Open Mathematics

Research Article

Tao Sun, Qingguo Li*, and Nianbai Fan

$\mathfrak{MN}\text{-}\mathsf{convergence}$ and $\text{lim-inf}_{\mathfrak{M}}\text{-}\mathsf{convergence}$ in partially ordered sets

https://doi.org/10.1515/math-2018-0090 Received April 4, 2018; accepted July 17, 2018.

Abstract: In this paper, we first introduce the notion of \mathfrak{MN} -convergence in posets as an unified form of O-convergence and O_2 -convergence. Then, by studying the fundamental properties of \mathfrak{MN} -topology which is determined by \mathfrak{MN} -convergence according to the standard topological approach, an equivalent characterization to the \mathfrak{MN} -convergence being topological is established. Finally, the $\liminf_{\mathfrak{M}}$ -convergence in posets is further investigated, and a sufficient and necessary condition for $\liminf_{\mathfrak{M}}$ -convergence to be topological is obtained.

Keywords: MN-convergence, MN-topology, $\lim \inf_{\mathcal{M}}$ -convergence, M-topology

MSC: 54A20, 06A06

1 Introduction, Notations and Preliminaries

The concept of *O*-convergence in partially ordered sets (posets, for short) was introduced by Birkhoff [1], Frink [2] and Mcshane [3]. It is defined as follows: a net $(x_i)_{i \in I}$ in a poset *P* is said to *O*-converge to $x \in P$ if there exist subsets *D* and *F* of *P* such that

- (1) *D* is directed and *F* is filtered;
- (2) $\sup D = x = \inf F$;
- (3) for every $d \in D$ and $e \in F$, $d \le x_i \le e$ holds eventually, i.e., there exists $i_0 \in I$ such that $d \le x_i \le e$ for all $i \ge i_0$.

As what has been showed in [4], the O-convergence (Note: in [4], the O-convergence is called order-convergence) in a general poset P may not be topological, i.e., it is possible that P can not be endowed with a topology such that the O-convergence and the associated topological convergence are consistent. Hence, much work has been done to characterize those special posets in which the O-convergence is topological. The most recent result in [5] shows that the O-convergence in a poset which satisfies Condition (\triangle) is topological if and only if the poset is \bigcirc -doubly continuous. This means that for a special class of posets, a sufficient and necessary condition for O-convergence being topological is obtained.

As a direct generalization of O-convergence, O_2 -convergence in posets has been discussed in [11] from the order-theoretical point of view. It is defined as follows: a net $(x_i)_{i \in I}$ in a poset P is said to O_2 -converge to $x \in P$ if there exist subsets A and B of P such that

Tao Sun: Department of Math, Hunan University of Arts and Science, Changde, Hunan 415000, China,

E-mail: suntao5771@163.com

Nianbai Fan: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China, E-mail: nbfan6203@163.com

^{*}Corresponding Author: Qingguo Li: College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China, E-mail: liqingguoli@aliyun.com

- (1) $\sup A = x = \inf B$;
- (2) for every $a \in A$ and $b \in B$, $a \le x_i \le b$ holds eventually.

In fact, the O_2 -convergence is also not topological generally. To clarify those special posets in which the O_2 -convergence is topological, Zhao and Li [6] showed that for any poset P satisfying Condition (*), O_2 -convergence is topological if and only if P is α -doubly continuous. As a further result, Li and Zou [7] proved that the O_2 -convergence in a poset P is topological if and only if P is O_2 -doubly continuous. This result demonstrates the equivalence between the O_2 -convergence being topological and the O_2 -double continuity of a given poset.

On the other hand, Zhou and Zhao [8] have defined the $\liminf_{\mathcal{M}}$ -convergence in posets to generalize $\liminf_{\mathcal{M}}$ -convergence and $\liminf_{\mathcal{M}}$ -convergence in a poset is topological if and only if the poset is $\alpha(\mathcal{M})$ -continuous when some additional conditions are satisfied (see [8], Theorem 3.1). This result clarified some special conditions of posets under which the $\liminf_{\mathcal{M}}$ -convergence is topological. However, to the best of our knowledge, the equivalent characterization to the $\liminf_{\mathcal{M}}$ -convergence in general posets being topological is still unknown.

One goal of this paper is to propose the notion of \mathfrak{MN} -convergence in posets which can unify O-convergence and O_2 -convergence and search the equivalent characterization to the \mathfrak{MN} -convergence being topological. More precisely,

(G11)Given a general poset P, we hope to clarify the order-theoretical condition of P which is sufficient and necessary for the \mathfrak{MN} -convergence being topological.

(G12)Given a poset P satisfying such condition, we hope to provide a topology that can be equipped on P such that the MN-convergence and the associated topological convergence agree.

Another goal is to look for the equivalent characterization to the $\liminf_{\mathfrak{M}}$ -convergence being topological. More precisely,

(G21)Given a general poset P, we expect to present a sufficient and necessary condition of P which can precisely serve as an order-theoretical condition for the lim-inf_M-convergence being topological.

(G22)Given a poset P satisfying such condition, we expect to give a topology on P such that the lim-inf_M-convergence and the associated topological convergence are consistent.

To accomplish those goals, motivated by the ideal of introducing the Z-subsets system [9] for defining Z-continuous posets , we propose the notion of \mathfrak{MN} -doubly continuous posets and define the \mathfrak{MN} -topology on posets in Section 2. Based on the study of the basic properties of the \mathfrak{MN} -topology, it is proved that the \mathfrak{MN} -convergence in a poset P is topological if and only if P is an \mathfrak{MN} -doubly continuous poset if and only if the \mathfrak{MN} -convergence and the topological convergence with respect to \mathfrak{MN} -topology are consistent. In Section 3, by introducing the notion of $\alpha^*(\mathfrak{M})$ -continuous posets and presenting the fundamental properties of \mathfrak{M} -topology which is induced by the $\liminf_{\mathfrak{M}}$ -convergence, we show that the $\liminf_{\mathfrak{M}}$ -convergence in a poset P is topological if and only if P is an $\alpha^*(\mathfrak{M})$ -continuous poset if and only if the $\liminf_{\mathfrak{M}}$ -convergence and the topological convergence with respect to \mathfrak{M} -topology are consistent.

Some conventional notations will be used in the paper. Given a set X, $F \subseteq X$ means that F is a finite subset of X. Given a topological space (X, T) and a net $(x_i)_{i \in I}$ in X, we take $(x_i)_{i \in I} \to x$ to mean the net $(x_i)_{i \in I}$ converges to $x \in P$ with respect to the topology T.

Let *P* be a poset and $x \in P$. $\uparrow x$ and $\downarrow x$ are always used to denote the principal filter $\{y \in P : y \geqslant x\}$ and the principal ideal $\{z \in P : z \leqslant x\}$ of *P*, respectively. Given a poset *P* and $A \subseteq P$, by writing $\sup A$ we mean that the least upper bound of *A* in *P* exists and equals to $\sup A \in P$; dually, by writing $\inf A$ we mean that the greatest lower bound of *A* in *P* exists and equals to $\inf A \in P$. And the set *A* is called an upper set if $A = \uparrow A = \{b \in P; (\exists a \in A) \ a \leqslant b\}$, the lower set is defined dually.

For a poset *P*, we succinctly denote

- $\mathcal{P}(P) = \{A : A \subseteq P\}; \mathcal{P}_0(P) = \mathcal{P}(P)/\{\emptyset\};$
- $\mathcal{D}(P)$ = { $D \in \mathcal{P}(P)$: D is a directed subset of P};

```
- \mathcal{F}(P) = \{F \in \mathcal{P}(P) : F \text{ is a filtered subset of } P\};

- \mathcal{L}(P) = \{L \in \mathcal{P}(P) : L \sqsubseteq P\}; \mathcal{L}_0(P) = \mathcal{L}(P)/\{\emptyset\};

- \mathcal{S}_0(P) = \{\{x\} : x \in P\}.
```

To make this paper self-contained, we briefly review the following notions:

Definition 1.1 ([5]). Let P be a poset and x, y, $z \in P$. We say $y \ll_{\mathbb{O}} x$ if for every net $(x_i)_{i \in I}$ in P which O-converges to $x \in P$, $x_i \geqslant y$ holds eventually; dually, we say $z \rhd_{\mathbb{O}} x$ if for every net $(x_i)_{i \in I}$ in P which O-converges to $x \in P$, $x_i \leqslant z$ holds eventually.

Definition 1.2 ([5]). A poset P is said to be \mathbb{O} -doubly continuous if for every $x \in P$, the set $\{a \in P : a \ll_{\mathbb{O}} x\}$ is directed, the set $\{b \in P : b \rhd_{\mathbb{O}} x\}$ is filtered and $\sup\{a \in P : a \ll_{\mathbb{O}} x\} = x = \inf\{b \in P : b \rhd_{\mathbb{O}} x\}$.

Condition (\triangle). *A poset P is said to satisfy* Condition(\triangle) *if*

- (1) for any $x, y, z \in P$, $x \ll_{\mathcal{O}} y \leqslant z$ implies $x \ll_{\mathcal{O}} z$;
- (2) for any $w, s, t \in P$, $w \triangleright_{\mathcal{O}} s \geqslant t$ implies $w \triangleright_{\mathcal{O}} t$.

Definition 1.3 ([6]). Let P be a poset and $x, y, z \in P$. We say $y \ll_{\alpha} x$ if for every net $(x_i)_{i \in I}$ in P which O_2 -converges to $x \in P$, $x_i \geqslant y$ holds eventually; dually, we say $z \rhd_{\alpha} x$ if for every net $(x_i)_{i \in I}$ in P which O_2 -converges to $x \in P$, $x_i \leqslant z$ holds eventually.

Definition 1.4 ([7]). A poset P is said to be O_2 -doubly continuous if for every $x \in P$,

- (1) $\sup\{a \in P : a \ll_{\alpha} x\} = x = \inf\{b \in P : b \rhd_{\alpha} x\};$
- (2) for any $y, z \in P$ with $y \ll_{\alpha} x$ and $z \rhd_{\alpha} x$, there exist $A \sqsubseteq \{a \in P : a \ll_{\alpha} x\}$ and $B \sqsubseteq \{b \in P : b \rhd_{\alpha} x\}$ such that $y \ll_{\alpha} c$ and $z \rhd_{\alpha} c$ for each $c \in \bigcap \{\uparrow a \cap \downarrow b : a \in A \& b \in B\}$.

2 MN-topology on posets

Based on the introduction of \mathfrak{MN} -convergence in posets, the \mathfrak{MN} -topology can be defined on posets. In this section, we first define the \mathfrak{MN} -double continuity for posets. Then, we show the equivalence between the \mathfrak{MN} -convergence being topological and the \mathfrak{MN} -double continuity of a given poset.

A *PMN-space* is a triplet $(P, \mathcal{M}, \mathcal{N})$ which consists of a poset P and two subfamily $\mathcal{M}, \mathcal{N} \subseteq \mathcal{P}(P)$.

All *PMN*-spaces $(P, \mathcal{M}, \mathcal{N})$ considered in this section are assumed to satisfy the following conditions:

- (C1) If *P* has the least element \bot , then $\{\bot\} \in \mathcal{M}$;
- (C2) If *P* has the greatest element \top , then $\{\top\} \in \mathbb{N}$;
- (C3) $\emptyset \notin \mathcal{M}$ and $\emptyset \notin \mathcal{N}$.

Definition 2.1. Let $(P, \mathcal{M}, \mathcal{N})$ be a PMN-space. A net $(x_i)_{i \in I}$ in P is said to $\mathcal{M}\mathcal{N}$ -converge to $x \in P$ if there exist $M \in \mathcal{M}$ and $N \in \mathcal{N}$ satisfying:

 $(MN1)\sup M = x = \inf N;$

 $(MN2)x_i \in \uparrow m \cap \downarrow n$ eventually for every $m \in M$ and every $n \in N$.

In this case, we will write $(x_i)_{i \in I} \stackrel{\mathfrak{MN}}{\to} x$.

Remark 2.2. *Let* $(P, \mathcal{M}, \mathcal{N})$ *be a PMN-space.*

- (1) If M = D(P) and $N = \mathcal{F}(P)$, then a net $(x_i)_{i \in I} \stackrel{MN}{\to} x \in P$ if and only if it O-converges to x. That is to say, O-convergence is a particular case of MN-convergence.
- (2) If $M = N = \mathcal{P}_0(P)$, then a net $(x_i)_{i \in I} \xrightarrow{MN} x \in P$ if and only if it O_2 -converges to x. That is to say, O_2 -convergence is a special case of MN-convergence.

- (3) If $M = N = \mathcal{L}_0(P)$, then a net $(x_i)_{i \in I} \xrightarrow{MN} x \in P$ if and only if $x_i = x$ holds eventually.
- (4) The MN-convergent point of a net $(x_i)_{i \in I}$ in P, if exists, is unique. Indeed, suppose that $(x_i)_{i\in I} \xrightarrow{MN} x_1$ and $(x_i)_{i\in I} \xrightarrow{MN} x_2$. Then there exist $A_k \in M$ and $B_k \in N$ such that $\sup A_k = x_k = \inf B_k$ and $a_k \le x_i \le b_k$ holds eventually for every $a_k \in A_k$ and $b_k \in B_k$ (k = 1, 2). This implies that for any $a_1 \in A_1$, $a_2 \in A_2$, $b_1 \in B_1$ and $b_2 \in B_2$, there exists $i_0 \in I$ such that $a_1 \leqslant x_{i_0} \leqslant b_2$ and $a_2 \le x_{i_0} \le b_1$. Thus we have $\sup A_1 = x_1 \le \inf B_2 = x_2$ and $\sup A_2 = x_2 \le \inf B_1 = x_1$. Therefore $x_1 = x_2$.
- (5) For any $A \in \mathcal{M}$ and $B \in \mathcal{N}$ with $\sup A = \inf B = x \in P$, we denote $F_{(A,B)}^{x} = \{ \bigcap \{ \uparrow a \cap \downarrow b : a \in A_0 \& b \in B_0 \} : a \in A_0 \& b \in B_0 \}$ $A_0 \sqsubseteq A \& B_0 \sqsubseteq B$ ¹. Let $D_{(A,B)}^x = \{(d,D) \in P \times F_{(A,B)}^x : d \in D\}$ and let the preorder \leq on $D_{(A,B)}^x$ be defined by

$$(\forall (d_1, D_1), (d_2, D_2) \in D_{(A,B)}^{\chi}) (d_1, D_1) \leq (d_2, D_2) \iff D_2 \subseteq D_1.$$

One can readily check that $(D_{(A,B)}^{x}, \leq)$ is directed. Now if we take $x_{(d,D)} = d$ for every $(d,D) \in D_{(A,B)}^{x}$, then the $net(x_{(d,D)})_{(d,D)\in D^{\times}_{(A,B)}}\overset{\mathcal{M}\mathcal{N}}{\longrightarrow} x \ because \ \sup A = \inf B = x, \ and \ a \leqslant x_{(d,D)} \leqslant b \ holds \ eventually \ for \ any \ a \in A$ and $b \in B$.

(6) Let $(x_{(d,D)})_{(d,D)\in D_{(A,B)}^x}$ be the net defined in (5) for any $A\in \mathcal{M}$ and $B\in \mathcal{N}$ with $\sup A=\inf B=x\in P$. If $(x_{(d,D)})_{(d,D)\in D_{(d,B)}^x}$ converges to $p\in P$ with respect to some topology $\mathfrak T$ on the poset P, then for every open neighborhood U_p of p, there exist $A_0 \sqsubseteq A$ and $B_0 \sqsubseteq B$ such that

$$\bigcap \{ \uparrow a \cap \downarrow b : a \in A_0 \& b \in B_0 \} \subseteq U_p.$$

Indeed, suppose that $(x_{(d,D)})_{(d,D)\in D_{(A,B)}^x} \stackrel{\mathbb{T}}{\longrightarrow} p$. Then for every open neighborhood U_p of p, there exists $(d_0,D_0)\in D_{(A,B)}^x$ such that $x_{(d,D)}=d\in U_p$ for all $(d,D)\geq (d_0,D_0)$. Since $(d,D_0)\geq (d_0,D_0)$ for every $d \in D_0$, $x_{(d,D)} = d \in U_p$ for every $d \in D_0$. This shows $D_0 \subseteq U_p$. So, there exist $A_0 \sqsubseteq A$ and $B_0 \sqsubseteq B$ such that

$$D_0 = \bigcap \{ \uparrow a \cap \downarrow b : a \in A_0 \& b \in B_0 \} \subseteq U_p.$$

Given a *PMN*-space (P, M, M), we can define two new approximate relations \ll_M^N and \rhd_M^N on the poset P in the following definition.

Definition 2.3. Let $(P, \mathcal{M}, \mathcal{N})$ be a PMN-space and $x, y, z \in P$.

(1) We define $y \ll_{\mathcal{M}}^{\mathcal{N}} x$ if for any $A \in \mathcal{M}$ and $B \in \mathcal{N}$ with $\sup A = x = \inf B$, there exist $A_0 \subseteq A$ and $B_0 \subseteq B$ such that

$$\bigcap \{ \uparrow a \cap \downarrow b : a \in A_0 \& b \in B_0 \} \subseteq \uparrow y.$$

(2) Dually, we define $z \triangleright_{M}^{\mathbb{N}} x$ if for any $M \in \mathbb{M}$ and $N \in \mathbb{N}$ with $\sup M = x = \inf N$, there exist $M_0 \sqsubseteq M$ and $N_0 \sqsubseteq N$ such that

$$\bigcap \{\uparrow m \cap \downarrow n : m \in M_0 \& n \in N_0\} \subseteq \downarrow z.$$

For convenience, given a *PMN*-space $(P, \mathcal{M}, \mathcal{N})$ and $x \in P$, we will briefly denote

- $\quad \mathbf{V}_{\mathcal{M}}^{\mathcal{N}} x = \{ y \in P : y \ll_{\mathcal{M}}^{\mathcal{N}} x \};$
- $\quad \mathbf{A}_{\mathcal{M}}^{\mathcal{N}} x = \{ z \in P : x \leqslant_{\mathcal{M}}^{\mathcal{N}} z \};$ $\quad \nabla_{\mathcal{M}}^{\mathcal{N}} x = \{ a \in P : x \rhd_{\mathcal{M}}^{\mathcal{N}} a \};$ $\quad \Delta_{\mathcal{M}}^{\mathcal{N}} x = \{ b \in P : b \rhd_{\mathcal{M}}^{\mathcal{N}} x \}.$

Remark 2.4. Let $(P, \mathcal{M}, \mathcal{N})$ be a PMN-space and $x, y, z \in P$.

- (1) If there is no $A \in M$ such that $\sup A = x$, then $p \ll_M^N x$ and $p \rhd_M^N x$ for all $p \in P$; similarly, if there is no $B \in M$ such that $\inf B = x$, then $p \ll_{\mathcal{M}}^{\mathcal{N}} x$ and $p \rhd_{\mathcal{M}}^{\mathcal{N}} x$ for all $p \in P$.
- (2) By Definition 2.3, one can easily check that if P has the least element \bot , then $\bot \ll_M^N p$ for every $p \in P$, and if P has the greatest element \top , then $\top \rhd_{\mathfrak{M}}^{\mathfrak{N}} p$ for every $p \in P$.

¹ From the logical point of view, we stipulate $\bigcap \{ \uparrow a \cap \downarrow b : a \in A_0 \& b \in B_0 \} = P \text{ if } A_0 = \emptyset \text{ or } B_0 = \emptyset.$

- (3) The implications $y \ll_{\mathbb{M}}^{\mathbb{N}} x \Rightarrow x \leqslant y$ and $z \rhd_{\mathbb{M}}^{\mathbb{N}} x \Rightarrow z \geqslant x$ are not true necessarily. See the following example: let \mathbb{R} be the set of all real numbers, in its ordinal order, and $\mathbb{M} = \mathbb{N} = \{\{n\} : n \in \mathbb{Z}\}$, where \mathbb{Z} is the set of all integers. Then, by (1), we have $1 \ll_{\mathcal{M}}^{\mathcal{N}} 1/2$ and $0 \rhd_{\mathcal{M}}^{\mathcal{N}} 1/2$. But $1 \leqslant 1/2$ and $0 \geqslant 1/2$.
- (4) Assume that $\sup A_0 = x = \inf B_0$ for some $A_0 \in \mathcal{M}$ and $B_0 \in \mathcal{N}$. Then it follows from Definition 2.3 that $y \ll_{\mathcal{M}}^{\mathcal{N}} x$ implies $y \leqslant x$ and $z \rhd_{\mathcal{M}}^{\mathcal{N}} x$ implies $z \geqslant x$. In particular, if $\mathfrak{S}_0(P) \subseteq \mathcal{M}$, \mathcal{N} , then $b \ll_{\mathcal{M}}^{\mathcal{N}} a$ implies $b \leqslant a$ and $c \triangleright_{\mathfrak{M}}^{\mathfrak{N}} a$ implies $c \geqslant a$ for any $a, b, c \in P$. More particularly, for any $p_1, p_2, p_3 \in P$, we have $p_1 \ll_{S_0}^{S_0}$ $p_2 \Longleftrightarrow p_1 \leqslant p_2 \text{ and } p_3 \rhd_{\mathcal{S}_0}^{\mathcal{S}_0} p_2 \Longleftrightarrow p_3 \geqslant p_2.$

Proposition 2.5. *Let* $(P, \mathcal{M}, \mathcal{N})$ *be a PMN-space and* $x, y, z \in P$. *Then*

- (1) $y \ll_{\mathcal{M}}^{\mathcal{N}} x$ if and only if for every net $(x_i)_{i \in I}$ that \mathcal{MN} -converges to $x, x_i \geqslant y$ holds eventually.
- (2) $z \triangleright_{\mathcal{M}}^{\mathcal{N}} x$ if and only if for every net $(x_i)_{i \in I}$ that \mathcal{MN} -converges to $x, x_i \leq z$ holds eventually.

Proof. (1) Suppose $y \ll_{\mathcal{M}}^{\mathcal{N}} x$. If a net $(x_i)_{i \in I} \xrightarrow{\mathcal{M} \mathcal{N}} x$, then there exist $A \in \mathcal{M}$ and $B \in \mathcal{N}$ such that $\sup A = x = x$ inf B, and for any $a \in A$ and $b \in B$, there exists $i_a^b \in I$ such that $a \leqslant x_i \leqslant b$ for all $i \geqslant i_a^b$. According to Definition 2.3 (1), it follows that there exist $A_0 = \{a_1, a_2, ..., a_n\} \subseteq A$ and $B_0 = \{b_1, b_2, ..., b_m\} \subseteq B$ such that $x \in \bigcap \{ \uparrow a_k \cap \downarrow b_j : 1 \le k \le n \& 1 \le j \le m \} \subseteq \uparrow y$. Take $i_0 \in I$ with that $i_0 \geqslant i_{a_k}^{b_j}$ for every $k \in \{1, 2, ..., n\}$ and every $j \in \{1, 2, ..., m\}$. Then $x_i \in \bigcap \{ \uparrow a_k \cap \downarrow b_j : 1 \le k \le n \& 1 \le j \le m \} \subseteq \uparrow y$ for all $i \geqslant i_0$. This means $x_i \geqslant y$ holds eventually.

Conversely, suppose that for every net $(x_i)_{i \in I}$ that \mathfrak{MN} -converges to x, $x_i \ge y$ holds eventually. For every $A \in \mathcal{M}$ and $B \in \mathcal{N}$ with $\sup A = x = \inf B$, consider the net $(x_{(d,D)})_{(d,D) \in D_{(A,B)}^{\times}}$ defined in Remark 2.2 (5). By

Remark 2.2 (5), the net $(x_{(d,D)})_{(d,D)\in D^x_{(A,B)}} \stackrel{\mathcal{M}\mathcal{N}}{\longrightarrow} x$. So, there exists $(d_0,D_0)\in D^x_{(A,B)}$ such that $x_{(d,D)}=d\geqslant y$ for all $(d,D)\geq (d_0,D_0)$. Since $(d,D_0)\geq (d_0,D_0)$ for all $d\in D_0$, $x_{(d,D_0)}=d\geqslant y$ for all $d\in D_0$. Thus,we have $D_0\subseteq \uparrow y$. It follows from the definition of $D^x_{(A,B)}$ that there exist $A_0 \subseteq A$ and $B_0 \subseteq B$ such that $D_0 = \bigcap \{ \uparrow a \cap \downarrow b : a \in A \}$ $A_0 \& b \in B_0 \} \subseteq \uparrow y$. This shows $y \ll_{\mathcal{M}}^{\mathcal{N}} x$.

The proof of (2) can be processed similarly.

Remark 2.6. *Let* $(P, \mathcal{M}, \mathcal{N})$ *be a PMN-space.*

- (1) If $\mathcal{M} = \mathcal{D}(P)$ and $\mathcal{N} = \mathcal{F}(P)$, then $\ll_{\mathcal{D}}^{\mathcal{F}} = \ll_{\mathcal{O}}$ and $\rhd_{\mathcal{D}}^{\mathcal{F}} = \rhd_{\mathcal{O}}$. (2) If $\mathcal{M} = \mathcal{N} = \mathcal{P}_0(P)$, then $\ll_{\mathcal{P}_0}^{\mathcal{P}_0} = \ll_{\alpha}$ and $\rhd_{\mathcal{P}_0}^{\mathcal{P}_0} = \rhd_{\alpha}$.

Given a *PMN*-space $(P, \mathcal{M}, \mathcal{N})$, depending on the approximate relations $\ll_{\mathcal{M}}^{\mathcal{N}}$ and $\rhd_{\mathcal{M}}^{\mathcal{N}}$ on P. we can define the MN-double continuity for the poset P.

Definition 2.7. Let $(P, \mathcal{M}, \mathcal{N})$ be a PMN-space. The poset P is called an $\mathcal{M}\mathcal{N}$ -doubly continuous poset if for every $x \in P$, there exist $M_x \in \mathcal{M}$ and $N_x \in \mathcal{N}$ such that

 $(A1)M_x \subseteq \bigvee_{M}^{N} x$, $N_x \subseteq \triangle_{M}^{N} x$ and $\sup M_x = x = \inf N_x$.

(A2)For any $y \in \P^N_{\mathfrak{M}}x$ and $z \in \Delta^N_{\mathfrak{M}}x$, $\bigcap \{\uparrow m \cap \downarrow n : m \in M_0 \& n \in N_0\} \subseteq \blacktriangle^N_{\mathfrak{M}}y \cap \nabla^N_{\mathfrak{M}}z$ for some $M_0 \sqsubseteq M_x$ and $N_0 \sqsubset N_x$.

By Remark 2.4 (4) and Definition 2.7, we have the following basic property about MN-doubly continuous posets:

Proposition 2.8. Let $(P, \mathcal{M}, \mathcal{N})$ be a PMN-space and $x, y, z \in P$. If the poset P is an \mathcal{MN} -doubly continuous poset, then $y \ll_{\mathcal{M}}^{\mathcal{N}} x$ implies $y \leqslant x$ and $z \rhd_{\mathcal{M}}^{\mathcal{N}} x$ implies $z \geqslant x$.

Example 2.9. *Let* $(P, \mathcal{M}, \mathcal{N})$ *be a PMN-space.*

- (1) If $\mathcal{M} = \mathcal{N} = \mathcal{S}_0(P)$, then by Remark 2.4 (4), we have $\ll_{\mathcal{S}_0}^{\mathcal{S}_0} = \leqslant$ and $\rhd_{\mathcal{S}_0}^{\mathcal{S}_0} = \geqslant$. By Definition 2.7, one can easily check that P is an S_0S_0 -doubly continuous poset.
- (2) If $M = N = \mathcal{L}_0(P)$, then by Definition 2.3, we have $\ll_{\mathcal{L}_0}^{\mathcal{L}_0} = \leqslant$ and $\rhd_{\mathcal{L}_0}^{\mathcal{L}_0} = \geqslant$. It can be easily checked from *Definition 2.7 that P is an* $\mathcal{L}_0\mathcal{L}_0$ *-doubly continuous poset.*

(3) Let M = D(P) and N = F(P). Then it is easy to check that if P is an O-doubly continuous poset which satisfies Condition (\triangle), then it is a DF-doubly continuous poset. Particularly, finite posets, chains and anti-chains, completely distributive lattices are all DF-doubly continuous posets.

(4) Let $M = \mathcal{P}_0(P)$. Then the poset P is $\mathcal{P}_0\mathcal{P}_0$ -double continuous if and only if it is O_2 -double continuous. Thus, chains and finite posets are all $\mathcal{P}_0\mathcal{P}_0$ -doubly continuous posets.

Next, we are going to consider the MN-topology on posets, which is induced by the MN-convergence.

Definition 2.10. *Given a PMN-space* $(P, \mathcal{M}, \mathcal{N})$, *a subset U of P is called an* $\mathcal{M}\mathcal{N}$ -open set *if for every net* $(x_i)_{i \in I}$ *with that* $(x_i)_{i \in I} \xrightarrow{\mathcal{M}\mathcal{N}} x \in U$, $x_i \in U$ *holds eventually.*

Clearly, the family $\mathcal{O}_{\mathfrak{M}}^{\mathfrak{N}}(P)$ consisting of all \mathfrak{MN} -open subsets of P forms a topology on P. And this topology is called the \mathfrak{MN} -*topology*.

Theorem 2.11. Let $(P, \mathcal{M}, \mathcal{N})$ be a PMN-space. Then a subset U of P is an $\mathcal{M}\mathcal{N}$ -open set if and only if for every $M \in \mathcal{M}$ and $N \in \mathcal{N}$ with $\sup M = x = \inf N \in U$, we have

$$\bigcap \{\uparrow m \cap \downarrow n : m \in M_0 \& n \in N_0\} \subseteq U$$

for some $M_0 \sqsubseteq M$ *and* $N_0 \sqsubseteq N$.

Proof. Suppose that *U* is an $\mathfrak{M} \mathbb{N}$ -open subset of *P*. For every $M \in \mathbb{M}$ and $N \in \mathbb{N}$ with $\sup_{M \in \mathbb{N}} M = x = \inf_{M \in \mathbb{N}} N \in U$, let $(x_{(d,D)})_{(d,D) \in D^x_{(M,N)}}$ be the net defined in Remark 2.2 (5). Then the net $(x_{(d,D)})_{(d,D) \in D^x_{(M,N)}} \longrightarrow x$. By the definition of $\mathfrak{M} \mathbb{N}$ -open set, the exists $(d_0,D_0) \in D^x_{(M,N)}$ such that $x_{(d,D)} = d \in U$ for all $(d,D) \ge (d_0,D_0)$. Since $(d,D_0) \ge (d_0,D_0)$ for all $d \in D_0$, $x_{(d,D_0)} = d \in U$ for every $d \in D_0$, and thus $D_0 \subseteq U$. It follows from the definition of the directed set $D^x_{(M,N)}$ that $D_0 = \bigcap \{ \uparrow m \cap \downarrow n : m \in M_0 \& n \in N_0 \} \subseteq U$ for some $M_0 \sqsubseteq M$ and some $N_0 \sqsubseteq N$.

Conversely, assume that U is a subset of P with the property that for any $M \in \mathbb{N}$ and $N \in \mathbb{N}$ with $\sup M = x = \inf N \in U$, there exist $M_0 = \{m_1, m_2, ..., m_k\} \sqsubseteq M$ and $N_0 = \{n_1, n_2, ..., n_l\} \sqsubseteq N$ such that $\bigcap \{ \uparrow m_h \cap \downarrow n_j : 1 \le h \le k \& 1 \le j \le l \} \subseteq U$. Let $(x_i)_{i \in I}$ be a net that $\mathfrak{M} \mathbb{N}$ -converges to $x \in U$. Then there exist $M \in \mathbb{M}$ and $N \in \mathbb{N}$ such that $\sup M = x = \inf N \in U$, and for every $m \in M$ and $n \in N$, $m \le x_i \le n$ holds eventually. This means that for every $m_h \in M_0$ and $n_j \in N_0$, there exists $i_{h,j} \in I$ such that $m_h \le x_i \le n_j$ for all $i \ge i_{h,j}$. Take $i_0 \in I$ such that $i_0 \ge i_{h,j}$ for all $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$. Then $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$. Then $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$. Then $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$. Then $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$. Then $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$. Then $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$. Then $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$. Then $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$. Then $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$. Then $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$. Then $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$. Then $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$ and $h \in \{1, 2, ..., k\}$. Then $h \in \{1, 2, ..., k\}$ and $h \in$

Proposition 2.12. *Let* $(P, \mathcal{M}, \mathcal{N})$ *be a PMN-space in which P is an* \mathcal{MN} *-doubly continuous poset, and* $y, z \in P$ *. Then* $\blacktriangle_{\mathcal{M}}^{\mathcal{N}} y \cap \nabla_{\mathcal{M}}^{\mathcal{N}} z \in \mathcal{O}_{\mathcal{M}}^{\mathcal{N}}(P)$.

Proof. Suppose that $M \in \mathcal{M}$ and $N \in \mathcal{N}$ with $\sup M = \inf N = x \in \blacktriangle_{\mathcal{M}}^{\mathcal{N}} y \cap \nabla_{\mathcal{M}}^{\mathcal{N}} z$. Since P is an $\mathcal{M} \mathcal{N}$ -doubly continuous poset, there exist $M_x \in \mathcal{M}$ and $N_x \in \mathcal{N}$ satisfying condition (A1) and (A2) in Definition 2.7. This means that there exist $M_0 \sqsubseteq M_x \subseteq \blacktriangledown_{\mathcal{M}}^{\mathcal{N}} x$ and $N_0 \sqsubseteq N_x \subseteq \triangle_{\mathcal{M}}^{\mathcal{N}} x$ such that $\bigcap \{ \uparrow m_0 \cap \downarrow n_0 : m_0 \in M_0 \& n_0 \in N_0 \} \subseteq \blacktriangle_{\mathcal{M}}^{\mathcal{N}} x$. As $M_0 \sqsubseteq M_x \subseteq \blacktriangledown_{\mathcal{M}}^{\mathcal{N}} x$ and $N_0 \sqsubseteq N_x \subseteq \triangle_{\mathcal{M}}^{\mathcal{N}} x$, by Definition 2.3, there exist $M_{m_0} \sqsubseteq M$ and $N_{n_0} \sqsubseteq N$ such that $\bigcap \{ \uparrow m \cap \downarrow n : m \in M_{m_0} \& n \in N_{n_0} \} \subseteq \uparrow m_0 \cap \downarrow n_0$ for every $m_0 \in M_0$ and $n_0 \in N_0$. Take $M_F = \bigcup \{M_{m_0} : m_0 \in M_0\}$ and $N_F = \bigcup \{N_{n_0} : n_0 \in N_0\}$. Then it is easy to check that $M_F \sqsubseteq M$, $N_F \sqsubseteq N$ and

$$egin{aligned} x \in \bigcap \{ \uparrow a \cap \mathop{\downarrow} b : a \in M_F \ \& \ b \in N_F \} \ \\ \subseteq \bigcap \{ \uparrow m_0 \cap \mathop{\downarrow} n_0 : m_0 \in M_0 \ \& \ n_0 \in N_0 \} \ \\ \subseteq \blacktriangle^{\mathcal{N}}_{\mathcal{M}} y \cap \mathop{\triangledown}^{\mathcal{N}}_{\mathcal{M}} z. \end{aligned}$$

So, it follows from Theorem 2.11 that $\blacktriangle_{\mathfrak{M}}^{\mathfrak{N}}y\cap\triangledown_{\mathfrak{M}}^{\mathfrak{N}}z\in\mathfrak{O}_{\mathfrak{M}}^{\mathfrak{N}}(P)$.

Lemma 2.13. Let $(P, \mathcal{M}, \mathcal{N})$ be a PMN-space in which P is an \mathcal{MN} -doubly continuous poset. Then a net

$$(x_i)_{i\in I}\stackrel{\mathcal{M}\mathcal{N}}{\longrightarrow} x\in P \Longleftrightarrow (x_i)_{i\in I}\stackrel{\mathcal{O}^{\mathcal{N}}_{\mathcal{M}}(P)}{\longrightarrow} x.$$

Proof. From the definition of $\mathcal{O}_{\mathcal{M}}^{\mathcal{N}}(P)$, it is easy to see that a net

$$(x_i)_{i\in I}\stackrel{\mathfrak{MN}}{\rightarrow} x\in P \Longrightarrow (x_i)_{i\in I}\stackrel{\mathfrak{O}_{\mathfrak{M}}^{\mathfrak{N}}(P)}{\rightarrow} x.$$

To prove the Lemma, it suffices to show that a net $(x_i)_{i\in I} \stackrel{\mathcal{O}^{\mathcal{N}}_{\mathcal{M}}(P)}{\longrightarrow} x \in P$ implies $(x_i)_{i\in I} \stackrel{\mathcal{M}}{\longrightarrow} x$. Suppose a net $(x_i)_{i\in I} \stackrel{\mathcal{O}^{\mathcal{N}}_{\mathcal{M}}(P)}{\longrightarrow} x$. Since P is an $\mathcal{M}\mathcal{N}$ -doubly continuous poset, there exist $M_x \in \mathcal{M}$ and $N_x \in \mathcal{N}$ such that $M_x \subseteq \blacktriangledown^{\mathcal{N}}_{\mathcal{M}} x$, $N_x \subseteq \Delta^{\mathcal{N}}_{\mathcal{M}} x$ and sup $M_x = x = \inf N_x$. By Proposition 2.12, $x \in \blacktriangle^{\mathcal{N}}_{\mathcal{M}} y \cap \nabla^{\mathcal{N}}_{\mathcal{M}} z \in \mathcal{O}^{\mathcal{N}}_{\mathcal{M}}(P)$ for every $y \in M_x \subseteq \blacktriangledown^{\mathcal{N}}_{\mathcal{M}} x$ and every $z \in N_x \subseteq \Delta^{\mathcal{N}}_{\mathcal{M}} x$, and hence $x_i \in \blacktriangle^{\mathcal{N}}_{\mathcal{M}} y \cap \nabla^{\mathcal{N}}_{\mathcal{M}} z$ holds eventually for every $y \in M_x \subseteq \blacktriangledown^{\mathcal{N}}_{\mathcal{M}} x$ and every $z \in N_x \subseteq \Delta^{\mathcal{N}}_{\mathcal{M}} x$. It follows from Proposition 2.8 that $y \leqslant x_i \leqslant z$ holds eventually for every $y \in M_x$ and $z \in N_x$. Thus $(x_i)_{i \in I} \xrightarrow{\mathcal{M}} x$.

Lemma 2.14. *Let* (P, M, N) *be a PMN-space. If the* MN*-convergence in* P *is topological, then* P *is* MN*-doubly continuous.*

Proof. Suppose that the \mathfrak{MN} -convergence in P is topological. Then there exists a topology \mathfrak{T} on P such that for every $x \in P$, a net $(x_i)_{i \in I} \stackrel{\mathfrak{MN}}{\longrightarrow} x$ if and only if $(x_i)_{i \in I} \stackrel{\mathfrak{T}}{\to} x$. Define $I_x = \{(p, U) \in P \times \mathfrak{N}(x) : p \in U\}$, where $\mathfrak{N}(x)$ denotes the set of all open neighbourhoods of x in the topological space (P, \mathfrak{T}) , i.e., $\mathfrak{N}(x) = \{U \in \mathfrak{T} : x \in U\}$. Define the preorder \leq on I_x as follows:

$$(\forall (p_1, U_1), (p_2, U_2) \in I_x) (p_1, U_1) \leq (p_2, U_2) \iff U_2 \subseteq U_1.$$

Now one can easily see that I_x is directed. Let $x_{(p,U)} = p$ for every $(p,U) \in I_x$. Then it is straightforward to check that the net $(x_{(p,U)})_{(p,U)\in I_x} \stackrel{\mathcal{T}}{\longrightarrow} x$, and thus $(x_{(p,U)})_{(p,U)\in I_x} \stackrel{\mathcal{M}\mathcal{N}}{\longrightarrow} x$. By Definition 2.1, there exist $M_x \in \mathcal{M}$ and $N_x \in \mathcal{N}$ such that $\sup M_x = x = \inf N_x$, and for every $m \in M_x$ and $n \in N_x$, there exists $(p_m^n, U_m^n) \in I_x$ such that $x_{(p,U)} = p \in \uparrow m \cap \downarrow n$ for all $(p,U) \succcurlyeq (p_m^n, U_m^n)$. Since $(p,U_m^n) \succcurlyeq (p_m^n, U_m^n)$ for every $p \in U_m^n$, $x_{(p,U_m^n)} = p \in \uparrow m \cap \downarrow n$ for every $p \in U_m^n$. This shows

$$(\forall m \in M_x, n \in N_x) (\exists U_m^n \in \mathcal{N}(x)) x \in U_m^n \subseteq \uparrow m \cap \downarrow n. \tag{*}$$

For any $A \in \mathcal{M}$ and $B \in \mathcal{N}$ with $\sup A = x = \inf B$, let $(x_{(d,D)})_{(d,D) \in D^x_{(A,B)}}$ be the net defined as in Remark 2.2 (5). Then $(x_{(d,D)})_{(d,D) \in D^x_{(A,B)}} \xrightarrow{\mathcal{M} \mathcal{N}} x$, and hence $(x_{(d,D)})_{(d,D) \in D^x_{(A,B)}} \xrightarrow{\mathcal{T}} x$. This implies, by Remark 2.2 (6), that there exist $A_0 \sqsubseteq A$ and $B_0 \sqsubseteq B$ satisfying

$$x \in \bigcap \{ \uparrow a \cap \downarrow b : a \in A_0 \& b \in B_0 \}$$

$$\subseteq U_m^n \subseteq \uparrow m \cap \downarrow n.$$

Therefore, $m \in \mathbf{V}_{\mathcal{M}}^{\mathcal{N}} x$ and $n \in \Delta_{\mathcal{M}}^{\mathcal{N}} x$, and hence $M_x \subseteq \mathbf{V}_{\mathcal{M}}^{\mathcal{N}} x$ and $N_x \subseteq \Delta_{\mathcal{M}}^{\mathcal{N}} x$.

Let $y \in \bigvee_{M}^{N} x$ and $z \in \triangle_{M}^{N} x$. Since $\sup M_{x} = x = \inf N_{x}$, by Definition 2.3, $\bigcap \{ \uparrow m \cap \downarrow n : m \in M_{1} \& n \in N_{1} \} \subseteq \uparrow y \cap \downarrow z$ for some $M_{1} \sqsubseteq M_{x}$ and $N_{1} \sqsubseteq N_{x}$. This concludes by Condition (*) and the finiteness of sets M_{1} and N_{1} that $\bigcap \{U_{m}^{n} : m \in M_{1} \& n \in N_{1}\} \in \mathcal{N}(x)$ and

$$x \in \bigcap \{U_m^n : m \in M_1 \& n \in N_1\}$$

$$\subseteq \bigcap \{\uparrow m \cap \downarrow n : m \in M_1 \& n \in N_1\}$$

$$\subseteq \uparrow y \cap \downarrow z.$$

Considering the net $(x_{(d,D)})_{(d,D)\in D_{(M_x,N_x)}^x}$ defined in Remark 2.2 (5), we have $(x_{(d,D)})_{(d,D)\in D_{(M_x,N_x)}^x} \stackrel{\mathcal{M}\mathcal{N}}{\longrightarrow} x$, and hence $(x_{(d,D)})_{(d,D)\in D_{(M_x,N_x)}^x} \stackrel{\mathcal{T}}{\longrightarrow} x$. So, by Remark 2.2 (6), there exist $M_2 \sqsubseteq M_x$ and $N_2 \sqsubseteq N_x$ such that

$$x \in \bigcap \{ \uparrow m \cap \downarrow n : m \in M_2 \& n \in N_2 \}$$

$$\subseteq \bigcap \{ U_m^n : m \in M_1 \& n \in N_1 \}$$

$$\subseteq \uparrow y \cap \downarrow z.$$

Finally, we show $\bigcap \{ \uparrow m \cap \downarrow n : m \in M_2 \& n \in N_2 \} \subseteq \blacktriangle_{\mathfrak{M}}^{\mathcal{N}} y \cap \triangledown_{\mathfrak{M}}^{\mathcal{N}} z$. Let $(x_{(d,D)})_{(d,D) \in D_{(M',N')}^{x'}}$ be the net defined in 2.2 (5) for any $M' \in \mathcal{M}$ and $N' \in \mathcal{N}$ with $\sup M' = \inf N' = x' \in \bigcap \{ \uparrow m \cap \downarrow n : m \in M_2 \& n \in N_2 \}$. Then $(x_{(d,D)})_{(d,D) \in D_{(M',N')}^{x'}} \xrightarrow{\longrightarrow} x'$, and thus $(x_{(d,D)})_{(d,D) \in D_{(M',N')}^{x'}} \xrightarrow{\longrightarrow} x'$. This implies by Remark 2.2 (6) that there exist $M'_0 \sqsubseteq M'$ and $N'_0 \sqsubseteq N'$ satisfying

$$x' \in \bigcap \{\uparrow m' \cap \downarrow n' : m \in M'_0 \& n \in N'_0\}$$

$$\subseteq \bigcap \{U_m^n : m \in M_1 \& n \in N_1\}$$

$$\subseteq \uparrow \gamma \cap \downarrow z.$$

Hence, we have $x' \in \blacktriangle_{\mathcal{M}}^{\mathcal{N}} y \cap \nabla_{\mathcal{M}}^{\mathcal{N}} z$ by Definition 2.3. This shows $\bigcap \{ \uparrow m \cap \downarrow n : m \in M_2 \& n \in N_2 \} \subseteq \blacktriangle_{\mathcal{M}}^{\mathcal{N}} y \cap \nabla_{\mathcal{M}}^{\mathcal{N}} z$. Therefore, it follows from Definition 2.7 that P is \mathcal{MN} -doubly continuous.

Combining Lemma 2.13 and Lemma 2.14, we obtain the following theorem.

Theorem 2.15. Let $(P, \mathcal{M}, \mathcal{N})$ be a PMN-space. Then the following statements are equivalent:

- (1) P is an MN-doubly continuous poset.
- (2) For any net $(x_i)_{i \in I}$ in P, $(x_i)_{i \in I} \xrightarrow{\mathcal{M} \mathcal{N}} x$ if and only if $(x_i)_{i \in I} \xrightarrow{\mathcal{O}_{\mathcal{M}}^{\mathcal{N}}(P)} x$.
- (3) The MN-convergence in P is topological.

Proof. (1) \Rightarrow (2): By Lemma 2.13.

- $(2) \Rightarrow (3)$: It is clear.
- (3) \Rightarrow (1): By Lemma 2.14.

3 \mathcal{M} -topology induced by lim-inf $_{\mathcal{M}}$ -convergence

In this section, the notion of $\lim\inf_{\mathcal{M}}$ -convergence is reviewed and the \mathcal{M} -topology on posets is defined. By exploring the fundamental properties of the \mathcal{M} -topology, those posets under which the $\liminf_{\mathcal{M}}$ -convergence is topological are precisely characterized.

By saying a *PM-space*, we mean a pair (P, M) that contains a poset P and a subfamily M of $\mathcal{P}(P)$.

Definition 3.1 ([8]). Let (P, \mathcal{M}) be a PM-space. A net $(x_i)_{i \in I}$ in P is said to $\liminf_{\mathcal{M}}$ -converge to $x \in P$ if there exists $M \in \mathcal{M}$ such that

 $(M1)x \leq \sup M$;

(M2)for every $m \in M$, $x_i \ge m$ holds eventually.

In this case, we write $(x_i)_{i\in I} \xrightarrow{\mathcal{M}} x$.

It is worth noting that both lim-inf-convergence and lim-inf $_2$ -convergence [4] in posets are particular cases of lim-inf $_{\mathcal{M}}$ -convergence.

Remark 3.2. Let (P, \mathcal{M}) be a PM-space and $x, y \in P$.

- (1) Suppose that a net $(x_i)_{i\in I} \xrightarrow{\mathcal{M}} x$ and $y \leq x$. Then $(x_i)_{i\in I} \xrightarrow{\mathcal{M}} y$ by Definition 3.1. This concludes that the set of all lim-inf_{\mathcal{M}}-convergent points of the net $(x_i)_{i\in I}$ in P is a lower subset of P. Thus, the lim-inf_{\mathcal{M}}-convergent points of the net $(x_i)_{i\in I}$ need not be unique.
- (2) If P has the least element \bot and $\emptyset \in \mathbb{M}$, then we have $(x_i)_{i \in I} \xrightarrow{\mathbb{M}} \bot$ for every net $(x_i)_{i \in I}$ in P.

(3) For every $M \in \mathcal{M}$ with $\sup M \geqslant x$, we denote $F_M^x = \{ \bigcap \{ \uparrow m : m \in M_0 \} : M_0 \sqsubseteq M \}^2$. Let $D_M^x = \{ (d, D) \in P \times F_M^x : d \in D \}$ be in the preorder \leq defined by

$$(\forall (d_1, D_1), (d_2, D_2) \in D_M^x) (d_1, D_1) \leq (d_2, D_2) \iff D_2 \subseteq D_1.$$

It is easy to see that the set D_M^x is directed. Take $x_{(d,D)} = d$ for every $(d,D) \in D_M^x$. Then, by Definition 3.1, one can straightforwardly check that the net $(x_{(d,D)})_{(d,D)\in D_M^x} \xrightarrow{\mathcal{M}} a$ for every $a \leqslant x$.

(4) If the net $(x_{(d,D)})_{(d,D)\in D_M^x}$ defined in (3) converges to $p\in P$ with respect to some topology $\mathbb T$ on P, then for every open neighbourhood U_p of p, there exists $M_0\sqsubseteq M$ such that $\bigcap\{\uparrow m: m\in M_0\}\subseteq U_p$.

Definition 3.3 ([8]). *Let* (P, M) *be a PM-space.*

- (1) For $x, y \in P$, define $y \ll_{a(M)} x$ if for every net $(x_i)_{i \in I}$ that \liminf_{M} -converges to $x, x_i \geqslant y$ holds eventually.
- (2) The poset P is said to be $\alpha(M)$ -continuous if $\{x \in P : x \ll_{\alpha(M)} a\} \in M$ and $a = \sup\{x \in P : x \ll_{\alpha(M)} a\}$ holds for every $a \in P$.

Given a *PM*-space (P, \mathcal{M}) , the approximate relation $\ll_{\alpha(\mathcal{M})}$ on the poset P can be equivalently characterized in the following proposition.

Proposition 3.4. *Let* (P, \mathcal{M}) *be a PM-space and* $x, y \in P$. *Then* $y \ll_{\alpha(\mathcal{M})} x$ *if and only if for every* $M \in \mathcal{M}$ *with* $\sup M \geqslant x$, *there exists* $M_0 \sqsubseteq M$ *such that*

$$\bigcap \{\uparrow m: m \in M_0\} \subseteq \uparrow y.$$

Proof. Suppose $y \ll_{\alpha(\mathcal{M})} x$. Let $(x_{(d,D)})_{(d,D) \in D_M^x}$ be the net defined in Remark 3.2 (3) for every $M \in \mathcal{M}$ with $\sup M = p \geqslant x$. Then the net $(x_{(d,D)})_{(d,D) \in D_M^x} \stackrel{\mathcal{M}}{\longrightarrow} x$. By Definition 3.3 (1), there exists $(d_0,D_0) \in D_M^x$ such that $x_{(d,D)} = d \geqslant y$ for all $(d,D) \geq (d_0,D_0)$. Since $(d,D_0) \geq (d_0,D_0)$ for every $d \in D_0$, $x_{(d,D_0)} = d \geqslant y$ for every $d \in D_0$. So $D_0 \subseteq \uparrow y$. This shows that there exists $M_0 \sqsubseteq M$ such that $D_0 = \bigcap \{ \uparrow m : m \in M_0 \} \subseteq \uparrow y$.

Conversely, suppose that for every $M \in \mathcal{M}$ with $\sup M \geqslant x$, there exists $M_0 \sqsubseteq M$ such that $\bigcap \{ \uparrow m : m \in M_0 \} \subseteq \uparrow y$. Let $(x_i)_{i \in I}$ be a net that $\lim \inf_{\mathcal{M}}$ -converges to x. Then, by Definition 3.1, there exists $M \in \mathcal{M}$ such that $\sup M = p \geqslant x$, and for every $m \in M$, there exists $i_m \in I$ such that $x_i \geqslant m$ for all $i \ge i_m$. Take $i_0 \in I$ with that $i_0 \ge i_m$ for every $m \in M_0 \sqsubseteq M$, we have that $x_i \in \bigcap \{ \uparrow m : m \in M_0 \} \subseteq \uparrow y$ for all $i \ge i_0$. This shows that $x_i \geqslant y$ holds eventually. Thus, by Definition 3.3 (1), we have $y \ll_{\alpha(\mathcal{M})} x$.

Remark 3.5. *Let* (P, M) *be a PM-space and* $x, y \in P$.

- (1) If there is no $M \in \mathbb{M}$ such that $\sup M \geqslant x$, then $p \ll_{\alpha(\mathbb{M})} x$ for every $p \in P$. And, if the poset P has the least element \bot , then $\bot \ll_{\alpha(\mathbb{M})} p$ for every $p \in P$.
- (2) The implication $y \ll_{\alpha(\mathcal{M})} x \Rightarrow y \leqslant x$ may not be true. For example, let $P = \{0, 1, 2, ...\}$ be in the discrete order \leqslant defined by

$$(\forall i, j \in P) i \leq j \iff i = j.$$

And let $M = \{\{2\}\}$. Then, it is easy to see from Remark 3.5 (1) that $0 \ll_{\alpha(M)} 1$ and $0 \ll 1$.

(3) Assume the PM-space (P, \mathcal{M}) has the property that for every $p \in P$, there exists $M_p \in \mathcal{M}$ such that $\sup M_p = p$. Then, by Proposition 3.4, we have

$$(\forall q, r \in P) \ q \ll_{\alpha(\mathcal{M})} r \Longrightarrow q \leqslant r.$$

For more interpretations of the approximate relation $\ll_{\alpha(\mathcal{M})}$ on posets, the readers can refer to Example 3.2 and Remark 3.3 in [8].

For simplicity, given a *PM*-space (P, \mathcal{M}) and $x \in P$, we will denote

$$\mathbf{\nabla}_{\mathcal{M}} x = \{y \in P : y \ll_{\alpha(\mathcal{M})} x\};$$

² From the logical point of view, we stipulate $\bigcap \{ \uparrow m : m \in M_0 \} = P \text{ if } M_0 = \emptyset$.

$$- \quad \blacktriangle_{\mathfrak{M}} x = \{ z \in P : x \ll_{\alpha(\mathfrak{M})} z \}.$$

Based on the approximate relation $\ll_{\alpha(\mathcal{M})}$ on posets, the $\alpha^*(\mathcal{M})$ -continuity can be defined for posets in the following:

Definition 3.6. *Let* (P, \mathcal{M}) *be a PM-space. The poset P is called an* $\alpha^*(\mathcal{M})$ -continuous poset *if for every* $x \in P$, *there exists* $M_x \in \mathcal{M}$ *such that*

(01) $\sup M_x = x$ and $M_x \subseteq \nabla_{\mathcal{M}} x$. And,

(02) for every $y \in \nabla_{\mathcal{M}} x$, there exists $F \sqsubseteq M_x$ such that $\bigcap \{\uparrow f : f \in F\} \subseteq \Delta_{\mathcal{M}} y$.

Noticing Remark 3.5 (3), we have the following proposition about $\alpha^*(\mathcal{M})$ -continuous posets.

Proposition 3.7. Let (P, \mathcal{M}) be a PM-space in which the poset P is $\alpha^*(\mathcal{M})$ -continuous. Then

$$(\forall x, y \in P) \ y \ll_{\alpha(\mathcal{M})} x \Longrightarrow y \leqslant x.$$

The following examples of $\alpha^*(M)$ -continuous posets can be formally checked by Definition 3.6.

Example 3.8. Let (P, \mathcal{M}) be a PM-space.

- (1) If P is a finite poset, then P is an $\alpha^*(\mathcal{M})$ -continuous poset if and only if for every $x \in P$, there exists $M_x \in \mathcal{M}$ such that $\sup M_x = x$.
- (2) Let $M = \mathcal{L}(P)$. Then P is an $\alpha^*(\mathcal{L})$ -continuous poset. This means that every poset is $\alpha^*(\mathcal{L})$ -continuous.
- (3) Let $\mathfrak{M}=\mathfrak{D}(P)$. Then we have $\ll=\ll_{\alpha(\mathfrak{D})}$ (see Example 3.2 (1) in [8]). The poset P is a continuous poset if and only if it is an $\alpha^*(\mathfrak{D})$ -continuous poset. In particular, finite posets, chains, anti-chains and completely distributive lattices are all $\alpha^*(\mathfrak{D})$ -continuous.
- (4) Let $M = \mathcal{P}(P)$. If P is a finite poset (resp. chain, anti-chain), then P is an $\alpha^*(\mathcal{P})$ -continuous poset.

Proposition 3.9. Let (P, M) be a PM-space. If P is an $\alpha(M)$ -continuous poset, and $\{y \in P : (\exists z \in P) \ y \leqslant_{\alpha(M)} z \leqslant_{\alpha(M)} a \} \in M$ for every $a \in P$, then P is an $\alpha^*(M)$ -continuous poset.

Proof. Suppose that P is an $\alpha(\mathbb{M})$ -continuous poset, and $\{y \in P : (\exists z \in P) \ y \ll_{\alpha(\mathbb{M})} z \ll_{\alpha(\mathbb{M})} a\} \in \mathbb{M}$ for every $a \in P$. Take $M_a = \blacktriangledown_{\mathbb{M}} a$. Then it is easy to see that $\sup M_a = a$ and $M_a \subseteq \blacktriangledown_{\mathbb{M}} a$. By Remark 3.3 (4) in [8], we have $\sup\{y \in P : (\exists z \in P) \ y \ll_{\alpha(\mathbb{M})} z \ll_{\alpha(\mathbb{M})} a\} = a$. This implies, by Proposition 3.4 and Remark 3.5 (2), that for every $y \in \blacktriangledown_{\mathbb{M}} a$, there exist $\{y_1, y_2, ..., y_n\}$, $\{z_1, z_2, ..., z_n\} \sqsubseteq M_a = \blacktriangledown_{\mathbb{M}} a$ such that

$$\bigcap \{ \uparrow z_i : i \in \{1, 2, ..., n\} \}$$

$$\subseteq \bigcap \{ \uparrow y_i : i \in \{1, 2, ..., n\} \}$$

$$\subseteq \uparrow y,$$

and $y_i \ll_{\alpha(\mathcal{M})} z_i \ll_{\alpha(\mathcal{M})} a$ for every $i \in \{1, 2, ..., n\}$. Next, we show $\bigcap \{ \uparrow z_i : i \in \{1, 2, ..., n\} \} \subseteq \blacktriangle_{\mathcal{M}} y$. For every $M \in \mathcal{M}$ with $\sup M \geqslant b \in \bigcap \{ \uparrow z_i : i \in \{1, 2, ..., n\} \}$, by Proposition 3.4, there exists $M_i \sqsubseteq M$ such that $\bigcap \{ \uparrow m' : m' \in M_i \} \subseteq \uparrow y_i$ for every $i \in \{1, 2, ..., n\}$. Take $M_0 = \bigcup \{M_i : i \in \{1, 2, ..., n\} \}$. Then $M_0 \sqsubseteq M$ and

$$\bigcap \{ \uparrow m : m \in M_0 \}$$

$$\subseteq \bigcap \{ \uparrow y_i : i \in \{1, 2, ..., n\} \}$$

$$\subseteq \uparrow y.$$

This shows $y \ll_{\alpha(\mathcal{M})} b$ for every $b \in \bigcap \{ \uparrow z_i : i \in \{1, 2, ..., n\} \}$. Hence, $\bigcap \{ \uparrow z_i : i \in \{1, 2, ..., n\} \} \subseteq \blacktriangle_{\mathcal{M}} y$. Thus P is an $\alpha^*(\mathcal{M})$ -continuous poset.

The fact that an $\alpha^*(\mathcal{M})$ -continuous poset P in a PM-space (P,\mathcal{M}) may not be $\alpha(\mathcal{M})$ -continuous can be demonstrated in the following example.

Example 3.10. Let (P, \mathcal{M}) be the PM-space in which the poset $P = \mathbb{R}$ is the set of all real number with its usual order \leq and $\mathcal{M} = \mathcal{S}_0(\mathbb{R})$. Then we have $\ll_{\alpha(\mathcal{S}_0)} = \leq$ by Proposition 3.4. It is easy to check, by Definition 3.6, that \mathbb{R} is an $\alpha^*(\mathcal{S}_0)$ -continuous poset. But \mathbb{R} is not an $\alpha(\mathcal{S}_0)$ -continuous poset because $\blacktriangledown_{\mathcal{S}_0} x = \downarrow x \neq \mathcal{S}_0(P)$ for every $x \in \mathbb{R}$.

We turn to consider the topology induced by the \liminf_{M} -convergence in posets.

Definition 3.11. Let (P, \mathcal{M}) be a PM-space. A subset V of P is said to be \mathcal{M} -open if for every net $(x_i)_{i \in I} \xrightarrow{\mathcal{M}} x \in V$, $x_i \in V$ holds eventually.

Given a PM-space (P, \mathcal{M}) , one can formally verify that the set of all \mathcal{M} -open subsets of P forms a topology on P. This topology is called the \mathcal{M} -topology, and denoted by $\mathcal{O}_{\mathcal{M}}(P)$.

The following Theorem is an order-theoretical characterization of $\operatorname{\mathcal{M}}$ -open sets.

Theorem 3.12. Let (P, M) be a PM-space. Then a subset V of P is M-open if and only if it satisfies the following two conditions:

 $(V1)\uparrow V = V$, i.e., V is an upper set.

(V2)For every $M \in \mathcal{M}$ with $\sup M \in V$, there exists $M_0 \sqsubseteq M$ such that $\bigcap \{ \uparrow m : m \in M_0 \} \subseteq V$.

Proof. Suppose that V is an \mathbb{M} -open subset of P. By Remark 3.2 (1), it is easy to see that V is an upper set. Let $(x_{(d,D)})_{(d,D)\in D_M^x}$ be the net defined in Remark 3.2 (3) for every $M\in \mathbb{M}$ with $\sup M=x\in V$. Then $(x_{(d,D)})_{(d,D)\in D_M^x}\overset{\mathbb{M}}{\longrightarrow} x\in V$. This implies, by Definition 3.11, that there exists $(d_0,D_0)\in D_M^x$ such that $x_{(d,D)}=d\in V$ for all $(d,D)\geqq (d_0,D_0)$. Since $(d,D_0)\geqq (d_0,D_0)$ for all $d\in D_0$, $x_{(d,D_0)}=d\in V$ for all $d\in D_0$. This shows $D_0\subseteq V$. Thus there exists $M_0\sqsubseteq M$ such that $D_0=\bigcap\{\uparrow m: m\in M_0\}\subseteq V$.

Conversely, suppose V is a subset of P which satisfies Condition (V1) and (V2). Let $(x_i)_{i \in I}$ be a net that $\liminf_{\mathcal{M}}$ -converges to $x \in V$. Then there exists $M \in \mathcal{M}$ such that $\sup M = y \geqslant x \in V = \uparrow V$ (hence, $y \in V$), and for every $m \in M$, there exists $i_m \in I$ such that $x_i \geqslant m$ for all $i \ge i_m$. By Condition (V2), we have that $\bigcap \{\uparrow m : m \in M_0\} \subseteq V$ for some $M_0 \sqsubseteq M$. Take $i_0 \in I$ with that $i_0 \ge i_m$ for all $m \in M_0$. Then $x_i \in \bigcap \{\uparrow m : m \in M_0\} \subseteq V$ for all $i \ge i_0$. This shows that V is an M-open set.

Recall that given a topological space (X, \mathcal{T}) and a point $x \in P$, a family $\mathcal{B}(x)$ of open neighbourhoods of x is called *a base for the topological space* (X, \mathcal{T}) *at the point x* if for every neighbourhood V of x there exists an $U \in \mathcal{B}(x)$ such that $x \in U \subseteq V$.

If the poset P in a PM-space (P, \mathcal{M}) is an $\alpha^*(\mathcal{M})$ -continuous poset, we provide a base for the topological space $(P, \mathcal{O}_{\mathcal{M}}(P))$ at a point $x \in P$.

Proposition 3.13. *Let* (P, \mathcal{M}) *be a PM-space in which the poset* P *is* $\alpha^*(\mathcal{M})$ *-continuous. Then* $\blacktriangle_{\mathcal{M}} x \in \mathcal{O}_{\mathcal{M}}(P)$ *for every* $x \in P$.

Proof. One can readily see, by Proposition 3.4, that $\blacktriangle_{\mathcal{M}} x$ is an upper subset of P for every $x \in P$. For every $M \in \mathcal{M}$ with $\sup M = y \in \blacktriangle_{\mathcal{M}} x$, by Definition 3.6 (O1) there exists $M_y \in \mathcal{M}$ such that $M_y \subseteq \blacktriangledown_{\mathcal{M}} y$ and $\sup M_y = y$. Since $x \ll_{\alpha(\mathcal{M})} y$, by Definition 3.6 (O2), we have $\bigcap \{ \uparrow m_i : i \in \{1, 2, ..., n\} \} \subseteq \blacktriangle_{\mathcal{M}} x$ for some $\{m_1, m_2, ..., m_n\} \subseteq M_y$. Observing $\{m_1, m_2, ..., m_n\} \subseteq M_y$, we can conclude that there exists $M_i \subseteq M$ such that $\bigcap \{ \uparrow a : a \in M_i \} \subseteq \uparrow m_i$ for every $i \in \{1, 2, ..., n\}$. Let $M_0 = \bigcup \{M_i : i \in \{1, 2, ..., n\} \}$. Then $M_0 \subseteq M$ and

$$\bigcap \{ \uparrow m : m \in M_0 \}$$

$$\subseteq \bigcap \{ \uparrow m_i : i \in \{1, 2, ..., n\} \}$$

$$\subset \blacktriangle_{\mathcal{M}} X.$$

This shows, by Theorem 3.12, that $\blacktriangle_{\mathfrak{M}}x \in \mathcal{O}_{\mathfrak{M}}(P)$ for every $x \in P$.

Proposition 3.14. Let (P, \mathcal{M}) be a PM-space in which the poset P is $\alpha^*(\mathcal{M})$ -continuous and $x \in P$. Then $\{\bigcap \{ \mathbf{A}_{\mathcal{M}} a : a \in A \} : A \sqsubseteq \mathbf{V}_{\mathcal{M}} x \}$ is a base for the topological space $(P, \mathcal{O}_{\mathcal{M}}(P))$ at the point x.

Proof. Clearly, by Proposition 3.13, we have $\bigcap \{ \blacktriangle_{\mathfrak{M}} a : a \in A \} \in \mathcal{O}_{\mathfrak{M}}(P)$ for every $A \sqsubseteq \blacktriangledown_{\mathfrak{M}} x$. Let $U \in \mathcal{O}_{\mathfrak{M}}(P)$ and $x \in U$. Since P is an $\alpha^*(\mathfrak{M})$ -continuous poset, there exists $M_x \in \mathfrak{M}$ such that $M_x \subseteq \blacktriangledown_{\mathfrak{M}} x$ and $\sup M_x = x \in U$. By Theorem 3.12, it follows that $\bigcap \{ \uparrow m : m \in M_0 \} \subseteq U$ for some $M_0 \sqsubseteq M_x \subseteq \blacktriangledown_{\mathfrak{M}} x$. So, from Proposition 3.7, we have

$$x \in \bigcap \{ \mathbf{\Lambda}_{\mathfrak{M}} m : m \in M_0 \}$$

 $\subseteq \bigcap \{ \uparrow m : m \in M_0 \} \subseteq U.$

Thus, $\{\bigcap \{ \blacktriangle_{\mathfrak{M}} a : a \in A \} : A \sqsubseteq \blacktriangledown_{\mathfrak{M}} x \}$ is a base for the topological space $(P, \mathcal{O}_{\mathfrak{M}}(P))$ at the point x.

In the rest, we are going to establish a characterization theorem which demonstrates the equivalence between the $\lim_{M\to\infty}$ -convergence being topological and the $\alpha^*(M)$ -continuity of the poset in a given PM-space.

Lemma 3.15. Let (P, \mathcal{M}) be a PM-space. If P is an $\alpha^*(\mathcal{M})$ -continuous poset, then a net

$$(x_i)_{i\in I} \xrightarrow{\mathcal{M}} x \in P \iff (x_i)_{i\in I} \xrightarrow{\mathcal{O}_{\mathcal{M}}(P)} x.$$

Proof. By the definition of $\mathcal{O}_{\mathcal{M}}(P)$, it is easy to see that a net

$$(x_i)_{i\in I} \stackrel{\mathcal{M}}{\longrightarrow} x \in P \Longrightarrow (x_i)_{i\in I} \stackrel{\mathcal{O}_{\mathcal{M}}(P)}{\longrightarrow} x.$$

To prove the Lemma, we only need to show that a net $(x_i)_{i\in I}\overset{\mathcal{O}_{\mathcal{M}}(P)}{\longrightarrow}x\in P$ implies $(x_i)_{i\in I}\overset{\mathcal{M}}{\longrightarrow}x$. Suppose $(x_i)_{i\in I}\overset{\mathcal{O}_{\mathcal{M}}(P)}{\longrightarrow}x$. As P is an $\alpha^{\star}(\mathcal{M})$ -continuous poset, there exists $M_x\in\mathcal{M}$ such that $M_x\subseteq \blacktriangledown_{\mathcal{M}}x$ and $\sup M_x=x$. By Proposition 3.13, we have $x\in \blacktriangle_{\mathcal{M}}y\in \mathcal{O}_{\mathcal{M}}(P)$ for every $y\in M_x\subseteq \blacktriangledown_{\mathcal{M}}x$. Hence, $x_i\in \blacktriangle_{\mathcal{M}}y$ holds eventually. This implies, by Proposition 3.7, that $x_i\in \blacktriangle_{\mathcal{M}}y\subseteq \uparrow y$ holds eventually. By the definition of liminf $_{\mathcal{M}}$ -convergence, we have $(x_i)_{i\in I}\overset{\mathcal{M}}{\longrightarrow}x$.

In the converse direction, we have the following Lemma.

Lemma 3.16. Let (P, \mathcal{M}) be a PM-space. If the lim-inf_{\mathcal{M}}-convergence in P is topological, then P is an $\alpha^*(\mathcal{M})$ -continuous poset.

Proof. Suppose that the lim-inf_M-convergence in P is topological. Then there exists a topology \mathfrak{T} such that for every $x \in P$, a net

$$(x_i)_{i\in I} \stackrel{\mathcal{M}}{\longrightarrow} x \iff (x_i)_{i\in I} \stackrel{\mathcal{T}}{\longrightarrow} x.$$

Define $I_x = \{(p, V) \in P \times \mathbb{N}(x) : p \in V\}$, where $\mathbb{N}(x)$ is the set of all open neighbourhoods of x, namely, $\mathbb{N}(x) = \{V \in \mathbb{T} : x \in V\}$. Define also the preorder \leq on I_x as follows:

$$(\forall (p_1, V_1), (p_2, V_2) \in I_x) (p_1, V_1) \leq (p_2, V_2) \iff V_2 \subseteq V_1.$$

It is easy to see that I_x is directed. Now, let $x_{(p,V)} = p$ for every $(p,V) \in I_x$. Then one can readily check that the net $(x_{(p,V)})_{(p,V)\in I_x} \stackrel{\mathcal{T}}{\longrightarrow} x$, and hence $(x_{(p,V)})_{(p,V)\in I_x} \stackrel{\mathcal{M}}{\longrightarrow} x$. This means that there exists $M_x \in \mathcal{M}$ such that $\sup M_x \geqslant x$, and for every $m \in M_x$, there exists $(p_m,V_m) \in I_x$ with that $x_{(p,V)} = p \geqslant m$ for all $(p,V) \succeq (p_m,V_m)$. Since $(p,V_m) \succeq (p_m,V_m)$ for all $p \in V_m$, we have $x_{(p,V_m)} = p \geqslant m$ for all $p \in V_m$. This shows

$$(\forall m \in M_x) (\exists V_m \in \mathcal{N}(x)) x \in V_m \subseteq \uparrow m. \tag{**}$$

Next we prove $M_x \subseteq \blacktriangledown_{\mathfrak{M}} x$. For every $m \in M_x$ and every $M \in M$ with $\sup M \geqslant x$, $\operatorname{let}(x_{(d,D)})_{(d,D)\in D_M^x}$ be the net defined in Remark 3.2 (3). Then the net $(x_{(d,D)})_{(d,D)\in D_M^x} \xrightarrow{\mathfrak{M}} x$, and thus $(x_{(d,D)})_{(d,D)\in D_M^x} \xrightarrow{\mathfrak{T}} x$. It follows from

Remark 3.2 (4) that there exists $M_0 \sqsubseteq M$ such that $x \in \bigcap \{ \uparrow a : a \in M_0 \} \subseteq V_m$. By Condition (**), we have $x \in \bigcap \{ \uparrow a : a \in M_0 \} \subseteq V_m \subseteq \uparrow m$. So, $m \ll_{\alpha(\mathcal{M})} x$. This shows $M_x \subseteq \blacktriangledown_{\mathcal{M}} x$.

Let $y \in \P_{\mathcal{M}} x$. Then there exists $\{m_1, m_2, ..., m_n\} \sqsubseteq M_X$ such that $\bigcap \{\uparrow m_i : i \in \{1, 2, ..., n\}\} \subseteq \uparrow y$ as $M_X \in \mathcal{M}$ and $\sup M_X \geqslant x$. By Condition (**), it follows that $\bigcap \{V_{m_i} : i \in \{1, 2, ..., n\}\} \subseteq \bigcap \{\uparrow m_i : i \in \{1, 2, ..., n\}\} \subseteq \bigcap \{\uparrow m_i : i \in \{1, 2, ..., n\}\} \subseteq \uparrow y$. Considering the net $(x_{(d,D)})_{(d,D)\in D^X_{M_X}}$ defined in Remark 3.2 (3), we have $(x_{(d,D)})_{(d,D)\in D^X_{M_X}} \xrightarrow{\mathcal{T}} x$. This implies, by Remark 3.2 (4), that

$$\bigcap \{ \uparrow b : b \in M_{00} \}$$

$$\subseteq \bigcap \{ V_{m_i} : i \in \{1, 2, ..., n\} \}$$

$$\subseteq \bigcap \{ \uparrow m_i : i \in \{1, 2, ..., n\} \} \subseteq \uparrow y$$

$$(* * *)$$

for some $M_{00} \sqsubseteq M_x$. Finally, we show $\bigcap \{ \uparrow b : b \in M_{00} \} \subseteq \blacktriangle_{\mathfrak{M}} y$. For every $x' \in \bigcap \{ \uparrow b : b \in M_{00} \}$ and every $M' \in \mathfrak{M}$ with $\sup M' \geqslant x'$, let $(x_{(d,D)})_{(d,D) \in D_{M'}^{x'}}$ be the net defined in Remark 3.2 (3). Then $(x_{(d,D)})_{(d,D) \in D_{M'}^{x'}} \xrightarrow{\mathfrak{M}} x'$, and thus $(x_{(d,D)})_{(d,D) \in D_{M'}^{x'}} \xrightarrow{\mathfrak{M}} x'$. It follows from Condition (* * *) and Remark 3.2 (4) that there exists $M_0 \sqsubseteq M'$ such that

$$\bigcap \{ \uparrow a' : a' \in M_0' \}$$

$$\subseteq \bigcap \{ V_{m_i} : i \in \{1, 2, ..., n\} \}$$

$$\subseteq \bigcap \{ \uparrow m_i : i \in \{1, 2, ..., n\} \} \subseteq \uparrow y.$$

This shows $x^{'} \in \blacktriangle_{\mathfrak{M}} y$, and thus $\bigcap \{ \uparrow b : b \in M_{00} \} \subseteq \blacktriangle_{\mathfrak{M}} y$. Therefore, P is an $\alpha^{\star}(\mathfrak{M})$ -continuous poset. \square Combining Lemma 3.15 and Lemma 3.16, we deduce the following result.

Theorem 3.17. Let (P, \mathcal{M}) be a PM-space. The following statements are equivalent:

- (1) P is an $\alpha^*(\mathcal{M})$ -continuous poset.
- (2) For any net $(x_i)_{i\in I}$ in P, $(x_i)_{i\in I} \xrightarrow{\mathcal{M}} x \in P \iff (x_i)_{i\in I} \xrightarrow{\mathcal{O}_{\mathcal{M}}(P)} x$.
- (3) The lim-inf_M-convergence in P is topological.

Proof. (1) \Rightarrow (2): By Lemma 3.15.

(2)
$$\Rightarrow$$
 (3): Clear.

$$(3) \Rightarrow (1)$$
: By Lemma 3.16.

Corollary 3.18 ([8]). Let (P, \mathcal{M}) be a PM-space with $S_0(P) \subseteq \mathcal{M} \subseteq \mathcal{P}(P)$. Suppose $\blacktriangledown_{\mathcal{M}} a \in \mathcal{M}$ and $\{y \in P : (\exists z \in P) \ y \ll_{\alpha(\mathcal{M})} z \ll_{\alpha(\mathcal{M})} a\} \in \mathcal{M}$ holds for every $a \in P$. Then the lim-inf_{\mathcal{M}}-convergence in P is topological if and only if P is $\alpha(\mathcal{M})$ -continuous.

Proof. (⇒): To show the $\alpha(\mathcal{M})$ -continuity of P, it suffices to prove $\sup \nabla_{\mathcal{M}} a = a$ for every $a \in P$. Since the lim-inf_{\mathcal{M}}-convergence in P is topological, by Theorem 3.17, P is an $\alpha^*(\mathcal{M})$ -continuous poset. This implies that there exists $M_a \in \mathcal{M}$ such that $\sup M_a \subseteq \nabla_{\mathcal{M}} a$ and $\sup M_a = a$ for every $a \in P$. By Proposition 3.7, we have $\nabla_{\mathcal{M}} a \subseteq \downarrow a$. So $\sup \nabla_{\mathcal{M}} a = a$.

$$(\Leftarrow)$$
: By Proposition 3.9 and Theorem 3.17.

Acknowledgement: This work is supported by the Doctoral Scientific Research Foundation of Hunan University of Arts and Science (Grant No.: E07017024), the Significant Research and Development Project of Hunan province (Grant No.: 2016JC2014) and the Natural Science Foundation of China (Grant No.: 11371130).

DE GRUYTER

References

- [1] Birkhoff G., Lattice Theory, 1940, American Mathematical Society Colloquium Publications.
- [2] Frink O., Topology in lattice, Trans. Am. Math. Soc., 1942, 51, 569-582.
- [3] Mcshane E.J., Order-Preserving Maps and Integration Process, 1953, Princeton, Princeton University Press.
- [4] Zhao B., Zhao D.S., Lim-inf-convergence in partially ordered sets, J. Math. Anal. Appl., 2005, 309, 701-708.
- [5] Wang K.Y., Zhao B., Some further results on order-convergence in posets, Topol. Appl., 2013, 160, 82-86.
- [6] Zhao B., Li J., O_2 -convergence in posets, Topol. Appl., 2006, 153, 2971-2975.
- [7] Li Q.G., Zou Z.Z., A result for O_2 -convergence to be topological in posets, Open Math., 2016, 14, 205-211.
- [8] Zhou Y.H., Zhao B., Order-convergence and lim-inf_M-convergence in posets, J. Math. Anal. Appl., 2007, 325, 655-664.
- [9] Venugopalan P., Z-continuous posets, Houston J. Math., 1996, 12, 275-294.
- [10] Kelly J.L., General Topology, 1955, New York, Van Nostrand Group.
- [11] Mathews J.C., Anderson R.F., A comparison of two modes of order convergence, Proc. Am. Math. Soc., 1967, 18(1), 100-
- [12] Wolk E.S., On order-convergence, Proc. Am. Math. Soc., 1961, 12(3), 379-384.
- [13] Zhao D.S., The double Scott topology on a lattice, Chin. Ann. Math., Ser. A., 1989, 10(2), 187-193.
- [14] Zhao B., Wang K.Y., Order topology and bi-Scott topology on a poset, Acta Math. Sin. Engl. Ser., 2011, 27, 2101-2106.
- [15] Engelking R., General Topology, 1977, Warszawa, Polish Scientific Publishers.
- [16] Zhang H., A note on continuous partially ordered sets, Semigroup Forum, 1993, 47, 101-104.
- [17] Davey B.A., Priestley H.A., Introduction to Lattices and Order, 2002, Cambridge, Cambridge University Press.
- [18] Grierz G., Hofman K.H., Keimel K., Lawson J.D., Mislove M., Scott D.S., Continuous Lattices and Domain, 2003, Cambridge, Camberidge University Press.
- [19] Grierz G., Hofman K.H., Keimel K., Lawson J.D., Mislove M., Scott D.S., A Compendium of Continuous Lattices, 1980, Berlin: Springer-Verlag Press.
- [20] Olejček V., Order convergence and order topology on a poset, Int. J. Theor. Phys., 1999, 38, 557-561.