A0 โŠ‘ A & B0 โŠ‘ B}[1]. LetD(A,B)x={(d,D)โˆˆPร—F(A,B)x:dโˆˆD}and let the preorder โ‰ค onD(A,B)xbe defined by

    (โˆ€(d1,D1),(d2,D2)โˆˆD(A,B)x)(d1,D1)โ‰ค(d2,D2)โŸบD2โІD1.

    One can readily check that(D(A,B)x,โ‰ค)is directed. Now if we takex(d,D) = dfor every(d,D)โˆˆD(A,B)x,, then the net(x(d,D))(d,D)โˆˆD(A,B)xโ†’MNxbecause sup A = inf B = x, anda โฉฝ x(d,D) โฉฝ bholds eventually for anya โˆˆ Aandb โˆˆ B.

  6. Let(x(d,D))(d,D)โˆˆD(A,B)xbe the net defined in (5) for anyA โˆˆ ๐“œ andB โˆˆ ๐“ with sup A = inf B = x โˆˆ P. If(x(d,D))(d,D)โˆˆD(A,B)xconverges top โˆˆ Pwith respect to some topology ๐“ฃ on the posetP, then for every open neighborhoodUpofp, there existA0 โŠ‘ AandB0 โŠ‘ Bsuch that

    โ‹‚{โ†‘aโˆฉโ†“b:aโˆˆA0&bโˆˆB0}โІUp.

    Indeed, suppose that(x(d,D))(d,D)โˆˆD(A,B)xโ†’Tp.Then for every open neighborhoodUpofp, there exists (d0,D0) โˆˆ D(A,B)xsuch thatx(d,D) = d โˆˆ Upfor all (d, D) โ‰ฅ (d0,D0). Since (d, D0) โ‰ฅ (d0,D0) for everyd โˆˆ D0, x(d,D) = d โˆˆ Upfor everyd โˆˆ D0. This showsD0 โІ Up. So, there existA0 โŠ‘ AandB0 โŠ‘ Bsuch that

    D0=โ‹‚{โ†‘aโˆฉโ†“b:aโˆˆA0&bโˆˆB0}โІUp.

Given a PMN-space (P, ๐“œ,๐“), we can define two new approximate relations โ‰ชMN and โŠณMN on the poset P in the following definition.

Definition 2.3

Let (P, ๐“œ,๐“) be aPMN-space andx, y, z โˆˆ P.

  1. We defineyโ‰ชMNxif for anyA โˆˆ ๐“œ andB โˆˆ ๐“ with sup A = x = inf B, there existA0 โŠ‘ AandB0 โŠ‘ Bsuch that

    โ‹‚{โ†‘aโˆฉโ†“b:aโˆˆA0&bโˆˆB0}โІโ†‘y.
  2. Dually, we definezโŠณMNxif for anyM โˆˆ ๐“œ andN โˆˆ ๐“ with sup M = x = inf N, there existM0 โŠ‘ MandN0 โŠ‘ Nsuch that

    โ‹‚{โ†‘mโˆฉโ†“n:mโˆˆM0&nโˆˆN0}โІโ†“z.

For convenience, given a PMN-space (P, ๐“œ,๐“) and x โˆˆ P, we will briefly denote

  1. โ–พMNx={yโˆˆP:yโ‰ชMNx};

  2. โ–ดMNx={zโˆˆP:xโ‰ชMNz};

  3. โ–ฝMNx={aโˆˆP:xโŠณMNa};

  4. โ–ณMNx={bโˆˆP:bโŠณMNx}.

Remark 2.4

Let (P, ๐“œ,๐“) be aPMN-space andx, y, z โˆˆ P.

  1. If there is noA โˆˆ ๐“œ such that sup A = x, thenpโ‰ชMNxandpโŠณMNxfor allp โˆˆ P; similarly, if there is noB โˆˆ ๐“ such that inf B = x, thenpโ‰ชMNxandpโŠณMNxfor allp โˆˆ P.

  2. By Definition 2.3, one can easily check that ifPhas the least element โŠฅ, thenโŠฅโ‰ชMNpfor everyp โˆˆ P, and ifPhas the greatest element โŠค, thenโŠคโŠณMNpfor everyp โˆˆ P.

  3. The implicationsyโ‰ชMNxโ‡’xโฉฝyandzโŠณMNxโ‡’zโฉพxare not true necessarily. See the following example: let โ„ be the set of all real numbers, in its ordinal order, and ๐“œ = ๐“ = {{n} : n โˆˆ โ„ค}, where โ„ค is the set of all integers. Then, by (1), we have1โ‰ชMN1/2and0โŠณMN1/2.But 1โงธ โฉฝ 1/2 and 0โงธ โฉพ 1/2.

  4. Assume that sup A0 = x = inf B0for someA0 โˆˆ ๐“œ andB0 โˆˆ ๐“. Then it follows from Definition 2.3 thatyโ‰ชMNximpliesy โฉฝ xandzโŠณMNximpliesz โฉพ x. In particular, if ๐“ข0(P) โІ ๐“œ,๐“, thenbโ‰ชMNaimpliesb โฉฝ aandcโŠณMNaimpliesc โฉพ afor anya, b, c โˆˆ P. More particularly, for anyp1,p2,p3 โˆˆ P, we havep1โ‰ชS0S0p2 โŸบ p1 โฉฝ p2andp3โŠณS0S0p2 โŸบ p3 โฉพ p2.

Proposition 2.5

Let (P, ๐“œ,๐“) be aPMN-space andx, y, z โˆˆ P. Then

  1. yโ‰ชMNxif and only if for every net (xi)iโˆˆIthat ๐“œ๐“-converges tox, xi โฉพ yholds eventually.

  2. zโŠณMNxif and only if for every net (xi)iโˆˆIthat ๐“œ๐“-converges tox, xi โฉฝ zholds eventually.

Proof

(1) Suppose yโ‰ชMNx. If a net (xi)iโˆˆIโ†’MNx, then there exist A โˆˆ ๐“œ and B โˆˆ ๐“ such that sup A = x = inf B, and for any a โˆˆ A and b โˆˆ B, there exists iabโˆˆI such that a โฉฝ xi โฉฝ b for all iโฉพiab. According to Definition 2.3 (1), it follows that there exist A0 = {a1,a2, โ€ฆ,an} โŠ‘ A and B0 = {b1,b2, โ€ฆ,bm} โŠ‘ B such that x โˆˆ โ‹‚{โ†‘ak โˆฉ โ†“bj : 1 โ‰ค k โ‰ค n & 1 โ‰ค j โ‰ค m} โІ โ†‘y. Take i0 โˆˆ I with that i0โฉพiakbj for every k โˆˆ {1, 2, โ€ฆ, n} and every j โˆˆ {1, 2, โ€ฆ, m}. Then xi โˆˆ โ‹‚{โ†‘ak โˆฉ โ†“bj : 1 โ‰ค k โ‰ค n & 1 โ‰ค j โ‰ค m} โІ โ†‘y for all i โฉพ i0. This means xi โฉพ y holds eventually.

Conversely, suppose that for every net (xi)iโˆˆI that ๐“œ๐“-converges to x, xi โฉพ y holds eventually. For every A โˆˆ ๐“œ and B โˆˆ ๐“ with sup A = x = inf B, consider the net (x(d,D))(d,D)โˆˆD(A,B)x defined in Remark 2.2 (5). By Remark 2.2 (5), the net (x(d,D))(d,D)โˆˆD(A,B)xโ†’MNx. So, there exists (d0,D0) โˆˆ D(A,B)x such that x(d,D) = d โฉพ y for all (d, D) โ‰ฅ (d0,D0). Since (d, D0) โ‰ฅ (d0,D0) for all d โˆˆ D0, x(d,D0) = d โฉพ y for all d โˆˆ D0. Thus, we have D0 โІ โ†‘y. It follows from the definition of D(A,B)x that there exist A0 โŠ‘ A and B0 โŠ‘ B such that D0 = โ‹‚{โ†‘a โˆฉ โ†“b : a โˆˆ A0 & b โˆˆ B0} โІ โ†‘y. This shows yโ‰ชMNx.

The proof of (2) can be processed similarly.โ€ƒโ–ก

Remark 2.6

Let (P, ๐“œ,๐“) be aPMN-space.

  1. If ๐“œ = ๐““(P) and ๐“ = ๐“•(P), thenโ‰ชDF=โ‰ชOandโŠณDF=โŠณO.

  2. If ๐“œ = ๐“ = ๐“Ÿ0(P), thenโ‰ชP0P0=โ‰ชฮฑandโŠณP0P0=โŠณฮฑ.

Given a PMN-space (P, ๐“œ,๐“), depending on the approximate relations โ‰ชMNandโŠณMN on P. we can define the ๐“œ๐“-double continuity for the poset P.

Definition 2.7

Let (P, ๐“œ,๐“) be aPMN-space. The posetPis called an ๐“œ๐“-doubly continuous poset if for everyx โˆˆ P, there existMx โˆˆ ๐“œ andNx โˆˆ ๐“ such that

  1. Mx โІ โ–พMNx,NxโІโ–ณMNxand sup Mx = x = inf Nx.

  2. For anyyโˆˆโ–พMNxandzโˆˆโ–ณMNx, โ‹‚{โ†‘m โˆฉ โ†“n : m โˆˆ M0 & n โˆˆ N0} โІ โ–ดMNyโˆฉโ–ฝMNzfor someM0 โŠ‘ MxandN0 โŠ‘ Nx.

By Remark 2.4 (4) and Definition 2.7, we have the following basic property about ๐“œ๐“-doubly continuous posets:

Proposition 2.8

Let (P, ๐“œ,๐“) be aPMN-space andx, y, z โˆˆ P. If the posetPis an ๐“œ๐“-doubly continuous poset, thenyโ‰ชMNximpliesy โฉฝ xandzโŠณMNximpliesz โฉพ x.

Example 2.9

Let (P, ๐“œ,๐“) be a PMN-space.

  1. If ๐“œ = ๐“ = ๐“ข0(P), then by Remark 2.4 (4), we haveโ‰ชS0S0=โฉฝandโŠณS0S0=โฉพ.By Definition 2.7, one can easily check thatPis an ๐“ข0๐“ข0-doubly continuous poset.

  2. If ๐“œ = ๐“ = ๐“›0(P), then by Definition 2.3, we haveโ‰ชL0L0=โฉฝandโŠณL0L0=โฉพ.It can be easily checked from Definition 2.7 thatPis an ๐“›0๐“›0-doubly continuous poset.

  3. Let ๐“œ = ๐““(P) and ๐“ = ๐“•(P). Then it is easy to check that ifPis an ๐“ž-doubly continuous poset which satisfies Condition (โ–ณ), then it is a ๐““๐“•-doubly continuous poset. Particularly, finite posets, chains and anti-chains, completely distributive lattices are all ๐““๐“•-doubly continuous posets.

  4. Let ๐“œ = ๐“ = ๐“Ÿ0(P). Then the posetPis ๐“Ÿ0๐“Ÿ0-double continuous if and only if it isO2-double continuous. Thus, chains and finite posets are all ๐“Ÿ0๐“Ÿ0-doubly continuous posets.

Next, we are going to consider the ๐“œ๐“-topology on posets, which is induced by the ๐“œ๐“-convergence.

Definition 2.10

Given aPMN-space (P, ๐“œ,๐“), a subsetU of Pis called an ๐“œ๐“-open set if for every net (xi)iโˆˆIwith that(xi)iโˆˆIโ†’MNx โˆˆ U, xi โˆˆ Uholds eventually.

Clearly, the family OMN(P) consisting of all ๐“œ๐“-open subsets of P forms a topology on P. And this topology is called the ๐“œ๐“-topology.

Theorem 2.11

Let (P, ๐“œ,๐“) be aPMN-space. Then a subsetUofPis an ๐“œ๐“-open set if and only if for everyM โˆˆ ๐“œ andN โˆˆ ๐“ with sup M = x = inf N โˆˆ U, we have

โ‹‚{โ†‘mโˆฉโ†“n:mโˆˆM0&nโˆˆN0}โІU

for someM0 โŠ‘ MandN0 โŠ‘ N.

Proof

Suppose that U is an ๐“œ๐“-open subset of P. For every M โˆˆ ๐“œ and N โˆˆ ๐“ with sup M = x = inf N โˆˆ U, let (x(d,D))(d,D)โˆˆD(M,N)x be the net defined in Remark 2.2 (5). Then the net (x(d,D))(d,D)โˆˆD(M,N)xโ†’MNx. By the definition of ๐“œ๐“-open set, the exists (d0,D0) โˆˆ D(M,N)x such that x(d,D) = d โˆˆ U for all (d, D) โ‰ฅ (d0,D0). Since (d, D0) โ‰ฅ (d0,D0) for all d โˆˆ D0, x(d,D0) = d โˆˆ U for every d โˆˆ D0, and thus D0 โІ U. It follows from the definition of the directed set D(M,N)x that D0 = โ‹‚{โ†‘m โˆฉ โ†“n : m โˆˆ M0 & n โˆˆ N0} โІ U for some M0 โŠ‘ M and some N0 โŠ‘ N.

Conversely, assume that U is a subset of P with the property that for any M โˆˆ ๐“œ and N โˆˆ ๐“ with sup M = x = inf N โˆˆ U, there exist M0 = {m1,m2, โ€ฆ,mk} โŠ‘ M and N0 = {n1,n2, โ€ฆ,nl} โŠ‘ N such that โ‹‚{โ†‘mh โˆฉ โ†“nj : 1 โ‰ค h โ‰ค k & 1 โ‰ค j โ‰ค l} โІ U. Let (xi)iโˆˆI be a net that ๐“œ๐“-converges to x โˆˆ U. Then there exist M โˆˆ ๐“œ and N โˆˆ ๐“ such that sup M = x = inf N โˆˆ U, and for every m โˆˆ M and n โˆˆ N, m โฉฝ xi โฉฝ n holds eventually. This means that for every mh โˆˆ M0 and nj โˆˆ N0, there exists ih,j โˆˆ I such that mh โฉฝ xi โฉฝ nj for all i โ‰ฅ ih,j. Take i0 โˆˆ I such that i0 โ‰ฅ ih,j for all h โˆˆ {1, 2, โ€ฆ, k} and j โˆˆ {1, 2, โ€ฆ, l}. Then xi โˆˆ โ‹‚{โ†‘mh โˆฉ โ†“nj : 1 โ‰ค h โ‰ค k & 1 โ‰ค j โ‰ค l} โІ U for all i โ‰ฅ i0. Therefore, U is an ๐“œ๐“-open subset of P.โ€ƒโ–ก

Proposition 2.12

Let (P, ๐“œ,๐“) be aPMN-space in whichPis an ๐“œ๐“-doubly continuous poset, andy, z โˆˆ P. Thenโ–ดMNyโˆฉโ–ฝMNzโˆˆOMN(P).

Proof

Suppose that M โˆˆ ๐“œ and N โˆˆ ๐“ with sup M = inf N = x โˆˆ โ–ดMNyโˆฉโ–ฝMNz. Since P is an ๐“œ๐“-doubly continuous poset, there exist Mx โˆˆ ๐“œ and Nx โˆˆ ๐“ satisfying condition (A1) and (A2) in Definition 2.7. This means that there exist M0 โŠ‘ Mx โІ โ–พMNx and N0 โŠ‘ Nx โІ โ–ณMNx such that โ‹‚{โ†‘m0 โˆฉ โ†“n0:m0 โˆˆ M0 & n0 โˆˆ N0} โІ โ–ดMNyโˆฉโ–ฝMNz. As M0 โŠ‘ Mx โІ โ–พMNx and N0 โŠ‘ Nx โІ โ–ณMNx, by Definition 2.3, there exist Mm0 โŠ‘ M and Nn0 โŠ‘ N such that โ‹‚{โ†‘m โˆฉ โ†“n : m โˆˆ Mm0 & n โˆˆ Nn0 } โІ โ†‘m0 โˆฉ โ†“n0 for every m0 โˆˆ M0 and n0 โˆˆ N0. Take MF = โ‹ƒ{Mm0:m0 โˆˆ M0} and NF = โ‹ƒ{Nn0:n0 โˆˆ N0}. Then it is easy to check that MF โŠ‘ M, NF โŠ‘ N and

xโˆˆโ‹‚{โ†‘aโˆฉโ†“b:aโˆˆMF&bโˆˆNF}โІโ‹‚{โ†‘m0โˆฉโ†“n0:m0โˆˆM0&n0โˆˆN0}โІโ–ดMNyโˆฉโ–ฝMNz.

So, it follows from Theorem 2.11 that โ–ดMNyโˆฉโ–ฝMNzโˆˆOMN(P).โ€ƒโ–ก

Lemma 2.13

Let (P, ๐“œ,๐“) be aPMN-space in whichPis an ๐“œ๐“-doubly continuous poset. Then a net

(xi)iโˆˆIโ†’MNxโˆˆPโŸบ(xi)iโˆˆIโ†’OMN(P)x.

Proof

From the definition of OMN(P), it is easy to see that a net

(xi)iโˆˆIโ†’MNxโˆˆPโŸน(xi)iโˆˆIโ†’OMN(P)x.

To prove the Lemma, it suffices to show that a net (xi)iโˆˆIโ†’OMN(P)x โˆˆ P implies (xi)iโˆˆIโ†’MNx. Suppose a net (xi)iโˆˆIโ†’OMN(P)x. Since P is an ๐“œ๐“-doubly continuous poset, there exist Mx โˆˆ ๐“œ and Nx โˆˆ ๐“ such that Mx โІ โ–พMNx, Nx โІ โ–ณMNx and sup Mx = x = inf Nx. By Proposition 2.12, xโˆˆโ–ดMNyโˆฉโ–ฝMNzโˆˆOMN(P) for every y โˆˆ Mx โІ โ–พMNx and every z โˆˆ Nx โІ โ–ณMNx, and hence xiโˆˆโ–ดMNyโˆฉโ–ฝMNz holds eventually for every y โˆˆ Mx โІ โ–พMNx and every z โˆˆ Nx โІ โ–ณMNx. It follows from Proposition 2.8 that y โฉฝ xi โฉฝ z holds eventually for every y โˆˆ Mx and z โˆˆ Nx. Thus (xi)iโˆˆIโ†’MNxโ€ƒโ–ก

Lemma 2.14

Let (P, ๐“œ,๐“) be aPMN-space. If the ๐“œ๐“-convergence inPis topological, thenPis ๐“œ๐“-doubly continuous.

Proof

Suppose that the ๐“œ๐“-convergence in P is topological. Then there exists a topology ๐“ฃ on P such that for every x โˆˆ P, a net (xi)iโˆˆIโ†’MNx if and only if (xi)iโˆˆIโ†’Tx. Define Ix = {(p, U) โˆˆ P ร— ๐“(x) : p โˆˆ U}, where ๐“(x) denotes the set of all open neighbourhoods of x in the topological space (P, ๐“ฃ), i.e., ๐“(x) = {U โˆˆ ๐“ฃ : x โˆˆ U}. Define the preorder โ‰ผ on Ix as follows:

(โˆ€(p1,U1),(p2,U2)โˆˆIx)(p1,U1)โ‰ผ(p2,U2)โŸบU2โІU1.

Now one can easily see that Ix is directed. Let x(p,U) = p for every (p, U) โˆˆ Ix. Then it is straightforward to check that the net (x(p,U))(p,U)โˆˆIxโ†’Tx, and thus (x(p,U))(p,U)โˆˆIxโ†’MNx. By Definition 2.1, there exist Mx โˆˆ ๐“œ and Nx โˆˆ ๐“ such that sup Mx = x = inf Nx, and for every m โˆˆ Mx and n โˆˆ Nx, there exists (pmn,Umn) โˆˆ Ix such that x(p,U) = p โˆˆ โ†‘m โˆฉ โ†“n for all (p,U)โ‰ฝ(pmn,Umn). Since (p,Umn)โ‰ฝ(pmn,Umn) for every pโˆˆUmn,x(p,Umn)=p โˆˆ โ†‘m โˆฉ โ†“n for every pโˆˆUmn. This shows

(โˆ€mโˆˆMx,nโˆˆNx)(โˆƒUmnโˆˆN(x))xโˆˆUmnโІโ†‘mโˆฉโ†“n.(*)

For any A โˆˆ ๐“œ and B โˆˆ ๐“ with sup A = x = inf B, let (x(d,D))(d,D)โˆˆD(A,B)x be the net defined as in Remark 2.2 (5). Then (x(d,D))(d,D)โˆˆD(A,B)xโ†’MNx, and hence (x(d,D))(d,D)โˆˆD(A,B)xโ†’Tx. This implies, by Remark 2.2 (6), that there exist A0 โŠ‘ A and B0 โŠ‘ B satisfying

xโˆˆโ‹‚{โ†‘aโˆฉโ†“b:aโˆˆA0&bโˆˆB0}โІUmnโІโ†‘mโˆฉโ†“n.

Therefore, m โˆˆ โ–พMNx and n โˆˆ โ–ณMNx, and hence โ–พMNx and Nx โІ โ–ณMNx.

Let y โˆˆ โ–พMNx and z โˆˆ โ–ณMNx. Since sup Mx = x = inf Nx, by Definition 2.3, โ‹‚{โ†‘m โˆฉ โ†“n : m โˆˆ M1 & n โˆˆ N1} โІ โ†‘y โˆฉ โ†“z for some M1 โŠ‘ Mx and N1 โŠ‘ Nx. This concludes by Condition (โ‹†) and the finiteness of sets M1 and N1 that โ‹‚{Umn:mโˆˆM1&nโˆˆN1} โˆˆ ๐“(x) and

xโˆˆโ‹‚{Umn:mโˆˆM1&nโˆˆN1}โІโ‹‚{โ†‘mโˆฉโ†“n:mโˆˆM1&nโˆˆN1}โІโ†‘yโˆฉโ†“z.

Considering the net (x(d,D))(d,D)โˆˆD(Mx,Nx)x defined in Remark 2.2 (5), we have (x(d,D))(d,D)โˆˆD(Mx,Nx)xโ†’MNx, and hence (x(d,D))(d,D)โˆˆD(Mx,Nx)xโ†’Tx. So, by Remark 2.2 (6), there exist M2 โŠ‘ Mx and N2 โŠ‘ Nx such that

xโˆˆโ‹‚{โ†‘mโˆฉโ†“n:mโˆˆM2&nโˆˆN2}โІโ‹‚{Umn:mโˆˆM1&nโˆˆN1}โІโ†‘yโˆฉโ†“z.

Finally, we show โ‹‚{โ†‘m โˆฉ โ†“n : m โˆˆ M2 & n โˆˆ N2} โІ โ–ดMNyโˆฉโ–ฝMNz. Let (x(d,D))(d,D)โˆˆD(Mโ€ฒ,Nโ€ฒ)xโ€ฒ be the net defined in 2.2 (5) for any Mโ€ฒ โˆˆ ๐“œ and Nโ€ฒ โˆˆ ๐“ with sup Mโ€ฒ = inf Nโ€ฒ = xโ€ฒ โˆˆ โ‹‚{โ†‘m โˆฉ โ†“n : m โˆˆ M2 & n โˆˆ N2}. Then (x(d,D))(d,D)โˆˆD(Mโ€ฒ,Nโ€ฒ)xโ€ฒโ†’MNxโ€ฒ, and thus (x(d,D))(d,D)โˆˆD(Mโ€ฒ,Nโ€ฒ)xโ€ฒโ†’Txโ€ฒ. This implies by Remark 2.2 (6) that there exist M0โ€ฒโŠ‘Mโ€ฒ and N0โ€ฒโŠ‘Nโ€ฒ satisfying

xโ€ฒโˆˆโ‹‚{โ†‘mโ€ฒโˆฉโ†“nโ€ฒ:mโˆˆM0โ€ฒ&nโˆˆN0โ€ฒ}โІโ‹‚{Umn:mโˆˆM1&nโˆˆN1}โІโ†‘yโˆฉโ†“z.

Hence, we have xโ€ฒ โˆˆ โ–ดMNyโˆฉโ–ฝMNz by Definition 2.3. This shows โ‹‚{โ†‘m โˆฉ โ†“n : m โˆˆ M2 & n โˆˆ N2} โІ โ–ดMNyโˆฉโ–ฝMNz. Therefore, it follows from Definition 2.7 that P is ๐“œ๐“-doubly continuous.โ€ƒโ–ก

Combining Lemma 2.13 and Lemma 2.14, we obtain the following theorem.

Theorem 2.15

Let (P, ๐“œ,๐“) be aPMN-space. Then the following statements are equivalent:

  1. Pis an ๐“œ๐“-doubly continuous poset.

  2. For any net (xi)iโˆˆIinP, (xi)iโˆˆIโ†’MNxif and only if(xi)iโˆˆIโ†’OMN(P)x.

  3. The ๐“œ๐“-convergence inPis topological.

Proof

(1) โ‡’ (2): By Lemma 2.13.

(2) โ‡’ (3): It is clear.

(3) โ‡’ (1): By Lemma 2.14.โ€ƒโ–ก

3 ๐“œ-topology induced by lim-inf๐“œ-convergence

In this section, the notion of lim-inf๐“œ-convergence is reviewed and the ๐“œ-topology on posets is defined. By exploring the fundamental properties of the ๐“œ-topology, those posets under which the lim-inf๐“œ-convergence is topological are precisely characterized.

By saying a PM-space, we mean a pair (P, ๐“œ) that contains a poset P and a subfamily ๐“œ of ๐“Ÿ(P).

Definition 3.1

([8]). Let (P, ๐“œ) be aPM-space. Anet (xi)iโˆˆIinPis said to lim-inf๐“œ-converge tox โˆˆ Pif there existsM โˆˆ ๐“œ such that

  1. x โฉฝ sup M;

  2. for everym โˆˆ M, xi โฉพ mholds eventually.

In this case, we write(xi)iโˆˆIโ†’Mx.

It is worth noting that both lim-inf-convergence and lim-inf2-convergence [4] in posets are particular cases of lim-inf๐“œ-convergence.

Remark 3.2

Let (P, ๐“œ) be aPM-space andx, y โˆˆ P.

  1. Suppose that a net(xi)iโˆˆIโ†’Mxandy โฉฝ x. (xi)iโˆˆIโ†’Myby Definition 3.1. This concludes that the set of all lim-inf๐“œ-convergent points of the net (xi)iโˆˆIinPis a lower subset ofP. Thus, the lim-inf๐“œ-convergent points of the net (xi)iโˆˆIneed not be unique.

  2. IfPhas the least element โŠฅ and โˆ… โˆˆ ๐“œ, then we have(xi)iโˆˆIโ†’MโŠฅfor every net (xi)iโˆˆIinP.

  3. For everyM โˆˆ ๐“œ with sup M โฉพ x, we denoteFMx = {โ‹‚{โ†‘m : m โˆˆ M0} : M0 โŠ‘ M}[2]. LetDMx = {(d, D) โˆˆ P ร— FMx : d โˆˆ D} be in the preorder โ‰ค defined by

    (โˆ€(d1,D1),(d2,D2)โˆˆDMx)(d1,D1)โ‰ฆ(d2,D2)โŸบD2โІD1.

    It is easy to see that the setDMxis directed. Takex(d,D) = dfor every (d, D) โˆˆ DMx. Then, by Definition 3.1, one can straightforwardly check that the net(x(d,D))(d,D)โˆˆDMxโ†’Mfor everya โฉฝ x.

  4. If the net(x(d,D))(d,D)โˆˆDMxdefined in (3) converges top โˆˆ Pwith respect to some topology ๐“ฃ onP, then for every open neighbourhoodUpofp, there existsM0 โŠ‘ Msuch that โ‹‚{โ†‘m : m โˆˆ M0} โІ Up.

Definition 3.3

([8]). Let (P, ๐“œ) be aPM-space.

  1. Forx, y โˆˆ P, defineyโ‰ชฮฑ(๐“œ)xif for every net (xi)iโˆˆIthat lim-inf๐“œ-converges tox, xi โฉพ yholds eventually.

  2. The posetPis said to beฮฑ(๐“œ)-continuous if {x โˆˆ P : xโ‰ชฮฑ(๐“œ)a} โˆˆ ๐“œ anda = sup{x โˆˆ P : xโ‰ชฮฑ(๐“œ)a} holds for everya โˆˆ P.

Given a PM-space (P, ๐“œ), the approximate relation โ‰ชฮฑ(๐“œ) on the poset P can be equivalently characterized in the following proposition.

Proposition 3.4

Let (P, ๐“œ) be aPM-space andx, y โˆˆ P. Thenyโ‰ชฮฑ(๐“œ)xif and only if for everyM โˆˆ ๐“œ with sup M โฉพ x, there existsM0 โŠ‘ Msuch that

โ‹‚{โ†‘m:mโˆˆM0}โІโ†‘y.

Proof

Suppose yโ‰ชฮฑ(๐“œ)x. Let (x(d,D))(d,D)โˆˆDMx be the net defined in Remark 3.2 (3) for every M โˆˆ ๐“œ with sup M = p โฉพ x. Then the net (x(d,D))(d,D)โˆˆDMxโ†’Mx. By Definition 3.3 (1), there exists (d0,D0) โˆˆ DMx such that x(d,D) = d โฉพ y for all (d, D) โ‰ฆ (d0,D0). Since (d, D0) โ‰ฆ (d0,D0) for every d โˆˆ D0, x(d,D0) = d โฉพ y for every d โˆˆ D0. So D0 โІ โ†‘y. This shows that there exists M0 โŠ‘ M such that D0 = โ‹‚{โ†‘m : m โˆˆ M0} โІ โ†‘y.

Conversely, suppose that for every M โˆˆ ๐“œ with sup M โฉพ x, there exists M0 โŠ‘ M such that โ‹‚{โ†‘m : m โˆˆ M0} โІ โ†‘y. Let (xi)iโˆˆI be a net that lim-inf๐“œ-converges to x. Then, by Definition 3.1, there exists M โˆˆ ๐“œ such that sup M = p โฉพ x, and for every m โˆˆ M, there exists im โˆˆ I such that xi โฉพ m for all i โ‰ฅ im. Take i0 โˆˆ I with that i0 โ‰ฅ im for every m โˆˆ M0 โŠ‘ M, we have that xi โˆˆ โ‹‚{โ†‘m : m โˆˆ M0} โІ โ†‘y for all i โ‰ฅ i0. This shows that xi โฉพ y holds eventually. Thus, by Definition 3.3 (1), we have yโ‰ชฮฑ(๐“œ)x.โ€ƒโ–ก

Remark 3.5

Let (P, ๐“œ) be aPM-space andx, y โˆˆ P.

  1. If there is noM โˆˆ ๐“œ such that sup M โฉพ x, thenpโ‰ชฮฑ(๐“œ)xfor everyp โˆˆ P. And, if the posetPhas the least element โŠฅ, then โŠฅโ‰ชฮฑ(๐“œ)pfor everyp โˆˆ P.

  2. The implicationyโ‰ชฮฑ(๐“œ)x โŸน y โฉฝ xmay not be true. For example, letP = {0,1, 2, โ€ฆ} be in the discrete order โฉฝ defined by

    (โˆ€i,jโˆˆP)iโฉฝjโŸบi=j.

    And let ๐“œ = {{2}}. Then, it is easy to see from Remark 3.5 (1) that 0โ‰ชฮฑ(๐“œ)1 and 0โงธ โฉฝ 1.

  3. Assume thePM-space (P, ๐“œ) has the property that for everyp โˆˆ P, there existsMp โˆˆ ๐“œ such that sup Mp = p. Then, by Proposition 3.4, we have

    (โˆ€q,rโˆˆP)qโ‰ชฮฑ(M)rโŸนqโฉฝr.

For more interpretations of the approximate relation โ‰ชฮฑ(๐“œ) on posets, the readers can refer to Example 3.2 and Remark 3.3 in [8].

For simplicity, given a PM-space (P, ๐“œ) and x โˆˆ P, we will denote

  1. โ–พ๐“œx = {y โˆˆ P : yโ‰ชฮฑ(๐“œ)x};

  2. โ–ด๐“œx = {z โˆˆ P : xโ‰ชฮฑ(๐“œ)z}.

Based on the approximate relation โ‰ชฮฑ(๐“œ) on posets, the ฮฑ*(๐“œ)-continuity can be defined for posets in the following:

Definition 3.6

Let (P, ๐“œ) be aPM-space. The posetPis called anฮฑ*(๐“œ)-continuous poset if for everyx โˆˆ P, there existsMx โˆˆ ๐“œ such that

  1. sup Mx = xandMx โІ โ–พ๐“œx. And,

  2. for everyy โˆˆ โ–พ๐“œx, there existsF โŠ‘ Mxsuch that โ‹‚{โ†‘f : f โˆˆ F} โІ โ–ด๐“œy.

Noticing Remark 3.5 (3), we have the following proposition about ฮฑ*(๐“œ)-continuous posets.

Proposition 3.7

Let (P, ๐“œ) be aPM-space in which the posetPisฮฑ*(๐“œ)-continuous. Then

(โˆ€x,yโˆˆP)yโ‰ชฮฑ(M)xโŸนyโฉฝx.

The following examples of ฮฑ*(๐“œ)-continuous posets can be formally checked by Definition 3.6.

Example 3.8

Let (P, ๐“œ) be aPM-space.

  1. IfPis a finite poset, thenPis anฮฑ*(๐“œ)-continuous poset if and only if for everyx โˆˆ P, there existsMx โˆˆ ๐“œ such that sup Mx = x.

  2. Let ๐“œ = ๐“›(P). ThenPis anฮฑ*(๐“›)-continuous poset. This means that every poset isฮฑ*(๐“›)-continuous.

  3. Let ๐“œ = ๐““(P). Then we have โ‰ช = โ‰ชฮฑ(๐““)(see Example 3.2 (1) in [8]). The posetPis a continuous poset if and only if it is anฮฑ*(๐““)-continuous poset. In particular, finite posets, chains, anti-chains and completely distributive lattices are allฮฑ*(๐““)-continuous.

  4. Let ๐“œ = ๐“Ÿ(P). IfPis a finite poset (resp. chain, anti-chain), thenPis anฮฑ*(๐“Ÿ)-continuous poset.

Proposition 3.9

Let (P, ๐“œ) be aPM-space. IfPis anฮฑ(๐“œ)-continuous poset, and {y โˆˆ P : (โˆƒ z โˆˆ P) yโ‰ชฮฑ(๐“œ)zโ‰ชฮฑ(๐“œ)a} โˆˆ ๐“œ for everya โˆˆ P, thenPis anฮฑ*(๐“œ)-continuous poset.

Proof

Suppose that P is an ฮฑ(๐“œ)-continuous poset, and {y โˆˆ P : (โˆƒ z โˆˆ P) yโ‰ชฮฑ(๐“œ)zโ‰ชฮฑ(๐“œ)a} โˆˆ ๐“œ for every a โˆˆ P. Take Ma = โ–พ๐“œa. Then it is easy to see that sup Ma = a and Ma โІ โ–พ๐“œa. By Remark 3.3 (4) in [8], we have sup{y โˆˆ P : (โˆƒ z โˆˆ P) yโ‰ชฮฑ(๐“œ)zโ‰ชฮฑ(๐“œ)a} = a. This implies, by Proposition 3.4 and Remark 3.5 (2), that for every y โˆˆ โ–พ๐“œa, there exist {y1,y2, โ€ฆ,yn}, {z1,z2, โ€ฆ,zn} โŠ‘ Ma = โ–พ๐“œa such that

โ‹‚{โ†‘zi:iโˆˆ{1,2,โ€ฆ,n}}โІโ‹‚{โ†‘yi:iโˆˆ{1,2,โ€ฆ,n}}โІโ†‘y,

and yiโ‰ชฮฑ(๐“œ)ziโ‰ชฮฑ(๐“œ)a for every i โˆˆ {1, 2, โ€ฆ, n}. Next, we show โ‹‚{โ†‘zi : i โˆˆ {1, 2, โ€ฆ, n}} โІ โ–ด๐“œy. For every M โˆˆ ๐“œ with sup M โฉพ b โˆˆ โ‹‚{โ†‘zi : i โˆˆ {1, 2, โ€ฆ, n}}, by Proposition 3.4, there exists Mi โŠ‘ M such that โ‹‚{โ†‘mโ€ฒ:mโ€ฒ โˆˆ Mi} โІ โ†‘yi for every i โˆˆ {1, 2, โ€ฆ, n}. Take M0 = โ‹ƒ{Mi : i โˆˆ {1, 2, โ€ฆ, n}}. Then M0 โŠ‘ M and

โ‹‚{โ†‘m:mโˆˆM0}โІโ‹‚{โ†‘yi:iโˆˆ{1,2,โ€ฆ,n}}โІโ†‘y.

This shows yโ‰ชฮฑ(๐“œ)b for every b โˆˆ โ‹‚{โ†‘zi : i โˆˆ {1, 2, โ€ฆ, n}}. Hence, โ‹‚{โ†‘zi : i โˆˆ {1, 2, โ€ฆ, n}} โІ โ–ด๐“œy. Thus P is an ฮฑ*(๐“œ)-continuous poset.โ€ƒโ–ก

The fact that an ฮฑ*(๐“œ)-continuous poset P in a PM-space (P, ๐“œ) may not be ฮฑ(๐“œ)-continuous can be demonstrated in the following example.

Example 3.10

Let (P, ๐“œ) be thePM-space in which the posetP = โ„ is the set of all real number with its usual order โฉฝ and ๐“œ = ๐“ข0(โ„). Then we have โ‰ชฮฑ(๐“ข0) = โฉฝ by Proposition 3.4. It is easy to check, by Definition 3.6, that โ„ is anฮฑ*(๐“ข0)-continuous poset. But โ„ is not anฮฑ(๐“ข0)-continuous poset because โ–พ๐“ข0x = โ†“xโงธ โˆˆ ๐“ข0(P) for everyx โˆˆ โ„.

We turn to consider the topology induced by the lim-inf๐“œ-convergence in posets.

Definition 3.11

Let (P, ๐“œ) be aPM-space. AsubsetVofPis said to be ๐“œ-open if for every net(xi)iโˆˆIโ†’MxโˆˆV,xi โˆˆ Vholds eventually.

Given a PM-space (P, ๐“œ), one can formally verify that the set of all ๐“œ-open subsets of P forms a topology on P. This topology is called the ๐“œ-topology, and denoted by ๐“ž๐“œ(P).

The following Theorem is an order-theoretical characterization of ๐“œ-open sets.

Theorem 3.12

Let (P, ๐“œ) be aPM-space. Then a subsetVofPis ๐“œ-open if and only if it satisfies the following two conditions:

  1. โ†‘V = V, i.e., Vis an upper set.

  2. For everyM โˆˆ ๐“œ with sup M โˆˆ V, there existsM0 โŠ‘ Msuch that โ‹‚{โ†‘m : m โˆˆ M0} โІ V.

Proof

Suppose that V is an ๐“œ-open subset of P. By Remark 3.2 (1), it is easy to see that V is an upper set. Let (x(d,D))(d,D)โˆˆDMx be the net defined in Remark 3.2 (3) for every M โˆˆ ๐“œ with sup M = x โˆˆ V. Then (x(d,D))(d,D)โˆˆDMxโ†’MxโˆˆV. This implies, by Definition 3.11, that there exists (d0,D0) โˆˆ DMx such that x(d,D) = d โˆˆ V for all (d, D) โ‰ฅ q (d0,D0). Since (d, D0) โ‰ฆ (d0,D0) for all d โˆˆ D0, x(d,D0) = d โˆˆ V for all d โˆˆ D0. This shows D0 โІ V. Thus there exists M0 โŠ‘ M such that D0 = โ‹‚{โ†‘m : m โˆˆ M0} โІ V.

Conversely, suppose V is a subset of P which satisfies Condition (V1) and (V2). Let (xi)iโˆˆI be a net that lim-inf๐“œ-converges to x โˆˆ V. Then there exists M โˆˆ ๐“œ such that sup M = y โฉพ x โˆˆ V = โ†‘V (hence, y โˆˆ V), and for every m โˆˆ M, there exists im โˆˆ I such that xi โฉพ m for all i โ‰ฅ im. By Condition (V2), we have that โ‹‚{โ†‘m : m โˆˆ M0} โІ V for some M0 โŠ‘ M. Take i0 โˆˆ I with that i0 โ‰ฅ im for all m โˆˆ M0. Then xi โˆˆ โ‹‚{โ†‘m : m โˆˆ M0} โІ V for all i โ‰ฅ i0. This shows that V is an ๐“œ-open set.โ€ƒโ–ก

Recall that given a topological space (X, ๐“ฃ) and a point x โˆˆ P, a family ๐“‘(x) of open neighbourhoods of x is called a base for the topological space (X, ๐“ฃ) at the point x if for every neighbourhood V of x there exists an U โˆˆ ๐“‘(x) such that x โˆˆ U โІ V.

If the poset P in a PM-space (P, ๐“œ) is an ฮฑ*(๐“œ)-continuous poset, we provide a base for the topological space (P, ๐“ž๐“œ(P)) at a point x โˆˆ P.

Proposition 3.13

Let (P, ๐“œ) be aPM-space in which the posetPisฮฑ*(๐“œ)-continuous. Then โ–ด๐“œx โˆˆ ๐“ž๐“œ(P) for everyx โˆˆ P.

Proof

One can readily see, by Proposition 3.4, that {โ–ด๐“œ}x is an upper subset of P for every x โˆˆ P. For every M โˆˆ ๐“œ with sup M = y โˆˆ {โ–ด๐“œ}x, by Definition 3.6 (O1) there exists My โˆˆ ๐“œ such that My โІ {โ–พ๐“œ}y and sup My = y. Since xโ‰ชฮฑ(๐“œ)y, by Definition 3.6 (O2), we have โ‹‚{โ†‘mi : i โˆˆ {1, 2, โ€ฆ, n}} โІ {โ–ด๐“œ}x for some {m1,m2, โ€ฆ,mn} โŠ‘ My. Observing {m1,m2, โ€ฆ,mn} โŠ‘ My โІ {โ–พ๐“œ}y, we can conclude that there exists Mi โŠ‘ M such that โ‹‚{โ†‘a : a โˆˆ Mi} โІ โ†‘mi for every i โˆˆ {1, 2, โ€ฆ, n}. Let M0 = โ‹ƒ{Mi : i โˆˆ {1, 2, โ€ฆ, n}}. Then M0 โŠ‘ M and

โ‹‚{โ†‘m:mโˆˆM0}โІโ‹‚{โ†‘mi:iโˆˆ{1,2,โ€ฆ,n}}โІโ–ดMx.

This shows, by Theorem 3.12, that โ–ด๐“œx โˆˆ ๐“ž๐“œ(P) for every x โˆˆ P.โ€ƒโ–ก

Proposition 3.14

Let (P, ๐“œ) be aPM-space in which the posetPisฮฑ*(๐“œ)-continuous andx โˆˆ P. Then {โ‹‚{โ–ด๐“œa : a โˆˆ A} : A โŠ‘ โ–พ๐“œx} is a base for the topological space (P, ๐“ž๐“œ(P)) at the pointx.

Proof

Clearly, by Proposition 3.13, we have โ‹‚{โ–ด๐“œa : a โˆˆ A} โˆˆ ๐“ž๐“œ(P) for every A โŠ‘ โ–พ๐“œx. Let U โˆˆ ๐“ž๐“œ(P) and x โˆˆ U. Since P is an ฮฑ*(๐“œ)-continuous poset, there exists Mx โˆˆ ๐“œ such that Mx โІ โ–พ๐“œx and sup Mx = x โˆˆ U. By Theorem 3.12, it follows that โ‹‚{โ†‘m : m โˆˆ M0} โІ U for some M0 โŠ‘ Mx โІ โ–พ๐“œx. So, from Proposition 3.7, we have

xโˆˆโ‹‚{โ–ดMm:mโˆˆM0}โІโ‹‚{โ†‘m:mโˆˆM0}โІU.

Thus, {โ‹‚{โ–ด๐“œa : a โˆˆ A} : A โŠ‘ โ–พ๐“œx} is a base for the topological space (P, ๐“ž๐“œ(P)) at the point x.โ€ƒโ–ก

In the rest, we are going to establish a characterization theorem which demonstrates the equivalence between the lim-inf๐“œ-convergence being topological and the ฮฑ*(๐“œ)-continuity of the poset in a given PM-space.

Lemma 3.15

Let (P, ๐“œ) be aPM-space. IfPis anฮฑ*(๐“œ)-continuous poset, then a net

(xi)iโˆˆIโ†’MxโˆˆPโŸบ(xi)iโˆˆIโ†’OM(P)x.

Proof

By the definition of ๐“ž๐“œ(P), it is easy to see that a net

(xi)iโˆˆIโ†’MxโˆˆPโŸน(xi)iโˆˆIโ†’OM(P)x.

To prove the Lemma, we only need to show that a net (xi)iโˆˆIโ†’OM(P)xโˆˆP implies (xi)iโˆˆIโ†’Mx. Suppose (xi)iโˆˆIโ†’OM(P)x. As P is an ฮฑ*(๐“œ)-continuous poset, there exists Mx โˆˆ ๐“œ such that Mx โІ โ–พ๐“œx and sup Mx = x. By Proposition 3.13, we have x โˆˆ โ–ด๐“œy โˆˆ {๐“ž๐“œ(P)} for every y โˆˆ Mx โІ โ–พ๐“œx. Hence, xi โˆˆ โ–ด๐“œy holds eventually. This implies, by Proposition 3.7, that xi โˆˆ โ–ด๐“œy โІ โ†‘y holds eventually. By the definition of lim-inf๐“œ-convergence, we have (xi)iโˆˆIโ†’Mx.โ€ƒโ–ก

In the converse direction, we have the following Lemma.

Lemma 3.16

Let (P, ๐“œ) be aPM-space. If the lim-inf๐“œ-convergence inPis topological, thenPis anฮฑ*(๐“œ)-continuous poset.

Proof

Suppose that the lim-inf๐“œ-convergence in P is topological. Then there exists a topology ๐“ฃ such that for every x โˆˆ P, a net

(xi)iโˆˆIโ†’MxโŸบ(xi)iโˆˆIโ†’Tx.

Define Ix = {(p, V) โˆˆ P ร— ๐“(x) : p โˆˆ V}, where ๐“(x) is the set of all open neighbourhoods of x, namely, ๐“(x) = {V โˆˆ ๐“ฃ : x โˆˆ V}. Define also the preorder โชฏ on Ix as follows:

(โˆ€(p1,V1),(p2,V2)โˆˆIx)(p1,V1)โชฏ(p2,V2)โŸบV2โІV1.

It is easy to see that Ix is directed. Now, let x(p,V) = p for every (p, V) โˆˆ Ix. Then one can readily check that the net (x(p,V))(p,V)โˆˆIxโ†’Tx, and hence (x(p,V))(p,V)โˆˆIxโ†’Mx. This means that there exists Mx โˆˆ ๐“œ such that sup Mx โฉพ x, and for every m โˆˆ Mx, there exists (pm,Vm) โˆˆ Ix with that x(p,V) = p โฉพ m for all (p, V) โชฐ (pm,Vm). Since (p, Vm) โชฐ (pm,Vm) for all p โˆˆ Vm, we have x(p,Vm) = p โฉพ m for all p โˆˆ Vm. This shows

(โˆ€mโˆˆMx)(โˆƒVmโˆˆN(x))xโˆˆVmโІโ†‘m.(โ‹†โ‹†)

Next we prove Mx โІ โ–พ๐“œx. For every m โˆˆ Mx and every M โˆˆ M with sup M โฉพ x, let (x(d,D))(d,D)โˆˆDMx be the net defined in Remark 3.2 (3). Then the net (x(d,D))(d,D)โˆˆDMxโ†’Mx, and thus (x(d,D))(d,D)โˆˆDMxโ†’Tx. It follows from Remark 3.2 (4) that there exists M0 โŠ‘ M such that x โˆˆ โ‹‚{โ†‘a : a โˆˆ M0} โІ Vm. By Condition (โ‹†โ‹†), we have x โˆˆ โ‹‚{โ†‘a : a โˆˆ M0} โІ Vm โІ โ†‘m. So, mโ‰ชฮฑ(๐“œ)x. This shows Mx โІ โ–พ๐“œx.

Let y โˆˆ โ–พ๐“œx. Then there exists {m1,m2, โ€ฆ,mn} โŠ‘ Mx such that โ‹‚{โ†‘mi : i โˆˆ {1, 2, โ€ฆ, n}} โІ โ†‘y as Mx โˆˆ ๐“œ and sup Mx โฉพ x. By Condition (โ‹†โ‹†), it follows that โ‹‚Vmi : i โˆˆ {1, 2, โ€ฆ, n}} โІ โ‹‚{โ†‘mi : i โˆˆ {1, 2, โ€ฆ, n}} โІ โ†‘y. Considering the net (x(d,D))(d,D)โˆˆDMxx defined in Remark 3.2 (3), we have (x(d,D))(d,D)โˆˆDMxxโ†’Mx, and hence (x(d,D))(d,D)โˆˆDMxxโ†’Tx. This implies, by Remark 3.2 (4), that

โ‹‚{โ†‘b:bโˆˆM00}โІโ‹‚{Vmi:iโˆˆ{1,2,โ€ฆ,n}}โІโ‹‚{โ†‘mi:iโˆˆ{1,2,โ€ฆ,n}}โІโ†‘y(โ‹†โ‹†โ‹†)

for some M00 โŠ‘ Mx. Finally, we show โ‹‚{โ†‘b : b โˆˆ M00} โІ โ–ด๐“œy. For every xโ€ฒ โˆˆ โ‹‚{โ†‘b : b โˆˆ M00} and every Mโ€ฒ โˆˆ ๐“œ with sup Mโ€ฒ โฉพ xโ€ฒ, let (x(d,D))(d,D)โˆˆDMโ€ฒxโ€ฒ be the net defined in Remark 3.2 (3). Then (x(d,D))(d,D)โˆˆDMโ€ฒxโ€ฒโ†’Mxโ€ฒ, and thus (x(d,D))(d,D)โˆˆDMโ€ฒxโ€ฒโ†’Txโ€ฒ. It follows from Condition (โ‹†โ‹†โ‹†) and Remark 3.2 (4) that there exists M0โ€ฒโŠ‘Mโ€ฒ such that

โ‹‚{โ†‘aโ€ฒ:aโ€ฒโˆˆM0โ€ฒ}โІโ‹‚{Vmi:iโˆˆ{1,2,โ€ฆ,n}}โІโ‹‚{โ†‘mi:iโˆˆ{1,2,โ€ฆ,n}}โІโ†‘y.

This shows xโ€ฒ โˆˆ โ–ด๐“œy, and thus โ‹‚{โ†‘b : b โˆˆ M00} โІ โ–ด๐“œy. Therefore, P is an ฮฑ*(๐“œ)-continuous poset.โ€ƒโ–ก

Combining Lemma 3.15 and Lemma 3.16, we deduce the following result.

Theorem 3.17

Let (P, ๐“œ) be aPM-space. The following statements are equivalent:

  1. Pis anฮฑ*(๐“œ)-continuous poset.

  2. For any net (xi)iโˆˆIinP,(xi)iโˆˆIโ†’MxโˆˆPโŸบ(xi)iโˆˆIโ†’OM(P)x.

  3. The lim-inf๐“œ-convergence inPis topological.

Proof

(1) โ‡’ (2): By Lemma 3.15.

(2) โ‡’ (3): Clear.

(3) โ‡’ (1): By Lemma 3.16.โ–ก

Corollary 3.18

([8]). Let (P, ๐“œ) be aPM-space with ๐“ข0(P) โІ ๐“œ โІ ๐“Ÿ(P). Suppose โ–พ๐“œa โˆˆ ๐“œ and {y โˆˆ P : (โˆƒ z โˆˆ P) yโ‰ชฮฑ(๐“œ)zโ‰ชฮฑ(๐“œ)a} โˆˆ ๐“œ holds for everya โˆˆ P. Then the lim-inf๐“œ-convergence inPis topological if and only ifPisฮฑ(๐“œ)-continuous.

Proof

(โŸน): To show the ฮฑ(๐“œ)-continuity of P, it suffices to prove supโ–พ๐“œa = a for every a โˆˆ P. Since the lim-inf๐“œ-convergence in P is topological, by Theorem 3.17, P is an ฮฑ*(๐“œ)-continuous poset. This implies that there exists Ma โˆˆ ๐“œ such that sup Ma โІ โ–พ๐“œa and sup Ma = a for every a โˆˆ P. By Proposition 3.7, we have โ–พ๐“œa โІ โ†“a. So sup โ–พ๐“œa = a.

(โŸธ): By Proposition 3.9 and Theorem 3.17.โ–ก

Acknowledgement

This work is supported by the Doctoral Scientific Research Foundation of Hunan University of Arts and Science (Grant No.: E07017024), the Significant Research and Development Project of Hunan province (Grant No.: 2016JC2014) and the Natural Science Foundation of China (Grant No.: 11371130).

References

[1] Birkhoff G., Lattice Theory,1940, American Mathematical Society Colloquium Publications.10.1090/coll/025Search in Google Scholar

[2] Frink O., Topology in lattice, Trans. Am. Math. Soc., 1942, 51, 569-582.10.1090/S0002-9947-1942-0006496-XSearch in Google Scholar

[3] Mcshane E.J., Order-Preserving Maps and Integration Process, 1953, Princeton, Princeton University Press.10.1515/9781400882304Search in Google Scholar

[4] Zhao B., Zhao D.S., Lim-inf-convergence in partially ordered sets, J. Math. Anal. Appl., 2005, 309, 701-708.10.1016/j.jmaa.2004.11.028Search in Google Scholar

[5] Wang K.Y., Zhao B., Some further results on order-convergence in posets, Topol. Appl., 2013, 160, 82-86.10.1016/j.topol.2012.09.018Search in Google Scholar

[6] Zhao B., Li J., O2-convergence in posets, Topol. Appl., 2006, 153, 2971-2975.10.1016/j.topol.2006.01.004Search in Google Scholar

[7] Li Q.G., Zou Z.Z., A result for O2-convergence to be topological in posets, Open Math., 2016, 14, 205-211.10.1515/math-2016-0018Search in Google Scholar

[8] Zhou Y.H., Zhao B., Order-convergence and lim-inf๐“œ-convergence in posets, J. Math. Anal. Appl., 2007, 325, 655-664.10.1016/j.jmaa.2006.02.016Search in Google Scholar

[9] Venugopalan P., Z-continuous posets, Houston J. Math., 1996, 12, 275-294.Search in Google Scholar

[10] Kelly J.L., General Topology, 1955, New York, Van Nostrand Group.Search in Google Scholar

[11] Mathews J.C., Anderson R.F., A comparison of two modes of order convergence, Proc. Am. Math. Soc., 1967, 18(1), 100-104.10.1090/S0002-9939-1967-0203675-6Search in Google Scholar

[12] Wolk E.S., On order-convergence, Proc. Am. Math. Soc., 1961, 12(3), 379-384.10.1090/S0002-9939-1961-0136562-7Search in Google Scholar

[13] Zhao D.S., The double Scott topology on a lattice, Chin. Ann. Math., Ser. A., 1989, 10(2), 187-193.Search in Google Scholar

[14] Zhao B., Wang K.Y., Order topology and bi-Scott topology on a poset, Acta Math. Sin. Engl. Ser., 2011, 27, 2101-2106.10.1007/s10114-011-0273-7Search in Google Scholar

[15] Engelking R., General Topology, 1977, Warszawa, Polish Scientific Publishers.Search in Google Scholar

[16] Zhang H., A note on continuous partially ordered sets, Semigroup Forum, 1993, 47, 101-104.10.1007/BF02573745Search in Google Scholar

[17] Davey B.A., Priestley H.A., Introduction to Lattices and Order, 2002, Cambridge, Cambridge University Press.10.1017/CBO9780511809088Search in Google Scholar

[18] Grierz G., Hofman K.H., Keimel K., Lawson J.D., Mislove M., Scott D.S., Continuous Lattices and Domain, 2003, Cambridge, Camberidge University Press.10.1017/CBO9780511542725Search in Google Scholar

[19] Grierz G., Hofman K.H., Keimel K., Lawson J.D., Mislove M., Scott D.S., A Compendium of Continuous Lattices, 1980, Berlin: Springer-Verlag Press.10.1007/978-3-642-67678-9Search in Google Scholar

[20] Olejฤek V., Order convergence and order topology on a poset, Int. J. Theor. Phys., 1999, 38, 557-561.10.1023/A:1026690820346Search in Google Scholar

Received: 2018-04-04
Accepted: 2018-07-17
Published Online: 2018-09-18

ยฉ 2018 Sun et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Regular Articles
  2. Algebraic proofs for shallow water biโ€“Hamiltonian systems for three cocycle of the semi-direct product of Kacโ€“Moody and Virasoro Lie algebras
  3. On a viscous two-fluid channel flow including evaporation
  4. Generation of pseudo-random numbers with the use of inverse chaotic transformation
  5. Singular Cauchy problem for the general Euler-Poisson-Darboux equation
  6. Ternary and n-ary f-distributive structures
  7. On the fine Simpson moduli spaces of 1-dimensional sheaves supported on plane quartics
  8. Evaluation of integrals with hypergeometric and logarithmic functions
  9. Bounded solutions of self-adjoint second order linear difference equations with periodic coeffients
  10. Oscillation of first order linear differential equations with several non-monotone delays
  11. Existence and regularity of mild solutions in some interpolation spaces for functional partial differential equations with nonlocal initial conditions
  12. The log-concavity of the q-derangement numbers of type B
  13. Generalized state maps and states on pseudo equality algebras
  14. Monotone subsequence via ultrapower
  15. Note on group irregularity strength of disconnected graphs
  16. On the security of the Courtois-Finiasz-Sendrier signature
  17. A further study on ordered regular equivalence relations in ordered semihypergroups
  18. On the structure vector field of a real hypersurface in complex quadric
  19. Rank relations between a {0, 1}-matrix and its complement
  20. Lie n superderivations and generalized Lie n superderivations of superalgebras
  21. Time parallelization scheme with an adaptive time step size for solving stiff initial value problems
  22. Stability problems and numerical integration on the Lie group SO(3) ร— R3 ร— R3
  23. On some fixed point results for (s, p, ฮฑ)-contractive mappings in b-metric-like spaces and applications to integral equations
  24. On algebraic characterization of SSC of the Jahangirโ€™s graph ๐“™n,m
  25. A greedy algorithm for interval greedoids
  26. On nonlinear evolution equation of second order in Banach spaces
  27. A primal-dual approach of weak vector equilibrium problems
  28. On new strong versions of Browder type theorems
  29. A Gerลกgorin-type eigenvalue localization set with n parameters for stochastic matrices
  30. Restriction conditions on PL(7, 2) codes (3 โ‰ค |๐“–i| โ‰ค 7)
  31. Singular integrals with variable kernel and fractional differentiation in homogeneous Morrey-Herz-type Hardy spaces with variable exponents
  32. Introduction to disoriented knot theory
  33. Restricted triangulation on circulant graphs
  34. Boundedness control sets for linear systems on Lie groups
  35. Chenโ€™s inequalities for submanifolds in (ฮบ, ฮผ)-contact space form with a semi-symmetric metric connection
  36. Disjointed sum of products by a novel technique of orthogonalizing ORing
  37. A parametric linearizing approach for quadratically inequality constrained quadratic programs
  38. Generalizations of Steffensenโ€™s inequality via the extension of Montgomery identity
  39. Vector fields satisfying the barycenter property
  40. On the freeness of hypersurface arrangements consisting of hyperplanes and spheres
  41. Biderivations of the higher rank Witt algebra without anti-symmetric condition
  42. Some remarks on spectra of nuclear operators
  43. Recursive interpolating sequences
  44. Involutory biquandles and singular knots and links
  45. Constacyclic codes over ๐”ฝpm[u1, u2,โ‹ฏ,uk]/ใ€ˆ ui2 = ui, uiuj = ujuiใ€‰
  46. Topological entropy for positively weak measure expansive shadowable maps
  47. Oscillation and non-oscillation of half-linear differential equations with coeffcients determined by functions having mean values
  48. On ๐“ -regular semigroups
  49. One kind power mean of the hybrid Gauss sums
  50. A reduced space branch and bound algorithm for a class of sum of ratios problems
  51. Some recurrence formulas for the Hermite polynomials and their squares
  52. A relaxed block splitting preconditioner for complex symmetric indefinite linear systems
  53. On f - prime radical in ordered semigroups
  54. Positive solutions of semipositone singular fractional differential systems with a parameter and integral boundary conditions
  55. Disjoint hypercyclicity equals disjoint supercyclicity for families of Taylor-type operators
  56. A stochastic differential game of low carbon technology sharing in collaborative innovation system of superior enterprises and inferior enterprises under uncertain environment
  57. Dynamic behavior analysis of a prey-predator model with ratio-dependent Monod-Haldane functional response
  58. The points and diameters of quantales
  59. Directed colimits of some flatness properties and purity of epimorphisms in S-posets
  60. Super (a, d)-H-antimagic labeling of subdivided graphs
  61. On the power sum problem of Lucas polynomials and its divisible property
  62. Existence of solutions for a shear thickening fluid-particle system with non-Newtonian potential
  63. On generalized P-reducible Finsler manifolds
  64. On Banach and Kuratowski Theorem, K-Lusin sets and strong sequences
  65. On the boundedness of square function generated by the Bessel differential operator in weighted Lebesque Lp,ฮฑ spaces
  66. On the different kinds of separability of the space of Borel functions
  67. Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers
  68. Functional analysis method for the M/G/1 queueing model with single working vacation
  69. Existence of asymptotically periodic solutions for semilinear evolution equations with nonlocal initial conditions
  70. The existence of solutions to certain type of nonlinear difference-differential equations
  71. Domination in 4-regular Knรถdel graphs
  72. Stepanov-like pseudo almost periodic functions on time scales and applications to dynamic equations with delay
  73. Algebras of right ample semigroups
  74. Random attractors for stochastic retarded reaction-diffusion equations with multiplicative white noise on unbounded domains
  75. Nontrivial periodic solutions to delay difference equations via Morse theory
  76. A note on the three-way generalization of the Jordan canonical form
  77. On some varieties of ai-semirings satisfying xp+1 โ‰ˆ x
  78. Abstract-valued Orlicz spaces of range-varying type
  79. On the recursive properties of one kind hybrid power mean involving two-term exponential sums and Gauss sums
  80. Arithmetic of generalized Dedekind sums and their modularity
  81. Multipreconditioned GMRES for simulating stochastic automata networks
  82. Regularization and error estimates for an inverse heat problem under the conformable derivative
  83. Transitivity of the ฮตm-relation on (m-idempotent) hyperrings
  84. Learning Bayesian networks based on bi-velocity discrete particle swarm optimization with mutation operator
  85. Simultaneous prediction in the generalized linear model
  86. Two asymptotic expansions for gamma function developed by Windschitlโ€™s formula
  87. State maps on semihoops
  88. ๐“œ๐“-convergence and lim-inf๐“œ-convergence in partially ordered sets
  89. Stability and convergence of a local discontinuous Galerkin finite element method for the general Lax equation
  90. New topology in residuated lattices
  91. Optimality and duality in set-valued optimization utilizing limit sets
  92. An improved Schwarz Lemma at the boundary
  93. Initial layer problem of the Boussinesq system for Rayleigh-Bรฉnard convection with infinite Prandtl number limit
  94. Toeplitz matrices whose elements are coefficients of Bazileviฤ functions
  95. Epi-mild normality
  96. Nonlinear elastic beam problems with the parameter near resonance
  97. Orlicz difference bodies
  98. The Picard group of Brauer-Severi varieties
  99. Galoisian and qualitative approaches to linear Polyanin-Zaitsev vector fields
  100. Weak group inverse
  101. Infinite growth of solutions of second order complex differential equation
  102. Semi-Hurewicz-Type properties in ditopological texture spaces
  103. Chaos and bifurcation in the controlled chaotic system
  104. Translatability and translatable semigroups
  105. Sharp bounds for partition dimension of generalized Mรถbius ladders
  106. Uniqueness theorems for L-functions in the extended Selberg class
  107. An effective algorithm for globally solving quadratic programs using parametric linearization technique
  108. Bounds of Strong EMT Strength for certain Subdivision of Star and Bistar
  109. On categorical aspects of S -quantales
  110. On the algebraicity of coefficients of half-integral weight mock modular forms
  111. Dunkl analogue of Szรกsz-mirakjan operators of blending type
  112. Majorization, โ€œusefulโ€ Csiszรกr divergence and โ€œusefulโ€ Zipf-Mandelbrot law
  113. Global stability of a distributed delayed viral model with general incidence rate
  114. Analyzing a generalized pest-natural enemy model with nonlinear impulsive control
  115. Boundary value problems of a discrete generalized beam equation via variational methods
  116. Common fixed point theorem of six self-mappings in Menger spaces using (CLRST) property
  117. Periodic and subharmonic solutions for a 2nth-order p-Laplacian difference equation containing both advances and retardations
  118. Spectrum of free-form Sudoku graphs
  119. Regularity of fuzzy convergence spaces
  120. The well-posedness of solution to a compressible non-Newtonian fluid with self-gravitational potential
  121. On further refinements for Young inequalities
  122. Pretty good state transfer on 1-sum of star graphs
  123. On a conjecture about generalized Q-recurrence
  124. Univariate approximating schemes and their non-tensor product generalization
  125. Multi-term fractional differential equations with nonlocal boundary conditions
  126. Homoclinic and heteroclinic solutions to a hepatitis C evolution model
  127. Regularity of one-sided multilinear fractional maximal functions
  128. Galois connections between sets of paths and closure operators in simple graphs
  129. KGSA: A Gravitational Search Algorithm for Multimodal Optimization based on K-Means Niching Technique and a Novel Elitism Strategy
  130. ฮธ-type Calderรณn-Zygmund Operators and Commutators in Variable Exponents Herz space
  131. An integral that counts the zeros of a function
  132. On rough sets induced by fuzzy relations approach in semigroups
  133. Computational uncertainty quantification for random non-autonomous second order linear differential equations via adapted gPC: a comparative case study with random Frรถbenius method and Monte Carlo simulation
  134. The fourth order strongly noncanonical operators
  135. Topical Issue on Cyber-security Mathematics
  136. Review of Cryptographic Schemes applied to Remote Electronic Voting systems: remaining challenges and the upcoming post-quantum paradigm
  137. Linearity in decimation-based generators: an improved cryptanalysis on the shrinking generator
  138. On dynamic network security: A random decentering algorithm on graphs
Downloaded on 10.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/math-2018-0090/html
Scroll to top button