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Abstract: In this paper, we first introduce the notion of MN-convergence in posets as an unified form of O-
convergence and O,-convergence. Then, by studying the fundamental properties of MN-topology which is
determined by MN-convergence according to the standard topological approach, an equivalent characteri-
zation to the MN-convergence being topological is established. Finally, the lim-inf)-convergence in posets
is further investigated, and a sufficient and necessary condition for lim-inf,-convergence to be topological
is obtained.
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1 Introduction, Notations and Preliminaries

The concept of O-convergence in partially ordered sets (posets, for short) was introduced by Birkhoff [1], Frink
[2] and Mcshane [3]. It is defined as follows: a net (x;);c; in a poset P is said to O-converge to x < P if there
exist subsets D and F of P such that

(1) Disdirected and F is filtered;

(2) supD =x=infF;

(3) foreveryd € Dand e € F, d < x; < e holds eventually, i.e., there exists iy € I such thatd < x; < e for

As what has been showed in [4], the O-convergence (Note: in [4], the O-convergence is called order-
convergence) in a general poset P may not be topological, i.e., it is possible that P can not be endowed with
a topology such that the O-convergence and the associated topological convergence are consistent. Hence,
much work has been done to characterize those special posets in which the O-convergence is topological. The
most recent result in [5] shows that the O-convergence in a poset which satisfies Condition (A) is topological
if and only if the poset is O-doubly continuous. This means that for a special class of posets, a sufficient and
necessary condition for O-convergence being topological is obtained.

As a direct generalization of O-convergence, 0,-convergence in posets has been discussed in [11] from
the order-theoretical point of view. It is defined as follows: a net (x;);cr in a poset P is said to O,-converge to
x € P if there exist subsets A and B of P such that
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(1) supA =x=infB;
(2) foreverya € Aand b € B, a < x; < b holds eventually.

In fact, the O,-convergence is also not topological generally. To clarify those special posets in which the
0,-convergence is topological, Zhao and Li [6] showed that for any poset P satisfying Condition (*), 0,-
convergence is topological if and only if P is a-doubly continuous. As a further result, Li and Zou [7] proved
that the 0,-convergence in a poset P is topological if and only if P is 0,-doubly continuous. This result
demonstrates the equivalence between the 0,-convergence being topological and the 0,-double continuity
of a given poset.

On the other hand, Zhou and Zhao [8] have defined the lim-infy-convergence in posets to generalize
lim-inf-convergence and lim-inf,-convergence [4]. They also found that the lim-inf,-convergence in a poset
is topological if and only if the poset is a(M)-continuous when some additional conditions are satisfied
(see [8], Theorem 3.1). This result clarified some special conditions of posets under which the lim-inf;.-
convergence is topological. However, to the best of our knowledge, the equivalent characterization to the
lim-infy¢-convergence in general posets being topological is still unknown.

One goal of this paper is to propose the notion of MN-convergence in posets which can unify O-
convergence and 0,-convergence and search the equivalent characterization to the MN-convergence being
topological. More precisely,

(G11)Given a general poset P, we hope to clarify the order-theoretical condition of P which is sufficient and
necessary for the MN-convergence being topological.

(G12)Given a poset P satisfying such condition, we hope to provide a topology that can be equipped on P such
that the MN-convergence and the associated topological convergence agree.

Another goal is to look for the equivalent characterization to the lim-inf,-convergence being topological.

More precisely,

(G21)Given a general poset P, we expect to present a sufficient and necessary condition of P which can
precisely serve as an order-theoretical condition for the lim-inf;-convergence being topological.

(G22)Given a poset P satisfying such condition, we expect to give a topology on P such that the lim-infy;-
convergence and the associated topological convergence are consistent.

To accomplish those goals, motivated by the ideal of introducing the Z-subsets system [9] for defining Z-
continuous posets , we propose the notion of MN-doubly continuous posets and define the MN-topology on
posets in Section 2. Based on the study of the basic properties of the MN-topology, it is proved that the MN-
convergence in a poset P is topological if and only if P is an MN-doubly continuous poset if and only if the
MN-convergence and the topological convergence with respect to MN-topology are consistent. In Section
3, by introducing the notion of a”()M)-continuous posets and presenting the fundamental properties of M-
topology which is induced by the lim-inf-convergence, we show that the lim-infy-convergence in a poset
P is topological if and only if P is an a*(M)-continuous poset if and only if the lim-infy-convergence and the
topological convergence with respect to M-topology are consistent.

Some conventional notations will be used in the paper. Given a setX, F C X means that F is a finite

subset of X. Given a topological space (X, 7) and a net (x;);c; in X, we take (x;);; —1 X to mean the net (x;);e;
converges to x € P with respect to the topology 7.

Let P be a poset and x € P. tx and |x are always used to denote the principal filter {y € P : y > x}
and the principal ideal {z € P : z < x} of P, respectively. Given a poset P and A C P, by writing sup A we
mean that the least upper bound of A in P exists and equals to sup A € P; dually, by writing inf A we mean
that the greatest lower bound of A in P exists and equals to inf A € P. And the set A is called an upper set if
A=1A={b e P;(3a € A) a < b}, the lower set is defined dually.

For a poset P, we succinctly denote
~ P(P)={A:AC P};Po(P) = P(P)/{0};

—  D(P) ={D € P(P) : Dis a directed subset of P};



DE GRUYTER MN-convergence and lim-infyc-convergence in partially ordered sets = 1079

-  J(P) = {F € P(P) : F is a filtered subset of P};
- L(P)={L e P(P):LLCP};Lo(P)=L(P)/{0};
- 8o(P)={{x}:x € P}.

To make this paper self-contained, we briefly review the following notions:

Definition 1.1 ([5]). Let Pbeaposetandx, y, z € P. Wesay y< o x if for every net (x;);c; in P which O-converges
to x € P, x; > y holds eventually; dually, we say zi> o x if for every net (x;);c; in P which O-converges to x € P,
x; < z holds eventually.

Definition 1.2 ([5]). A poset P is said to be O-doubly continuous if for every x € P, the set {a € P : a<ox} is
directed, the set {b € P : bi>gx} is filtered and sup{a € P : a<ox} = x =inf{b € P : b>px}.

Condition (A). A poset P is said to satisfy Condition(a) if
(1) foranyx,y,z € P, x<py < zimplies x<z;
(2) foranyw,s,t € P, w>qs > timplies wi>ot.

Definition 1.3 ([6]). Let P be a poset and x,y,z € P. We say y<ax if for every net (x;)ic; in P which O,-
converges to x € P, x; > y holds eventually; dually, we say zt>qx if for every net (x;);c; in P which O,-converges
to x € P, x; < z holds eventually.

Definition 1.4 ([7]). A poset P is said to be O,-doubly continuous if for every x € P,

(1) sup{a € P:a<ax}=x=inf{b € P: b>ax};

(2) foranyy,z € P with y<ax and zi>qx, there exist A C {a € P : a<ax} and B C {b € P : br>qx} such that
y<acC and zi>qc foreachc € (\{tanlb:a € A &b € B}.

2 MN-topology on posets

Based on the introduction of MN-convergence in posets, the MN-topology can be defined on posets. In this
section, we first define the MN-double continuity for posets. Then, we show the equivalence between the
MN-convergence being topological and the MN-double continuity of a given poset.

A PMN-space is a triplet (P, M, N) which consists of a poset P and two subfamily M, N C P(P).

All PMN-spaces (P, M, N) considered in this section are assumed to satisfy the following conditions:
(C1) If P has the least element 1, then { L} € M;
(C2)If P has the greatest element T, then {T} € N;
(C3)0 ¢ Mand 0 ¢ N.

Definition 2.1. Let (P, M, N) be a PMN-space. A net (x;);c; in P is said to MN-converge to x € P if there exist
M e M and N € N satisfying:

(MN1)sup M = x = inf N;

(MN2)x; € Tm N |n eventually for every m € M and every n € N.

MN
In this case, we will write (x;)ic; —> X.

Remark 2.2. Let (P, M, N) be a PMN-space.
MN
(1) IfM = D(P) and N = F(P), then a net (x;);c; —> x € P if and only if it O-converges to x. That is to say,
O-convergence is a particular case of MN-convergence.
MN
(2) If M = N = Po(P), then a net (x;)ic; —> x € P if and only if it O,-converges to x. That is to say, O,-
convergence is a special case of MN-convergence.
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MN
3) If M =N = Lo(P), then a net (x;);c; — x € Pifand only if x; = x holds eventually.
(4) The MN-convergent point of a net (x;);c; in P, if exists, is unique.

Indeed, suppose that (x;)icr Jg\[ x1 and (X;)ier Jg\[ X>. Then there exist A, € M and By € N such that
sup Ay = x = inf By and ay < x; < by holds eventually for every a; € Ay and by € By (k = 1, 2). This
implies that forany a1 € A1, a, € Ay, b1 € By and b, € By, there exists ip € I suchthat a, < x;, < b, and
a» < Xi, < b1. Thus we have sup A1 = x1 < inf B, = x, and sup A, = x, < inf By = x;. Therefore x1 = x,.
(5) Forany A ¢ M and B € N withsup A =inf B = x ¢ P, we denote F{A’B) ={N{tanlb:aec Ay &b € By}:
Ao C A&ByC B}l. Let DE‘A’B) ={(d,D) € Px F{A,B) : d € D} and let the preorder < on DE‘A’B) be defined by

(V(d1, D1), (d2, D3) € Diy p)) (d1, D1) < (d2, D2) <= D, C Ds.
One can readily check that (DfA, B) <) is directed. Now if we take x4 1, = d for every (d, D) € DE‘A’ By then the

net (x(d,D))(d,D)eD(XAYB) J\fg x because sup A = inf B = x, and a < x4 py < b holds eventually for any a € A
and b € B.

(6) Let (x(d,D))(d,D)GD(xA'B) be the net defined in (5) forany A € M and B € N withsupA = infB = x ¢ P.If
(X@.0))@.0)e by, , converges to p € P with respect to some topology T on the poset P, then for every open
neighborhood U, of p, there exist Ao C A and By C B such that

({tanlb:aeAo&b e Bo} C Up.

T

Indeed, suppose that (X4 p))a,p)c Dy —> p. Then for every open neighborhood U, of p, there exists
(do, Do) € DfA,B) such that x(y p) = d € U,y for all (d, D) = (do, Do). Since (d, Do) > (do, Do) for every
d € Do, X(4,p) = d € Up forevery d € Do. This shows Do C Up. So, there exist Ao C A and By C B such that

Do=({tanlb:acAo&b € By} C Up.

Given a PMN-space (P, M, N), we can define two new approximate relations <<;“4 and >ﬁ on the poset P in
the following definition.

Definition 2.3. Let (P, M, N) be a PMN-space and x, y, z € P.
(1) We define y<<ﬁx ifforany A € M and B € N with sup A = x = inf B, there exist Ao C A and By C B such
that

(J{tanib:aec Ao&b € Bo} C1y.

(2) Dually, we define ZD%X if forany M € M and N € N withsupM = x = inf N, there exist My C M and
No C N such that
ﬂ{Tmmin :me My&ne Ny} Clz.

For convenience, given a PMN-space (P, M, N) and x € P, we will briefly denote
VX ={y e P:y<ix};
AN x = {z e P:x<Nz};
VX ={a e P:xphal;
ANx ={b € P: b>3x}.

Remark 2.4. Let (P, M, N) be a PMN-space and x, y, z € P.

(1) Ifthereisno A € M such thatsup A = x, then p<x and pr>3;x for all p € P; similarly, if thereisno B € N
such that inf B = x, then p<x and p>Yex forall p € P.

(2) By Definition 2.3, one can easily check that if P has the least element L, then L<<% p forevery p € P, and
if P has the greatest element T, then TD%[ p forevery p € P.

1 From the logical point of view, we stipulate {tan{b:a € Ao &b € By} = Pif Ag = ) or By = {).
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(3) Theimplications y<:x = x <y and zi>3\x = z > x are not true necessarily. See the following example:
let R be the set of all real numbers, in its ordinal order, and M = N = {{n} : n € Z}, where Z is the set of
all integers. Then, by (1), we have 1 <3 1/2 and 0 >3 1/2. But V< 1/2 and ¢ > 1/2.

(4) Assume that sup Ag = x = inf By for some Ay € M and By € N. Then it follows from Definition 2.3 that
y<<\x implies y < x and z>3;x implies z > x. In particular, if $o(P) C M, N, then b<\.a implies b < a
and c1>ﬁa implies ¢ > a for any a, b, c € P. More particularly, for any p1, p., p3 € P, we have p, <<§g
P2 <= p1 < paand ps > py <= p3 > pa.

Proposition 2.5. Let (P, M, N) be a PMN-space and x, y, z € P. Then

(1) y<ixif and only if for every net (x;);c; that MN-converges to x, x; > y holds eventually.

2) ZDﬁx if and only if for every net (x;);c; that MN-converges to x, x; < z holds eventually.

Proof. (1) Suppose y < x. If a net (x);er “—gﬁ X, then there exist A € M and B € N such that supA = x =
inf B, and for any a € A and b € B, there exists ig € I'suchthata < x; < bforalli > 1'2. According to
Definition 2.3 (1), it follows that there exist Ag = {ai, a2, ...,an} C A and By = {b1, b2, ..., bm} C B such
that x € ({taxNibj: 1 <k<n&1<j<m} C 1y Takeiy € I with thatio > igi forevery k € {1, 2, ...,n}
andeveryj € {1,2,...,m}.Thenx; € N{taxNlbj: 1 <k<n&1<j<m} Ctyforalli > iy. This means
x; > y holds eventually.

Conversely, suppose that for every net (x;);c; that MN-converges to x, x; > y holds eventually. For every

A € Mand B € N withsupA = x = inf B, consider the net (X4 p))(.p)c DYy defined in Remark 2.2 (5). By

Remark 2.2 (5), the net (X(d,D))(d,D)eD(XA!B) ng x. So, there exists (do, Do) € Dy, pysuch that x4 p) = d > y forall
(d, D) = (do, Do). Since (d, Do) = (do, Do) forall d € Do, x4 p,) = d > y forall d € Do. Thus,we have Do C 1y.
It follows from the definition of DE‘A, B) that there exist Ao C A and By C BsuchthatDy = ({tanlb:a €
Ao &b € By} C 1y. This shows y<;x.

The proof of (2) can be processed similarly. O

Remark 2.6. Let (P, M, N) be a PMN-space.
(1) IfM = D(P) and N = F(P), then <$=< o and >3, = >¢.
) IfM =N = Po(P), then <0 =<q and >3 = Ba.

Given a PMN-space (P, M, N), depending on the approximate relations < and t>2; on P. we can define the
MN-double continuity for the poset P.

Definition 2.7. Let (P, M, N) be a PMN-space. The poset P is called an MN-doubly continuous poset if for

every x € P, there exist Mx € M and Ny € N such that

(A1)My C VX, Ny C ANex and sup My = x = inf Ny.

(A2)Foranyy € Y\ xandz € AYx, {tmNln:m e Mo &n € No} C ANy NV z for some My C My and
Ny C N,

By Remark 2.4 (4) and Definition 2.7, we have the following basic property about MN-doubly continuous
posets:

Proposition 2.8. Let (P, M, N) be a PMN-space and x,y, z € P. If the poset P is an MN-doubly continuous
poset, then y<<ﬁx implies y < x and ZDﬁx implies z > x.

Example 2.9. Let (P, M, N) be a PMN-space.

(1) IfM =N = 8y(P), then by Remark 2.4 (4), we have <<§g =< and >§g =>. By Definition 2.7, one can easily
check that P is an 8y8o-doubly continuous poset.

(2) If M = N = Lo(P), then by Definition 2.3, we have <<§g =< and |>§g =>. It can be easily checked from
Definition 2.7 that P is an L£y£o-doubly continuous poset.
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(3) LetM = D(P)andN = F(P). Thenitis easy to check that if P is an O-doubly continuous poset which satisfies
Condition (A), then it is a DF-doubly continuous poset. Particularly, finite posets, chains and anti-chains,
completely distributive lattices are all DF-doubly continuous posets.

(4) Let M = N = Po(P). Then the poset P is PyPo-double continuous if and only if it is O,-double continuous.
Thus, chains and finite posets are all PyPo-doubly continuous posets.

Next, we are going to consider the MN-topology on posets, which is induced by the MN-convergence.

Definition 2.10. Given a PMN-space (P, M, N), a subset U of P is called an MN-open set if for every net (x;);cr
MN
with that (x;);c; — x € U, x; € U holds eventually.

Clearly, the family O}\(P) consisting of all MN-open subsets of P forms a topology on P. And this topology is
called the MN-topology.

Theorem 2.11. Let (P, M, N) be a PMN-space. Then a subset U of P is an MN-open set if and only if for every
M e Mand N € N withsupM = x =inf N € U, we have

(Ytmnin:meMo&neNo} CU
for some My C M and Ny C N.

Proof. Suppose that U is an MN-open subset of P. For every M € M and N € N withsupM = x =inf N € U,

let (X(4,p))(a,p)e - be the net defined in Remark 2.2 (5). Then the net (x4, p))(4.p)c D% j\_@[ x. By the definition
of MN-open set, the exists (do, Do) € DE(M,N) such that x,; p) = d € U for all (d, D) > (do, Do). Since (d, Do) >
(do, Do) forall d € Do, X(4,p,) = d € U for every d € Do, and thus Do C U. It follows from the definition of the
directed set DE‘M’N) that Do = {tmnNJn:m e My &n € No} C U for some My C M and some Ny C N.
Conversely, assume that U is a subset of P with the property that forany M € M and N € N withsupM =
x =inf N € U, there exist Mo = {my, my, ..., my} C M and Ny = {ni, ny, ..., ;} C N such that "{tm,N{n; :
1<hs<k&1<j<l} CU.Let(x;);csbeanetthat MN-converges to x € U. Then there exist M € Mand N € N
such that supM = x = inf N € U, and for every m € Mand n € N, m < x; < n holds eventually. This means
that for every m, € Mo and n; € Ny, there exists iy, ; € I such that m;, < x; < njforalli > iy ;. Take ip € I such
thatig > i ; forallh € {1,2,...,k}andj € {1,2,...,1}.Thenx; e "\{tmpNin;: 1<h<k&1<j<l} CU
for all i > ig. Therefore, U is an MN-open subset of P. O

Proposition 2.12. Let (P, M, N) be a PMN-space in which P is an MN-doubly continuous poset, and y, z € P.
Then Ay NV z € O (P).

Proof. Suppose that M € M and N € N with supM = inf N = x € A3y N V2. Since P is an MN-doubly
continuous poset, there exist My € M and Ny € N satisfying condition (A1) and (A2) in Definition 2.7. This
means that there exist Mo C My C Vax and Ny T Ny C Ax such that ({tmo N {no : moy € Mo & ng €
No} C Ay NV iz. As My C My C vix and Ny C Ny C AN, by Definition 2.3, there exist My, = M and
Np, C Nsuchthat \{tmnNin: m € Mm, & n € Np, } C tmo N Lno for every my € Mo and no € No. Take
Mg = J{Mmn, : mo € Mo} and N = [J{Nn, : no € No}. Then it is easy to check that M C M, Ny C N and

xeﬂ{Taﬂ¢b:aeMp&beNF}
gm{’]\moﬁino : Mo € My &ng EN()}
C ANy NNz

So, it follows from Theorem 2.11 that A3y N vz € ON(P). O

Lemma 2.13. Let (P, M, N) be a PMN-space in which P is an MN-doubly continuous poset. Then a net

MN ORV()
(Xier > x € P <= (Xp)ic1 — x.
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Proof. From the definition of Oﬁ(P), it is easy to see that a net

MN O (P
(xidier = x € P= (X)ic1 —> x.

oN.(P) MN
To prove the Lemma, it suffices to show that a net (x;);c; —> x € P implies (x;);c; —> x. Suppose

0N (P)
a net (x;)ier N x. Since P is an MN-doubly continuous poset, there exist My € M and Nx € N such
that My C W3x, Ny C ANex and sup My = x = inf Ny. By Proposition 2.12, x € A);y N vz € O (P) for
everyy € My C v3x and every z € Ny C A)ix, and hence x; € A3y N Va2 holds eventually for every
y € My C ¥)ixand every z € Ny C AN:x. It follows from Proposition 2.8 that y < x; < z holds eventually for

MN
every y € My and z € Ny. Thus (x;)ic; —> x. O
Lemma 2.14. Let (P, M, N) be a PMN-space. If the MN-convergence in P is topological, then P is MN-doubly
continuous.

Proof. Suppose that the MN-convergence in P is topological. Then there exists a topology 7 on P such that

MN T
forevery x € P, anet (x;);c; — xifand onlyif (x;);c; > x. Define I, = {(p, U) € PxN(x) : p € U}, where N(x)
denotes the set of all open neighbourhoods of x in the topological space (P, 7), i.e., N(x) = {U € T : x € U}.
Define the preorder < on Iy as follows:

(V(p1, U1), (P2, U2) € I) (p1, U1) < (p2, Uz) <= U, C Us.
Now one can easily see that Iy is directed. Let x(, iy = p for every (p, U) € Ix. Then it is straightforward to

T MN
check that the net (x(, 1))y, vyer, = X, and thus (X, 1)), )er, —> X. By Definition 2.1, there exist My € M
and Ny € N such that sup My = x = inf Ny, and for every m ¢ My and n € Ny, there exists (py,, Un) € Ix
such that x, yy = p € tmn |nfor all (p, U) = (pm, Un). Since (p, Un) = (pm, Un) for every p € Un,
Xpun) =P €tmnNin for every p € Uy,. This shows

(Vm € My,n € Ny) AUy, € N(X)) x € Uy C tmn |n. (*)
Forany A € M and B € N with supA = x = inf B, let (x(d,D))(d,D)eD?A N be the net defined as in Remark 2.2

MN T
(5). Then (x4, p))(a.p)e Dy —> x, and hence (x4 p))(4.p)c Dy -~ x. This implies, by Remark 2.2 (6), that there
exist Ag C A and By C B satisfying

xeﬂ{mrwb:aer&beBo}
C Up CtmnN|n.

Therefore, m € ¥):x and n € A} x, and hence My C ¥3;x and Ny C Ax.

Lety € vXixand z € A3;x. Since sup My = x = inf Ny, by Definition 2.3, \{tmnNin: m e M, &n ¢
N1} € 1y nlzfor some M; C My and N; C Ny. This concludes by Condition (*) and the finiteness of sets M;
and N; that {U% : m € M; &n € N1} € N(x) and

xe( [{Un:meM; &ne N}
gﬂ{?mm,n:m e M; &n e N;}
Ctyniz.
MN
Considering the net (x4 p))4.p)c o, , defined in Remark 2.2 (5), we have (x4 p))(4.p)c oy, ., ~7 X andhence
(X(d’D))(d’D)EDE(MX,NX) —g x. So, by Remark 2.2 (6), there exist M, C My and N, T Ny such that
X e ﬂ{TmﬂJ,n:meMz&neNz}
gﬂ{U?,,:meMl&neNl}
Ctynlz.
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Finally, we show \{tmnNin: m € M, &n € N} C Aﬁy N vﬁz. Let (x(4,p )(d D)eD~, be the net defined
M N)

1n22(5)foranyM eMandN e N with supM’ —1an =x eN{tmnin:me M, &n € N,}. Then

(x, D))( 4.D)ED” —9 x', and thus (X(a.p)) (d.D)eD", —9 x . This implies by Remark 2.2 (6) that there exist

M ,N) M ,N)

M, C M and N, C N’ satisfying
X e[ [{tm' nin :me Mo &n € No}
C(){Un:me M &neNi}
Ctynlz.

Hence, we have X' € A};yN vz by Definition 2.3. This shows (\{tmnN{n: m c M, &n € N} C AYynviz.
Therefore, it follows from Definition 2.7 that P is MN-doubly continuous. O

Combining Lemma 2.13 and Lemma 2.14, we obtain the following theorem.

Theorem 2.15. Let (P, M, N) be a PMN-space. Then the following statements are equivalent:

(1) Pis an MN-doubly continuous poset

2P
(2) For any net (x;)icr in P, (x;)icr 9 x if and only if (x;)icr T X.

(3) The MN-convergence in P is topological.

Proof. (1) = (2): By Lemma 2.13.
(2) = (3): Itis clear.
(3) = (1): By Lemma 2.14. O

3 M-topology induced by lim-inf,;-convergence

In this section, the notion of lim-inf,-convergence is reviewed and the M-topology on posets is defined. By
exploring the fundamental properties of the M-topology, those posets under which the lim-inf,(-convergence
is topological are precisely characterized.

By saying a PM-space, we mean a pair (P, M) that contains a poset P and a subfamily M of P(P).

Definition 3.1 ([8]). Let (P, M) be a PM-space. A net (x;);c; in P is said to lim-inf,;-converge to x € P if there
exists M € M such that

(M1)x < sup M;

(M2)for every m € M, x; > m holds eventually.

M

In this case, we write (x;)ic; —> X.

It is worth noting that both lim-inf-convergence and lim-inf,-convergence [4] in posets are particular cases of
lim-inf,-convergence.

Remark 3.2. Let (P, M) be a PM-space and x,y € P.

M M

(1) Suppose that a net (x;)ic; — x and y < x. Then (x;);c; — y by Definition 3.1. This concludes that the set of
all lim-inf,-convergent points of the net (x;);c; in P is a lower subset of P. Thus, the lim-inf,-convergent
points of the net (x;);c; need not be unique.

M
(2) If P has the least element 1 and () € M, then we have (x;);c; — L for every net (x;);c; in P.
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(3) Forevery M € M with supM > x, we denote Fj; = {{tm : m € Mo} : Mo C M}Z.Let Dy, ={(d,D)
P x F}; : d € D} be in the preorder < defined by

(v(d1, D1), (d2, D;) € Dyy) (d1, D1) £ (d2, D;) <= D> C D;.

It is easy to see that the set Dy, is directed. Take x4 py = d for every (d, D) € Dy;. Then, by Definition 3.1,

M
one can straightforwardly check that the net (X4 p))(4,p)c py, — aforeverya < x.

(4) If the net (X(4,p))(4.p)c py, defined in (3) converges to p € P with respect to some topology T on P, then for
every open neighbourhood Uy of p, there exists Mo C M such that (\{tm : m € Mo} C Up.

Definition 3.3 ([8]). Let (P, M) be a PM-space.

(1) Forx,y € P, define y< ()X if for every net (x;);c; that lim-infy-converges to x, x; > y holds eventually.

(2) The poset P is said to be a(M)-continuous if {x € P : x<,ppa}t € Mand a = sup{x € P : x<,qpna}t
holds for every a € P.

Given a PM-space (P, M), the approximate relation <, on the poset P can be equivalently characterized
in the following proposition.

Proposition 3.4. Let (P, M) be a PM-space and x,y € P. Then y< o)X if and only if for every M € M with
sup M > x, there exists Mo C M such that

(){tm:me Mo} C 1y.

Proof. Suppose y<,oyX- Let (X(,p))a.n)ep:, be the net defined in Remark 3.2 (3) for every M € M with

supM = p > x. Then the net (x4 p))4.p)ec D, —Wet x. By Definition 3.3 (1), there exists (do, Do) € Dj}; such
that x4 py = d > yforall (d, D) 2 (do, Do). Since (d, Do) = (do, Do) for every d € Do, x(4.p,) = d > y for every
d € Do. So Dy C ty. This shows that there exists Mo C M such that Do = {tm : m € Mo} C 1y.
Conversely, suppose that for every M € M with sup M > x, there exists Mo C M such that {tm : m €
Mo} C 1y. Let (x;)ic; be a net that lim-infy-converges to x. Then, by Definition 3.1, there exists M € M such
that supM = p > x, and for every m € M, there exists im € I such that x; > m foralli > iy,. Take iy € I with
that ip = i, for every m € My C M, we have that x; € (\{tm : m € Mo} C tyforalli = iy. This shows that
x; > y holds eventually. Thus, by Definition 3.3 (1), we have y<,xp)X. O

Remark 3.5. Let (P, M) be a PM-space and x,y € P.

(1) Ifthereisno M € M such that sup M > x, then p< o)X for every p € P. And, if the poset P has the least
element L, then 1< \n)p foreveryp € P.

(2) The implication y<Lo)X = ¥ < X may not be true. For example, let P = {0, 1, 2, ...} be in the discrete
order < defined by

Vi,jePi<j<=i=]j.

And let M = {{2}}. Then, it is easy to see from Remark 3.5 (1) that 0< 41 and ¥ < 1.

(3) Assume the PM-space (P, M) has the property that for every p € P, there exists M, € M such that sup Mp =
p. Then, by Proposition 3.4, we have

(Vg,7 € P) q<q0pf = q < T

For more interpretations of the approximate relation <, on posets, the readers can refer to Example 3.2
and Remark 3.3 in [8].

For simplicity, given a PM-space (P, M) and x € P, we will denote
- Voaux={y € P:y<onX};

2 From the logical point of view, we stipulate (\{1m : m € Mo} = Pif Mo = 0.
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- Anx={z€P:xKo0nZ}

Based on the approximate relation <, on posets, the a” (M)-continuity can be defined for posets in the
following:

Definition 3.6. Let (P, M) be a PM-space. The poset P is called an a’ (M)-continuous poset if for every x € P,
there exists My € M such that

(01)sup My = x and My C Vyx. And,

(02)for every y € ¥y x, there exists F C My such that \{1f : f € F} C Ayy.

Noticing Remark 3.5 (3), we have the following proposition about a”(M)-continuous posets.

Proposition 3.7. Let (P, M) be a PM-space in which the poset P is a"(M)-continuous. Then
(Vx,y € P) y< X = ¥ < X.

The following examples of a”(M)-continuous posets can be formally checked by Definition 3.6.

Example 3.8. Let (P, M) be a PM-space.

(1) IfPis a finite poset, then P is an a” (M)-continuous poset if and only if for every x € P, there exists My € M
such that sup My = x.

(2) Let M = L(P). Then P is an a’(£)-continuous poset. This means that every poset is a’ (£)-continuous.

(3) Let M = D(P). Then we have <=< 4 (see Example 3.2 (1) in [8]). The poset P is a continuous poset if
and only if it is an a"(D)-continuous poset. In particular, finite posets, chains, anti-chains and completely
distributive lattices are all a*(D)-continuous.

(4) Let M = P(P). If P is a finite poset (resp. chain, anti-chain), then P is an a” (P)-continuous poset.

Proposition 3.9. Let (P, M) be a PM-space. If P is an a(M)-continuous poset, and {y € P : (3z €
P) y<aonz<aonya}t € M forevery a € P, then Pis an a” (M)-continuous poset.

Proof. Suppose that P is an a(M)-continuous poset, and {y € P : (3z € P) y<o02<an)a} € M for every
a € P.Take My = ¥yca. Then it is easy to see that sup My = a and M, C ¥,a. By Remark 3.3 (4) in [8], we
have sup{y € P: (3z € P) y<,o\)2<a(w)@} = a. This implies, by Proposition 3.4 and Remark 3.5 (2), that for
every y € Vya, there exist {y1,y2, ..., ¥n}, {21, 22, .--» 2n} C Mg = ¥pra such that

{1z i€ {1,2,...n}}
Ctyizie{L,2,....n}}
1y,

and y; < o) ziaoya forevery i € {1, 2, ..., n}. Next, we show ({1z; : i € {1, 2, ..., n}} C Ayy. For every
M e MwithsupM > b € {1z : i € {1,2,...,n}}, by Proposition 3.4, there exists M; C M such that
N{tm :m € M;} C 1y, foreveryic {1,2,...,n}. Take Mo = | J{M; : i € {1, 2, ..., n}}. Then My C M and

ﬂ{Tm tme Mo}
Qﬂ{T)’i 1ie{l,2,...,n}}
cty.
This shows y<,\p)b forevery b € N{tz; : i € {1, 2, ...,n}}. Hence, N{1z; : i € {1, 2, ...,n}} C Any. Thus
Pis an a”(M)-continuous poset. O

The fact that an a"(0V))-continuous poset P in a PM-space (P, M) may not be a(M)-continuous can be
demonstrated in the following example.



DE GRUYTER MN-convergence and lim-infy¢-convergence in partially ordered sets =— 1087

Example 3.10. Let (P, M) be the PM-space in which the poset P = R is the set of all real number with its usual
order < and M = $o(IR). Then we have < g(s,) =< by Proposition 3.4. It is easy to check, by Definition 3.6, that
R is an a”(8o)-continuous poset. But R is not an a(8o)-continuous poset because Vs x = |x/€ $o(P) for every
x € R.

We turn to consider the topology induced by the lim-inf;-convergence in posets.

M
Definition 3.11. Let (P, M) be a PM-space. A subset V of Pis said to be M-open if for every net (x;)ic; —> x € V,
x; € V holds eventually.

Given a PM-space (P, M), one can formally verify that the set of all M-open subsets of P forms a topology on
P. This topology is called the M-topology, and denoted by O (P).
The following Theorem is an order-theoretical characterization of M-open sets.

Theorem 3.12. Let (P, M) be a PM-space. Then a subset V of P is M-open if and only if it satisfies the following
two conditions:

(VD)1V =V, ie., Vis an upper set.

(V2)For every M € M with sup M € V, there exists Mo C M such that \{tm: m € Mo} C V.

Proof. Suppose that V is an M-open subset of P. By Remark 3.2 (1), it is easy to see that V is an upper
set. Let (X(4,p))(4,p)e py, be the net defined in Remark 3.2 (3) for every M € M with supM = x € V. Then

(x(d,D))(d,D)e% —7\3 x € V. This implies, by Definition 3.11, that there exists (do, Do) € Dj}; such that
Xp = d € Viorall (d,D) 2 (do, Do). Since (d, Do) = (do, Do) for alld € Do, x(4p,) = d € V forall
d € Dy. This shows Dy C V. Thus there exists My C M such that Do = ({tm : m € Mo} C V.

Conversely, suppose V is a subset of P which satisfies Condition (V1) and (V2). Let (x;);c; be a net that
lim-infy-converges to x € V. Then there exists M € M such thatsupM =y > x € V = 1V (hence, y € V),
and for every m € M, there exists im € I such that x; > m forall i > i,. By Condition (V2), we have that
({tm : m € Mo} C V for some My C M. Take ip € I with that iy > i, forallm € My. Thenx; € \{tm: m €
Moy} C Vioralli = iy. This shows that V is an M-open set. O

Recall that given a topological space (X, 7) and a point x € P, a family B(x) of open neighbourhoods of x is
called a base for the topological space (X, T) at the point x if for every neighbourhood V of x there exists an
U e B(x)suchthatxe UC V.

If the poset P in a PM-space (P, M) is an a"(M)-continuous poset, we provide a base for the topological
space (P, Oy¢(P)) at a point x € P.

Proposition 3.13. Let (P, M) be a PM-space in which the poset P is " (M)-continuous. Then Axix € Oy (P)
foreveryx € P.

Proof. One can readily see, by Proposition 3.4, that A,¢x is an upper subset of P for every x € P. For every
M € M with supM = y € Axx, by Definition 3.6 (01) there exists M, € M such that M, C ¥,y and
sup My, = y. Since x< 43y, by Definition 3.6 (02), we have N{tm; : i € {1,2,...,n}} C Ayx for some
{mi, my,...,mu} C My. Observing {m;, my, ..., my} C M, C V¥;.y, we can conclude that there exists M; C
M such that {ta : a € M;} C tm; foreveryi € {1,2,...,n}.Let Mo = U{M; : i € {1, 2,...,n}}. Then
My C M and

({tm:m e Mo}
C({tmizie{1,2,...,n}}
CAnX.

This shows, by Theorem 3.12, that Ay x € Oy(P) for every x € P. O
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Proposition 3.14. Let (P, M) be a PM-space in which the poset P is a"(M)-continuous and x € P. Then
{N{Ana:ae A} : AC ¥Yyx}isabase for the topological space (P, Oy (P)) at the point x.

Proof. Clearly, by Proposition 3.13, we have ({Aya : a € A} € Oy (P) for every A C ¥y x. Let U € Oy (P)
and x € U. Since P is an a"(M)-continuous poset, there exists My € M such that My C ¥x and sup My =
x € U.ByTheorem 3.12, it follows that ("\{tm : m € My} C U for some Mo C My C V¥yx. So, from Proposition
3.7, we have

x €[ [{Anm:me Mo}
C({tm:me Mo} C U.
Thus, {({Ana:a € A} : A C Vyx} is a base for the topological space (P, O(P)) at the point x. O
In the rest, we are going to establish a characterization theorem which demonstrates the equivalence between
the lim-inf)-convergence being topological and the a”()M)-continuity of the poset in a given PM-space.
Lemma 3.15. Let (P, M) be a PM-space. If P is an a"(M)-continuous poset, then a net

M O (P)
(Xi)ier > x € P <= (Xi)ier —> X.

Proof. By the definition of O,(P), it is easy to see that a net

M O (P)
(X)ict > x € P = (Xi)ier —> X.

O (P) M
To prove the Lemma, we only need to show that a net (x;);c; —> x € P implies (x;)jc; —> x. Suppose

On(P) .
(x})ier —> x.As Pisan a ()M)-continuous poset, there exists M, € M such that My C ¥ x and sup My =

x. By Proposition 3.13, we have x € Apy € Oy (P) for every y € My C V¥yx. Hence, x; € Ay holds
eventually. This implies, by Proposition 3.7, that x; € Ay C 1y holds eventually. By the definition of lim-

M
infy-convergence, we have (x;);c; — x. O

In the converse direction, we have the following Lemma.

Lemma 3.16. Let (P, M) be a PM-space. If the lim-inf)-convergence in P is topological, then P is an a*(M)-
continuous poset.

Proof. Suppose that the lim-inf;-convergence in P is topological. Then there exists a topology T such that
for every x € P, a net

M T
(XDier = x <= (Xp)icr = x.

Define Iy = {(p, V) € PxN(x) : p € V}, where N(x) is the set of all open neighbourhoods of x, namely,
N(x) = {V € T : x € V}. Define also the preorder < on I, as follows:

(V(p1, V1), (P2, V2) € I) (1, V1) =X (P2, Vo) <= V, C V4.

It is easy to see that Iy is directed. Now, let x, ) = p for every (p, V) € Ix. Then one can readily check that

T M
the net (X, v))p,ver, = X, and hence (x(, ), v)er, = x. This means that there exists Mx € M such that
sup Mx > x, and for every m € My, there exists (pm, Vm) € I with that x(, ) = p > mforall (p, V) =
(m, V). Since (p, Vi) = (pm, Vi) for all p € Vin, we have x(, v,y = p > mforall p € V. This shows

(Ym € My) @Vm € N(X)) x € Vin C tm. (**)

Next we prove My C ¥ x. For every m € My and every M € M with sup M > x, let (X4 p))4.p)c py, be the net

M T
defined in Remark 3.2 (3). Then the net (x(4,p))4,p)epy, = %, and thus (X, p))a,p)cpy, = x. It follows from
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Remark 3.2 (4) that there exists My C M such that x € ({ta : a € Mo} C Vn. By Condition (**), we have
xe(\{ta:ae My} C Vi C1tm.So, m&ypx. This shows My C ¥yx.

Let y € ¥yx. Then there exists {m1, my, ..., myn} © My such that N{tm; : i € {1,2,...,n}} C tyas
My € M and sup My > x. By Condition (**), it follows that ({Vm, : i € {1,2,...,n}} C N{tm; : i €

M
{1, 2,...,n}} C 1y. Considering the net (x4, p))(4,p)e Dy, defined in Remark 3.2 (3), we have (X(4,p))(4,p)e Dy, -

T
x, and hence (x4 p))4.p)c by, X This implies, by Remark 3.2 (4), that

ﬂ{Tb :b S Moo}
SV :i€{1,2,...,n}} (***)
gﬂ{Tmi tie{1,2,..,n}} Cty

for some Moo C My. Finally, we show (\{th : b € Moo} C Ayy. For every x € {th : b € Moo} and every

’ ’ ’ M 7
M e MwithsupM > x, let (x4 p)) be the net defined in Remark 3.2 (3). Then (x(4 p)) - X,

(d,D)eD;, (d,D)eD;,

T, ] ,
and thus (x4 p)) —> x . It follows from Condition (* * *) and Remark 3.2 (4) that there exists My C M

such that

(d.D)eDy,

ﬂ{Ta’ cd e My}
C({Vm :i€{1,2,...,n}}
C(){tmizie{1,2,...,n}} C1y.
This shows x* € Ay, and thus ({th : b € Moo} C Ayry. Therefore, Pis an a” (M)-continuous poset. O

Combining Lemma 3.15 and Lemma 3.16, we deduce the following result.

Theorem 3.17. Let (P, M) be a PM-space. The following statements are equivalent:

(1) Pisan a’(M)-continuous poset.
) M On(P)
(2) For any net (x;)ic;in P, (x;)ic; — X € P = (Xj)ic; —> x.

(3) The lim-infy\-convergence in P is topological.

Proof. (1) = (2): By Lemma 3.15.
(2) = (3): Clear.
(3) = (1): By Lemma 3.16. O

Corollary 3.18 ([8]). Let (P, M) be a PM-space with 8o(P) C M C P(P). Suppose Yyya € Mand {y € P :
(3z € P) y< 00 2<a(w)@} € M holds for every a € P. Then the lim-infy-convergence in P is topological if and
only if P is a(M)-continuous.

Proof. (=): To show the a(M)-continuity of P, it suffices to prove sup ¥,ca = a for every a € P. Since the
lim-inf,,-convergence in P is topological, by Theorem 3.17, P is an a”()M)-continuous poset. This implies that
there exists M, € M such that sup M, C V¥,a and sup M, = a for every a € P. By Proposition 3.7, we have
VYya C la.Sosup ¥ya = a.

(«<=): By Proposition 3.9 and Theorem 3.17. O
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