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Abstract: In this paper, we �rst introduce the notion of MN-convergence in posets as an uni�ed form of O-
convergence and O2-convergence. Then, by studying the fundamental properties of MN-topology which is
determined by MN-convergence according to the standard topological approach, an equivalent characteri-
zation to the MN-convergence being topological is established. Finally, the lim-infM-convergence in posets
is further investigated, and a su�cient and necessary condition for lim-infM-convergence to be topological
is obtained.
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1 Introduction, Notations and Preliminaries
The concept ofO-convergence in partially ordered sets (posets, for short) was introduced by Birkho� [1], Frink
[2] and Mcshane [3]. It is de�ned as follows: a net (xi)i∈I in a poset P is said to O-converge to x ∈ P if there
exist subsets D and F of P such that
(1) D is directed and F is �ltered;
(2) supD = x = inf F;
(3) for every d ∈ D and e ∈ F, d 6 xi 6 e holds eventually, i.e., there exists i0 ∈ I such that d 6 xi 6 e for

all i > i0.

As what has been showed in [4], the O-convergence (Note: in [4], the O-convergence is called order-
convergence) in a general poset P may not be topological, i.e., it is possible that P can not be endowed with
a topology such that the O-convergence and the associated topological convergence are consistent. Hence,
muchwork has been done to characterize those special posets inwhich theO-convergence is topological. The
most recent result in [5] shows that the O-convergence in a poset which satis�es Condition (M) is topological
if and only if the poset is O-doubly continuous. This means that for a special class of posets, a su�cient and
necessary condition for O-convergence being topological is obtained.

As a direct generalization of O-convergence, O2-convergence in posets has been discussed in [11] from
the order-theoretical point of view. It is de�ned as follows: a net (xi)i∈I in a poset P is said to O2-converge to
x ∈ P if there exist subsets A and B of P such that
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(1) supA = x = inf B;
(2) for every a ∈ A and b ∈ B, a 6 xi 6 b holds eventually.

In fact, the O2-convergence is also not topological generally. To clarify those special posets in which the
O2-convergence is topological, Zhao and Li [6] showed that for any poset P satisfying Condition (*), O2-
convergence is topological if and only if P is α-doubly continuous. As a further result, Li and Zou [7] proved
that the O2-convergence in a poset P is topological if and only if P is O2-doubly continuous. This result
demonstrates the equivalence between the O2-convergence being topological and the O2-double continuity
of a given poset.

On the other hand, Zhou and Zhao [8] have de�ned the lim-infM-convergence in posets to generalize
lim-inf-convergence and lim-inf2-convergence [4]. They also found that the lim-infM-convergence in a poset
is topological if and only if the poset is α(M)-continuous when some additional conditions are satis�ed
(see [8], Theorem 3.1). This result clari�ed some special conditions of posets under which the lim-infM-
convergence is topological. However, to the best of our knowledge, the equivalent characterization to the
lim-infM-convergence in general posets being topological is still unknown.

One goal of this paper is to propose the notion of MN-convergence in posets which can unify O-
convergence and O2-convergence and search the equivalent characterization to the MN-convergence being
topological. More precisely,
(G11)Given a general poset P, we hope to clarify the order-theoretical condition of P which is su�cient and

necessary for theMN-convergence being topological.
(G12)Given a poset P satisfying such condition, we hope to provide a topology that can be equipped on P such

that theMN-convergence and the associated topological convergence agree.

Another goal is to look for the equivalent characterization to the lim-infM-convergence being topological.
More precisely,
(G21)Given a general poset P, we expect to present a su�cient and necessary condition of P which can

precisely serve as an order-theoretical condition for the lim-infM-convergence being topological.
(G22)Given a poset P satisfying such condition, we expect to give a topology on P such that the lim-infM-

convergence and the associated topological convergence are consistent.

To accomplish those goals, motivated by the ideal of introducing the Z-subsets system [9] for de�ning Z-
continuous posets , we propose the notion ofMN-doubly continuous posets and de�ne theMN-topology on
posets in Section 2. Based on the study of the basic properties of theMN-topology, it is proved that theMN-
convergence in a poset P is topological if and only if P is an MN-doubly continuous poset if and only if the
MN-convergence and the topological convergence with respect to MN-topology are consistent. In Section
3, by introducing the notion of α*(M)-continuous posets and presenting the fundamental properties of M-
topology which is induced by the lim-infM-convergence, we show that the lim-infM-convergence in a poset
P is topological if and only if P is an α*(M)-continuous poset if and only if the lim-infM-convergence and the
topological convergence with respect toM-topology are consistent.

Some conventional notations will be used in the paper. Given a setX, F v X means that F is a �nite

subset of X. Given a topological space (X, T) and a net (xi)i∈I in X, we take (xi)i∈I
T

−→ x to mean the net (xi)i∈I
converges to x ∈ P with respect to the topology T.

Let P be a poset and x ∈ P. ↑x and ↓x are always used to denote the principal �lter {y ∈ P : y > x}
and the principal ideal {z ∈ P : z 6 x} of P, respectively. Given a poset P and A ⊆ P, by writing supA we
mean that the least upper bound of A in P exists and equals to supA ∈ P; dually, by writing inf A we mean
that the greatest lower bound of A in P exists and equals to inf A ∈ P. And the set A is called an upper set if
A = ↑A = {b ∈ P; (∃a ∈ A) a 6 b}, the lower set is de�ned dually.

For a poset P, we succinctly denote
– P(P) = {A : A ⊆ P}; P0(P) = P(P)/{∅};
– D(P) = {D ∈ P(P) : D is a directed subset of P};
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– F(P) = {F ∈ P(P) : F is a �ltered subset of P};
– L(P) = {L ∈ P(P) : L v P}; L0(P) = L(P)/{∅};
– S0(P) = {{x} : x ∈ P}.

To make this paper self-contained, we brie�y review the following notions:

De�nition 1.1 ([5]). Let P be a poset and x, y, z ∈ P.We say y�Ox if for every net (xi)i∈I in P which O-converges
to x ∈ P, xi > y holds eventually; dually, we say z�Ox if for every net (xi)i∈I in P which O-converges to x ∈ P,
xi 6 z holds eventually.

De�nition 1.2 ([5]). A poset P is said to be O-doubly continuous if for every x ∈ P, the set {a ∈ P : a�Ox} is
directed, the set {b ∈ P : b�Ox} is �ltered and sup{a ∈ P : a�Ox} = x = inf{b ∈ P : b�Ox}.

Condition (M). A poset P is said to satisfy Condition(M) if
(1) for any x, y, z ∈ P, x�Oy 6 z implies x�Oz;
(2) for any w, s, t ∈ P, w�Os > t implies w�Ot.

De�nition 1.3 ([6]). Let P be a poset and x, y, z ∈ P. We say y�αx if for every net (xi)i∈I in P which O2-
converges to x ∈ P, xi > y holds eventually; dually, we say z�αx if for every net (xi)i∈I in P which O2-converges
to x ∈ P, xi 6 z holds eventually.

De�nition 1.4 ([7]). A poset P is said to be O2-doubly continuous if for every x ∈ P,
(1) sup{a ∈ P : a�αx} = x = inf{b ∈ P : b�αx};
(2) for any y, z ∈ P with y�αx and z�αx, there exist A v {a ∈ P : a�αx} and B v {b ∈ P : b�αx} such that

y�αc and z�αc for each c ∈
⋂
{↑a ∩ ↓b : a ∈ A & b ∈ B}.

2 MN-topology on posets
Based on the introduction ofMN-convergence in posets, theMN-topology can be de�ned on posets. In this
section, we �rst de�ne the MN-double continuity for posets. Then, we show the equivalence between the
MN-convergence being topological and theMN-double continuity of a given poset.

A PMN-space is a triplet (P,M,N) which consists of a poset P and two subfamilyM,N ⊆ P(P).
All PMN-spaces (P,M,N) considered in this section are assumed to satisfy the following conditions:

(C1) If P has the least element⊥, then {⊥} ∈M;
(C2)If P has the greatest element>, then {>} ∈ N;
(C3)∅ /∈M and ∅ /∈ N.

De�nition 2.1. Let (P,M,N) be a PMN-space. A net (xi)i∈I in P is said toMN-converge to x ∈ P if there exist
M ∈M and N ∈ N satisfying:
(MN1)supM = x = inf N;
(MN2)xi ∈ ↑m ∩ ↓n eventually for every m ∈ M and every n ∈ N.

In this case, we will write (xi)i∈I
MN

−→ x.

Remark 2.2. Let (P,M,N) be a PMN-space.

(1) If M = D(P) and N = F(P), then a net (xi)i∈I
MN

−→ x ∈ P if and only if it O-converges to x. That is to say,
O-convergence is a particular case ofMN-convergence.

(2) If M = N = P0(P), then a net (xi)i∈I
MN

−→ x ∈ P if and only if it O2-converges to x. That is to say, O2-
convergence is a special case ofMN-convergence.
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(3) IfM = N = L0(P), then a net (xi)i∈I
MN

−→ x ∈ P if and only if xi = x holds eventually.
(4) TheMN-convergent point of a net (xi)i∈I in P, if exists, is unique.

Indeed, suppose that (xi)i∈I
MN

−→ x1 and (xi)i∈I
MN

−→ x2. Then there exist Ak ∈ M and Bk ∈ N such that
supAk = xk = inf Bk and ak 6 xi 6 bk holds eventually for every ak ∈ Ak and bk ∈ Bk (k = 1, 2). This
implies that for any a1 ∈ A1, a2 ∈ A2, b1 ∈ B1 and b2 ∈ B2, there exists i0 ∈ I such that a1 6 xi0 6 b2 and
a2 6 xi0 6 b1. Thus we have supA1 = x1 6 inf B2 = x2 and supA2 = x2 6 inf B1 = x1. Therefore x1 = x2.

(5) For any A ∈M and B ∈ N with supA = inf B = x ∈ P, we denote Fx(A,B) = {
⋂
{↑a∩↓b : a ∈ A0 & b ∈ B0} :

A0 v A & B0 v B}
1
. Let Dx(A,B) = {(d, D) ∈ P × F

x
(A,B) : d ∈ D} and let the preorder ≤ on Dx(A,B) be de�ned by

(∀(d1, D1), (d2, D2) ∈ Dx(A,B)) (d1, D1) ≤ (d2, D2)⇐⇒ D2 ⊆ D1.

One can readily check that (Dx(A,B), ≤) is directed. Now if we take x(d,D) = d for every (d, D) ∈ Dx(A,B), then the

net (x(d,D))(d,D)∈Dx(A,B)
MN

−→ x because supA = inf B = x, and a 6 x(d,D) 6 b holds eventually for any a ∈ A
and b ∈ B.

(6) Let (x(d,D))(d,D)∈Dx(A,B) be the net de�ned in (5) for any A ∈ M and B ∈ N with supA = inf B = x ∈ P. If
(x(d,D))(d,D)∈Dx(A,B) converges to p ∈ P with respect to some topology T on the poset P, then for every open
neighborhood Up of p, there exist A0 v A and B0 v B such that⋂

{↑a ∩ ↓b : a ∈ A0 & b ∈ B0} ⊆ Up .

Indeed, suppose that (x(d,D))(d,D)∈Dx(A,B)
T

−→ p. Then for every open neighborhood Up of p, there exists
(d0, D0) ∈ Dx(A,B) such that x(d,D) = d ∈ Up for all (d, D) ≥ (d0, D0). Since (d, D0) ≥ (d0, D0) for every
d ∈ D0, x(d,D) = d ∈ Up for every d ∈ D0. This shows D0 ⊆ Up. So, there exist A0 v A and B0 v B such that

D0 =
⋂
{↑a ∩ ↓b : a ∈ A0 & b ∈ B0} ⊆ Up .

Given a PMN-space (P,M,N), we can de�ne two new approximate relations�N
M and �N

M on the poset P in
the following de�nition.

De�nition 2.3. Let (P,M,N) be a PMN-space and x, y, z ∈ P.
(1) We de�ne y�N

Mx if for any A ∈M and B ∈ N with supA = x = inf B, there exist A0 v A and B0 v B such
that ⋂

{↑a ∩ ↓b : a ∈ A0 & b ∈ B0} ⊆ ↑y.

(2) Dually, we de�ne z�N
Mx if for any M ∈ M and N ∈ N with supM = x = inf N, there exist M0 v M and

N0 v N such that ⋂
{↑m ∩ ↓n : m ∈ M0 & n ∈ N0} ⊆ ↓z.

For convenience, given a PMN-space (P,M,N) and x ∈ P, we will brie�y denote
– HN

Mx = {y ∈ P : y�N
Mx};

– NN
Mx = {z ∈ P : x�N

Mz};
– ON

Mx = {a ∈ P : x�N
Ma};

– MN
Mx = {b ∈ P : b�N

Mx}.

Remark 2.4. Let (P,M,N) be a PMN-space and x, y, z ∈ P.
(1) If there is no A ∈M such that supA = x, then p�N

Mx and p�N
Mx for all p ∈ P; similarly, if there is no B ∈ N

such that inf B = x, then p�N
Mx and p�N

Mx for all p ∈ P.
(2) By De�nition 2.3, one can easily check that if P has the least element ⊥, then ⊥�N

Mp for every p ∈ P, and
if P has the greatest element>, then>�N

Mp for every p ∈ P.

1 From the logical point of view, we stipulate
⋂
{↑a ∩ ↓b : a ∈ A0 & b ∈ B0} = P if A0 = ∅ or B0 = ∅.
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(3) The implications y�N
Mx ⇒ x 6 y and z�N

Mx ⇒ z > x are not true necessarily. See the following example:
letR be the set of all real numbers, in its ordinal order, andM = N = {{n} : n ∈ Z}, whereZ is the set of
all integers. Then, by (1), we have 1�N

M 1/2 and 0�N
M 1/2. But 1 ̸6 1/2 and 0 ̸> 1/2.

(4) Assume that supA0 = x = inf B0 for some A0 ∈ M and B0 ∈ N. Then it follows from De�nition 2.3 that
y�N

Mx implies y 6 x and z�N
Mx implies z > x. In particular, if S0(P) ⊆ M,N, then b�N

Ma implies b 6 a
and c�N

Ma implies c > a for any a, b, c ∈ P. More particularly, for any p1, p2, p3 ∈ P, we have p1 �S0
S0

p2 ⇐⇒ p1 6 p2 and p3 �S0
S0
p2 ⇐⇒ p3 > p2.

Proposition 2.5. Let (P,M,N) be a PMN-space and x, y, z ∈ P. Then
(1) y�N

Mx if and only if for every net (xi)i∈I thatMN-converges to x, xi > y holds eventually.
(2) z�N

Mx if and only if for every net (xi)i∈I thatMN-converges to x, xi 6 z holds eventually.

Proof. (1) Suppose y �N
M x. If a net (xi)i∈I

MN

−→ x, then there exist A ∈ M and B ∈ N such that supA = x =
inf B, and for any a ∈ A and b ∈ B, there exists iba ∈ I such that a 6 xi 6 b for all i > iba. According to
De�nition 2.3 (1), it follows that there exist A0 = {a1, a2, ..., an} v A and B0 = {b1, b2, ..., bm} v B such
that x ∈

⋂
{↑ak ∩ ↓bj : 1 ≤ k ≤ n & 1 ≤ j ≤ m} ⊆ ↑y. Take i0 ∈ I with that i0 > ibjak for every k ∈ {1, 2, ..., n}

and every j ∈ {1, 2, ...,m}. Then xi ∈
⋂
{↑ak ∩ ↓bj : 1 ≤ k ≤ n & 1 ≤ j ≤ m} ⊆ ↑y for all i > i0. This means

xi > y holds eventually.
Conversely, suppose that for every net (xi)i∈I thatMN-converges to x, xi > y holds eventually. For every

A ∈ M and B ∈ N with supA = x = inf B, consider the net (x(d,D))(d,D)∈Dx(A,B) de�ned in Remark 2.2 (5). By

Remark 2.2 (5), the net (x(d,D))(d,D)∈Dx(A,B)
MN

−→ x. So, there exists (d0, D0) ∈ Dx(A,B) such that x(d,D) = d > y for all
(d, D) ≥ (d0, D0). Since (d, D0) ≥ (d0, D0) for all d ∈ D0, x(d,D0) = d > y for all d ∈ D0. Thus,we have D0 ⊆ ↑y.
It follows from the de�nition of Dx(A,B) that there exist A0 v A and B0 v B such that D0 =

⋂
{↑a ∩ ↓b : a ∈

A0 & b ∈ B0} ⊆ ↑y. This shows y�N
Mx.

The proof of (2) can be processed similarly.

Remark 2.6. Let (P,M,N) be a PMN-space.
(1) IfM = D(P) andN = F(P), then�F

D=�O and�F
D = �O.

(2) IfM = N = P0(P), then�P0
P0
=�α and�

P0
P0

= �α.

Given a PMN-space (P,M,N), depending on the approximate relations�N
M and�N

M on P. we can de�ne the
MN-double continuity for the poset P.

De�nition 2.7. Let (P,M,N) be a PMN-space. The poset P is called an MN-doubly continuous poset if for
every x ∈ P, there exist Mx ∈M and Nx ∈ N such that
(A1)Mx ⊆ HN

Mx, Nx ⊆ MN
Mx and supMx = x = inf Nx.

(A2)For any y ∈ HN
Mx and z ∈ MN

Mx,
⋂
{↑m ∩ ↓n : m ∈ M0 & n ∈ N0} ⊆ NN

My ∩ ON
Mz for some M0 v Mx and

N0 v Nx.

By Remark 2.4 (4) and De�nition 2.7, we have the following basic property about MN-doubly continuous
posets:

Proposition 2.8. Let (P,M,N) be a PMN-space and x, y, z ∈ P. If the poset P is an MN-doubly continuous
poset, then y�N

Mx implies y 6 x and z�N
Mx implies z > x.

Example 2.9. Let (P,M,N) be a PMN-space.
(1) If M = N = S0(P), then by Remark 2.4 (4), we have�S0

S0
=6 and �

S0
S0

=>. By De�nition 2.7, one can easily
check that P is an S0S0-doubly continuous poset.

(2) If M = N = L0(P), then by De�nition 2.3, we have�L0
L0

=6 and �
L0
L0

=>. It can be easily checked from
De�nition 2.7 that P is an L0L0-doubly continuous poset.
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(3) LetM = D(P) andN = F(P). Then it is easy to check that if P is anO-doubly continuous poset which satis�es
Condition (M), then it is a DF-doubly continuous poset. Particularly, �nite posets, chains and anti-chains,
completely distributive lattices are allDF-doubly continuous posets.

(4) Let M = N = P0(P). Then the poset P is P0P0-double continuous if and only if it is O2-double continuous.
Thus, chains and �nite posets are all P0P0-doubly continuous posets.

Next, we are going to consider theMN-topology on posets, which is induced by theMN-convergence.

De�nition 2.10. Given a PMN-space (P,M,N), a subset U of P is called anMN-open set if for every net (xi)i∈I
with that (xi)i∈I

MN

−→ x ∈ U, xi ∈ U holds eventually.

Clearly, the familyON
M(P) consisting of allMN-open subsets of P forms a topology on P. And this topology is

called theMN-topology.

Theorem 2.11. Let (P,M,N) be a PMN-space. Then a subset U of P is anMN-open set if and only if for every
M ∈M and N ∈ N with supM = x = inf N ∈ U, we have⋂

{↑m ∩ ↓n : m ∈ M0 & n ∈ N0} ⊆ U

for some M0 v M and N0 v N.

Proof. Suppose that U is anMN-open subset of P. For every M ∈M and N ∈ N with supM = x = inf N ∈ U,

let (x(d,D))(d,D)∈Dx(M,N)
be the net de�ned in Remark 2.2 (5). Then the net (x(d,D))(d,D)∈Dx(M,N)

MN

−→ x. By the de�nition
ofMN-open set, the exists (d0, D0) ∈ Dx(M,N) such that x(d,D) = d ∈ U for all (d, D) ≥ (d0, D0). Since (d, D0) ≥
(d0, D0) for all d ∈ D0, x(d,D0) = d ∈ U for every d ∈ D0, and thus D0 ⊆ U. It follows from the de�nition of the
directed set Dx(M,N) that D0 =

⋂
{↑m ∩ ↓n : m ∈ M0 & n ∈ N0} ⊆ U for some M0 v M and some N0 v N.

Conversely, assume that U is a subset of P with the property that for anyM ∈M and N ∈ Nwith supM =
x = inf N ∈ U, there existM0 = {m1,m2, ...,mk} v M and N0 = {n1, n2, ..., nl} v N such that

⋂
{↑mh ∩↓nj :

1 ≤ h ≤ k & 1 ≤ j ≤ l} ⊆ U. Let (xi)i∈I be a net thatMN-converges to x ∈ U. Then there existM ∈M and N ∈ N

such that supM = x = inf N ∈ U, and for every m ∈ M and n ∈ N, m 6 xi 6 n holds eventually. This means
that for everymh ∈ M0 and nj ∈ N0, there exists ih,j ∈ I such thatmh 6 xi 6 nj for all i ≥ ih,j. Take i0 ∈ I such
that i0 ≥ ih,j for all h ∈ {1, 2, ..., k} and j ∈ {1, 2, ..., l}. Then xi ∈

⋂
{↑mh ∩ ↓nj : 1 ≤ h ≤ k & 1 ≤ j ≤ l} ⊆ U

for all i ≥ i0. Therefore, U is anMN-open subset of P.

Proposition 2.12. Let (P,M,N) be a PMN-space in which P is anMN-doubly continuous poset, and y, z ∈ P.
Then NN

My ∩ON
Mz ∈ ON

M(P).

Proof. Suppose that M ∈ M and N ∈ N with supM = inf N = x ∈ NN
My ∩ ON

Mz. Since P is an MN-doubly
continuous poset, there exist Mx ∈ M and Nx ∈ N satisfying condition (A1) and (A2) in De�nition 2.7. This
means that there exist M0 v Mx ⊆ HN

Mx and N0 v Nx ⊆ MN
Mx such that

⋂
{↑m0 ∩ ↓n0 : m0 ∈ M0 & n0 ∈

N0} ⊆ NN
My ∩ ON

Mz. As M0 v Mx ⊆ HN
Mx and N0 v Nx ⊆ MN

Mx, by De�nition 2.3, there exist Mm0 v M and
Nn0 v N such that

⋂
{↑m ∩ ↓n : m ∈ Mm0 & n ∈ Nn0 } ⊆ ↑m0 ∩ ↓n0 for every m0 ∈ M0 and n0 ∈ N0. Take

MF =
⋃
{Mm0 : m0 ∈ M0} and NF =

⋃
{Nn0 : n0 ∈ N0}. Then it is easy to check that MF v M, NF v N and

x ∈
⋂
{↑a ∩ ↓b : a ∈ MF & b ∈ NF}

⊆
⋂
{↑m0 ∩ ↓n0 : m0 ∈ M0 & n0 ∈ N0}

⊆ NN
My ∩ON

Mz.

So, it follows from Theorem 2.11 that NN
My ∩ON

Mz ∈ ON
M(P).

Lemma 2.13. Let (P,M,N) be a PMN-space in which P is anMN-doubly continuous poset. Then a net

(xi)i∈I
MN

−→ x ∈ P ⇐⇒ (xi)i∈I
ON

M(P)
−→ x.
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Proof. From the de�nition of ON
M(P), it is easy to see that a net

(xi)i∈I
MN

−→ x ∈ P =⇒ (xi)i∈I
ON

M(P)
−→ x.

To prove the Lemma, it su�ces to show that a net (xi)i∈I
ON

M(P)
−→ x ∈ P implies (xi)i∈I

MN

−→ x. Suppose

a net (xi)i∈I
ON

M(P)
−→ x. Since P is an MN-doubly continuous poset, there exist Mx ∈ M and Nx ∈ N such

that Mx ⊆ HN
Mx, Nx ⊆ MN

Mx and supMx = x = inf Nx. By Proposition 2.12, x ∈ NN
My ∩ ON

Mz ∈ ON
M(P) for

every y ∈ Mx ⊆ HN
Mx and every z ∈ Nx ⊆ MN

Mx, and hence xi ∈ NN
My ∩ ON

Mz holds eventually for every
y ∈ Mx ⊆ HN

Mx and every z ∈ Nx ⊆ MN
Mx. It follows from Proposition 2.8 that y 6 xi 6 z holds eventually for

every y ∈ Mx and z ∈ Nx. Thus (xi)i∈I
MN

−→ x.

Lemma 2.14. Let (P,M,N) be a PMN-space. If theMN-convergence in P is topological, then P isMN-doubly
continuous.

Proof. Suppose that the MN-convergence in P is topological. Then there exists a topology T on P such that

for every x ∈ P, a net (xi)i∈I
MN

−→ x if and only if (xi)i∈I
T

→ x. De�ne Ix = {(p, U) ∈ P×N(x) : p ∈ U}, whereN(x)
denotes the set of all open neighbourhoods of x in the topological space (P, T), i.e.,N(x) = {U ∈ T : x ∈ U}.
De�ne the preorder4 on Ix as follows:

(∀(p1, U1), (p2, U2) ∈ Ix) (p1, U1) 4 (p2, U2)⇐⇒ U2 ⊆ U1.

Now one can easily see that Ix is directed. Let x(p,U) = p for every (p, U) ∈ Ix. Then it is straightforward to

check that the net (x(p,U))(p,U)∈Ix
T

−→ x, and thus (x(p,U))(p,U)∈Ix
MN

−→ x. By De�nition 2.1, there exist Mx ∈ M

and Nx ∈ N such that supMx = x = inf Nx, and for every m ∈ Mx and n ∈ Nx, there exists (pnm , Unm) ∈ Ix
such that x(p,U) = p ∈ ↑m ∩ ↓n for all (p, U) < (pnm , Unm). Since (p, Unm) < (pnm , Unm) for every p ∈ Unm,
x(p,Unm) = p ∈ ↑m ∩ ↓n for every p ∈ Unm. This shows

(∀m ∈ Mx , n ∈ Nx) (∃Unm ∈ N(x)) x ∈ Unm ⊆ ↑m ∩ ↓n. (*)

For any A ∈ M and B ∈ N with supA = x = inf B, let (x(d,D))(d,D)∈Dx(A,B) be the net de�ned as in Remark 2.2

(5). Then (x(d,D))(d,D)∈Dx(A,B)
MN

−→ x, and hence (x(d,D))(d,D)∈Dx(A,B)
T

−→ x. This implies, by Remark 2.2 (6), that there
exist A0 v A and B0 v B satisfying

x ∈
⋂
{↑a ∩ ↓b : a ∈ A0 & b ∈ B0}

⊆ Unm ⊆ ↑m ∩ ↓n.

Therefore, m ∈ HN
Mx and n ∈ MN

Mx, and hence Mx ⊆ HN
Mx and Nx ⊆ MN

Mx.
Let y ∈ HN

Mx and z ∈ MN
Mx. Since supMx = x = inf Nx, by De�nition 2.3,

⋂
{↑m ∩ ↓n : m ∈ M1 & n ∈

N1} ⊆ ↑y ∩ ↓z for someM1 v Mx and N1 v Nx. This concludes by Condition (*) and the �niteness of setsM1

and N1 that
⋂
{Unm : m ∈ M1 & n ∈ N1} ∈ N(x) and

x ∈
⋂
{Unm : m ∈ M1 & n ∈ N1}

⊆
⋂
{↑m ∩ ↓n : m ∈ M1 & n ∈ N1}

⊆ ↑y ∩ ↓z.

Considering the net (x(d,D))(d,D)∈Dx(Mx ,Nx ) de�ned in Remark 2.2 (5), we have (x(d,D))(d,D)∈Dx(Mx ,Nx )
MN

−→ x, and hence

(x(d,D))(d,D)∈Dx(Mx ,Nx )
T

−→ x. So, by Remark 2.2 (6), there exist M2 v Mx and N2 v Nx such that

x ∈
⋂
{↑m ∩ ↓n : m ∈ M2 & n ∈ N2}

⊆
⋂
{Unm : m ∈ M1 & n ∈ N1}

⊆ ↑y ∩ ↓z.
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Finally, we show
⋂
{↑m ∩ ↓n : m ∈ M2 & n ∈ N2} ⊆ NN

My ∩ ON
Mz. Let (x(d,D))(d,D)∈Dx′

(M′ ,N′ )
be the net de�ned

in 2.2 (5) for any M′ ∈ M and N ′ ∈ N with supM′ = inf N ′ = x′ ∈
⋂
{↑m ∩ ↓n : m ∈ M2 & n ∈ N2}. Then

(x(d,D))(d,D)∈Dx′
(M′ ,N′ )

MN

−→ x′, and thus (x(d,D))(d,D)∈Dx′
(M′ ,N′ )

T

−→ x′. This implies by Remark 2.2 (6) that there exist

M′0 v M′ and N ′0 v N ′ satisfying

x′ ∈
⋂
{↑m′ ∩ ↓n′ : m ∈ M′0 & n ∈ N ′0}

⊆
⋂
{Unm : m ∈ M1 & n ∈ N1}

⊆ ↑y ∩ ↓z.

Hence, we have x′ ∈ NN
My∩ON

Mz by De�nition 2.3. This shows
⋂
{↑m∩↓n : m ∈ M2 & n ∈ N2} ⊆ NN

My∩ON
Mz.

Therefore, it follows from De�nition 2.7 that P isMN-doubly continuous.

Combining Lemma 2.13 and Lemma 2.14, we obtain the following theorem.

Theorem 2.15. Let (P,M,N) be a PMN-space. Then the following statements are equivalent:
(1) P is anMN-doubly continuous poset.

(2) For any net (xi)i∈I in P, (xi)i∈I
MN

−→ x if and only if (xi)i∈I
ON

M(P)
−→ x.

(3) TheMN-convergence in P is topological.

Proof. (1)⇒ (2): By Lemma 2.13.
(2)⇒ (3): It is clear.
(3)⇒ (1): By Lemma 2.14.

3 M-topology induced by lim-infM-convergence
In this section, the notion of lim-infM-convergence is reviewed and the M-topology on posets is de�ned. By
exploring the fundamental properties of theM-topology, those posets underwhich the lim-infM-convergence
is topological are precisely characterized.

By saying a PM-space, we mean a pair (P,M) that contains a poset P and a subfamilyM of P(P).

De�nition 3.1 ([8]). Let (P,M) be a PM-space. A net (xi)i∈I in P is said to lim-infM-converge to x ∈ P if there
exists M ∈M such that
(M1)x 6 supM;
(M2)for every m ∈ M, xi > m holds eventually.

In this case, we write (xi)i∈I
M

−→ x.

It is worth noting that both lim-inf-convergence and lim-inf2-convergence [4] in posets are particular cases of
lim-infM-convergence.

Remark 3.2. Let (P,M) be a PM-space and x, y ∈ P.

(1) Suppose that a net (xi)i∈I
M

−→ x and y 6 x. Then (xi)i∈I
M

−→ y by De�nition 3.1. This concludes that the set of
all lim-infM-convergent points of the net (xi)i∈I in P is a lower subset of P. Thus, the lim-infM-convergent
points of the net (xi)i∈I need not be unique.

(2) If P has the least element⊥ and ∅ ∈M, then we have (xi)i∈I
M

−→ ⊥ for every net (xi)i∈I in P.
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(3) For every M ∈ M with supM > x, we denote FxM = {
⋂
{↑m : m ∈ M0} : M0 v M}

2
. Let DxM = {(d, D) ∈

P × FxM : d ∈ D} be in the preorder5 de�ned by

(∀(d1, D1), (d2, D2) ∈ DxM) (d1, D1) 5 (d2, D2)⇐⇒ D2 ⊆ D1.

It is easy to see that the set DxM is directed. Take x(d,D) = d for every (d, D) ∈ DxM . Then, by De�nition 3.1,

one can straightforwardly check that the net (x(d,D))(d,D)∈DxM
M

−→ a for every a 6 x.
(4) If the net (x(d,D))(d,D)∈DxM de�ned in (3) converges to p ∈ P with respect to some topology T on P, then for

every open neighbourhood Up of p, there exists M0 v M such that
⋂
{↑m : m ∈ M0} ⊆ Up.

De�nition 3.3 ([8]). Let (P,M) be a PM-space.
(1) For x, y ∈ P, de�ne y�α(M)x if for every net (xi)i∈I that lim-infM-converges to x, xi > y holds eventually.
(2) The poset P is said to be α(M)-continuous if {x ∈ P : x�α(M)a} ∈ M and a = sup{x ∈ P : x�α(M)a}

holds for every a ∈ P.

Given a PM-space (P,M), the approximate relation�α(M) on the poset P can be equivalently characterized
in the following proposition.

Proposition 3.4. Let (P,M) be a PM-space and x, y ∈ P. Then y�α(M)x if and only if for every M ∈ M with
supM > x, there exists M0 v M such that ⋂

{↑m : m ∈ M0} ⊆ ↑y.

Proof. Suppose y�α(M)x. Let (x(d,D))(d,D)∈DxM be the net de�ned in Remark 3.2 (3) for every M ∈ M with

supM = p > x. Then the net (x(d,D))(d,D)∈DxM
M

−→ x. By De�nition 3.3 (1), there exists (d0, D0) ∈ DxM such
that x(d,D) = d > y for all (d, D) = (d0, D0). Since (d, D0) = (d0, D0) for every d ∈ D0, x(d,D0) = d > y for every
d ∈ D0. So D0 ⊆ ↑y. This shows that there exists M0 v M such that D0 =

⋂
{↑m : m ∈ M0} ⊆ ↑y.

Conversely, suppose that for every M ∈ M with supM > x, there exists M0 v M such that
⋂
{↑m : m ∈

M0} ⊆ ↑y. Let (xi)i∈I be a net that lim-infM-converges to x. Then, by De�nition 3.1, there exists M ∈ M such
that supM = p > x, and for every m ∈ M, there exists im ∈ I such that xi > m for all i ≥ im. Take i0 ∈ I with
that i0 ≥ im for every m ∈ M0 v M, we have that xi ∈

⋂
{↑m : m ∈ M0} ⊆ ↑y for all i ≥ i0. This shows that

xi > y holds eventually. Thus, by De�nition 3.3 (1), we have y�α(M)x.

Remark 3.5. Let (P,M) be a PM-space and x, y ∈ P.
(1) If there is no M ∈ M such that supM > x, then p�α(M)x for every p ∈ P. And, if the poset P has the least

element⊥, then⊥�α(M)p for every p ∈ P.
(2) The implication y�α(M)x =⇒ y 6 x may not be true. For example, let P = {0, 1, 2, ...} be in the discrete

order6 de�ned by
(∀i, j ∈ P) i 6 j ⇐⇒ i = j.

And letM = {{2}}. Then, it is easy to see from Remark 3.5 (1) that 0�α(M)1 and 0 ̸6 1.
(3) Assume the PM-space (P,M) has the property that for every p ∈ P, there exists Mp ∈M such that supMp =

p. Then, by Proposition 3.4, we have

(∀q, r ∈ P) q�α(M)r =⇒ q 6 r.

For more interpretations of the approximate relation�α(M) on posets, the readers can refer to Example 3.2
and Remark 3.3 in [8].

For simplicity, given a PM-space (P,M) and x ∈ P, we will denote
– HMx = {y ∈ P : y�α(M)x};

2 From the logical point of view, we stipulate
⋂
{↑m : m ∈ M0} = P if M0 = ∅.
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– NMx = {z ∈ P : x�α(M)z}.

Based on the approximate relation�α(M) on posets, the α*(M)-continuity can be de�ned for posets in the
following:

De�nition 3.6. Let (P,M) be a PM-space. The poset P is called an α*(M)-continuous poset if for every x ∈ P,
there exists Mx ∈M such that
(O1)supMx = x and Mx ⊆ HMx. And,
(O2)for every y ∈ HMx, there exists F v Mx such that

⋂
{↑f : f ∈ F} ⊆ NMy.

Noticing Remark 3.5 (3), we have the following proposition about α*(M)-continuous posets.

Proposition 3.7. Let (P,M) be a PM-space in which the poset P is α*(M)-continuous. Then

(∀x, y ∈ P) y�α(M)x =⇒ y 6 x.

The following examples of α*(M)-continuous posets can be formally checked by De�nition 3.6.

Example 3.8. Let (P,M) be a PM-space.
(1) If P is a �nite poset, then P is an α*(M)-continuous poset if and only if for every x ∈ P, there exists Mx ∈M

such that supMx = x.
(2) LetM = L(P). Then P is an α*(L)-continuous poset. This means that every poset is α*(L)-continuous.
(3) Let M = D(P). Then we have�=�α(D) (see Example 3.2 (1) in [8]). The poset P is a continuous poset if

and only if it is an α*(D)-continuous poset. In particular, �nite posets, chains, anti-chains and completely
distributive lattices are all α*(D)-continuous.

(4) LetM = P(P). If P is a �nite poset (resp. chain, anti-chain), then P is an α*(P)-continuous poset.

Proposition 3.9. Let (P,M) be a PM-space. If P is an α(M)-continuous poset, and {y ∈ P : (∃z ∈
P) y�α(M)z�α(M)a} ∈M for every a ∈ P, then P is an α*(M)-continuous poset.

Proof. Suppose that P is an α(M)-continuous poset, and {y ∈ P : (∃z ∈ P) y�α(M)z�α(M)a} ∈ M for every
a ∈ P. Take Ma = HMa. Then it is easy to see that supMa = a and Ma ⊆ HMa. By Remark 3.3 (4) in [8], we
have sup{y ∈ P : (∃z ∈ P) y�α(M)z�α(M)a} = a. This implies, by Proposition 3.4 and Remark 3.5 (2), that for
every y ∈ HMa, there exist {y1, y2, ..., yn}, {z1, z2, ..., zn} v Ma = HMa such that⋂

{↑zi : i ∈ {1, 2, ..., n}}

⊆
⋂
{↑yi : i ∈ {1, 2, ..., n}}

⊆↑y,

and yi�α(M)zi�α(M)a for every i ∈ {1, 2, ..., n}. Next, we show
⋂
{↑zi : i ∈ {1, 2, ..., n}} ⊆ NMy. For every

M ∈ M with supM > b ∈
⋂
{↑zi : i ∈ {1, 2, ..., n}}, by Proposition 3.4, there exists Mi v M such that⋂

{↑m′ : m′ ∈ Mi} ⊆ ↑yi for every i ∈ {1, 2, ..., n}. Take M0 =
⋃
{Mi : i ∈ {1, 2, ..., n}}. Then M0 v M and⋂

{↑m : m ∈ M0}

⊆
⋂
{↑yi : i ∈ {1, 2, ..., n}}

⊆↑y.

This shows y�α(M)b for every b ∈
⋂
{↑zi : i ∈ {1, 2, ..., n}}. Hence,

⋂
{↑zi : i ∈ {1, 2, ..., n}} ⊆ NMy. Thus

P is an α*(M)-continuous poset.

The fact that an α*(M)-continuous poset P in a PM-space (P,M) may not be α(M)-continuous can be
demonstrated in the following example.
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Example 3.10. Let (P,M) be the PM-space in which the poset P = R is the set of all real number with its usual
order 6 and M = S0(R). Then we have�α(S0) =6 by Proposition 3.4. It is easy to check, by De�nition 3.6, that
R is an α*(S0)-continuous poset. ButR is not an α(S0)-continuous poset because HS0x = ↓x ̸∈ S0(P) for every
x ∈ R.

We turn to consider the topology induced by the lim-infM-convergence in posets.

De�nition 3.11. Let (P,M)bea PM-space. A subset V of P is said to be M-open if for every net (xi)i∈I
M

−→ x ∈ V,
xi ∈ V holds eventually.

Given a PM-space (P,M), one can formally verify that the set of allM-open subsets of P forms a topology on
P. This topology is called theM-topology, and denoted by OM(P).

The following Theorem is an order-theoretical characterization ofM-open sets.

Theorem 3.12. Let (P,M) be a PM-space. Then a subset V of P isM-open if and only if it satis�es the following
two conditions:
(V1)↑V = V, i.e., V is an upper set.
(V2)For every M ∈M with supM ∈ V, there exists M0 v M such that

⋂
{↑m : m ∈ M0} ⊆ V.

Proof. Suppose that V is an M-open subset of P. By Remark 3.2 (1), it is easy to see that V is an upper
set. Let (x(d,D))(d,D)∈DxM be the net de�ned in Remark 3.2 (3) for every M ∈ M with supM = x ∈ V. Then

(x(d,D))(d,D)∈DxM
M

−→ x ∈ V. This implies, by De�nition 3.11, that there exists (d0, D0) ∈ DxM such that
x(d,D) = d ∈ V for all (d, D) = (d0, D0). Since (d, D0) = (d0, D0) for all d ∈ D0, x(d,D0) = d ∈ V for all
d ∈ D0. This shows D0 ⊆ V. Thus there exists M0 v M such that D0 =

⋂
{↑m : m ∈ M0} ⊆ V.

Conversely, suppose V is a subset of P which satis�es Condition (V1) and (V2). Let (xi)i∈I be a net that
lim-infM-converges to x ∈ V. Then there exists M ∈ M such that supM = y > x ∈ V = ↑V (hence, y ∈ V),
and for every m ∈ M, there exists im ∈ I such that xi > m for all i ≥ im. By Condition (V2), we have that⋂
{↑m : m ∈ M0} ⊆ V for some M0 v M. Take i0 ∈ I with that i0 ≥ im for all m ∈ M0. Then xi ∈

⋂
{↑m : m ∈

M0} ⊆ V for all i ≥ i0. This shows that V is anM-open set.

Recall that given a topological space (X, T) and a point x ∈ P, a family B(x) of open neighbourhoods of x is
called a base for the topological space (X, T) at the point x if for every neighbourhood V of x there exists an
U ∈ B(x) such that x ∈ U ⊆ V.

If the poset P in a PM-space (P,M) is an α*(M)-continuous poset, we provide a base for the topological
space (P,OM(P)) at a point x ∈ P.

Proposition 3.13. Let (P,M) be a PM-space in which the poset P is α*(M)-continuous. Then NMx ∈ OM(P)
for every x ∈ P.

Proof. One can readily see, by Proposition 3.4, that NMx is an upper subset of P for every x ∈ P. For every
M ∈ M with supM = y ∈ NMx, by De�nition 3.6 (O1) there exists My ∈ M such that My ⊆ HMy and
supMy = y. Since x�α(M)y, by De�nition 3.6 (O2), we have

⋂
{↑mi : i ∈ {1, 2, ..., n}} ⊆ NMx for some

{m1,m2, ...,mn} v My. Observing {m1,m2, ...,mn} v My ⊆ HMy, we can conclude that there exists Mi v
M such that

⋂
{↑a : a ∈ Mi} ⊆ ↑mi for every i ∈ {1, 2, ..., n}. Let M0 =

⋃
{Mi : i ∈ {1, 2, ..., n}}. Then

M0 v M and ⋂
{↑m : m ∈ M0}

⊆
⋂
{↑mi : i ∈ {1, 2, ..., n}}

⊆NMx.

This shows, by Theorem 3.12, that NMx ∈ OM(P) for every x ∈ P.
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Proposition 3.14. Let (P,M) be a PM-space in which the poset P is α*(M)-continuous and x ∈ P. Then
{
⋂
{NMa : a ∈ A} : A v HMx} is a base for the topological space (P,OM(P)) at the point x.

Proof. Clearly, by Proposition 3.13, we have
⋂
{NMa : a ∈ A} ∈ OM(P) for every A v HMx. Let U ∈ OM(P)

and x ∈ U. Since P is an α*(M)-continuous poset, there exists Mx ∈ M such that Mx ⊆ HMx and supMx =
x ∈ U. By Theorem 3.12, it follows that

⋂
{↑m : m ∈ M0} ⊆ U for someM0 v Mx ⊆ HMx. So, fromProposition

3.7, we have
x ∈

⋂
{NMm : m ∈ M0}

⊆
⋂
{↑m : m ∈ M0} ⊆ U .

Thus, {
⋂
{NMa : a ∈ A} : A v HMx} is a base for the topological space (P,OM(P)) at the point x.

In the rest, we are going to establish a characterization theoremwhich demonstrates the equivalence between
the lim-infM-convergence being topological and the α*(M)-continuity of the poset in a given PM-space.

Lemma 3.15. Let (P,M) be a PM-space. If P is an α*(M)-continuous poset, then a net

(xi)i∈I
M

−→ x ∈ P ⇐⇒ (xi)i∈I
OM(P)
−→ x.

Proof. By the de�nition of OM(P), it is easy to see that a net

(xi)i∈I
M

−→ x ∈ P =⇒ (xi)i∈I
OM(P)
−→ x.

To prove the Lemma, we only need to show that a net (xi)i∈I
OM(P)
−→ x ∈ P implies (xi)i∈I

M

−→ x. Suppose

(xi)i∈I
OM(P)
−→ x. As P is an α*(M)-continuous poset, there exists Mx ∈ M such that Mx ⊆ HMx and supMx =

x. By Proposition 3.13, we have x ∈ NMy ∈ OM(P) for every y ∈ Mx ⊆ HMx. Hence, xi ∈ NMy holds
eventually. This implies, by Proposition 3.7, that xi ∈ NMy ⊆ ↑y holds eventually. By the de�nition of lim-

infM-convergence, we have (xi)i∈I
M

−→ x.

In the converse direction, we have the following Lemma.

Lemma 3.16. Let (P,M) be a PM-space. If the lim-infM-convergence in P is topological, then P is an α*(M)-
continuous poset.

Proof. Suppose that the lim-infM-convergence in P is topological. Then there exists a topology T such that
for every x ∈ P, a net

(xi)i∈I
M

−→ x ⇐⇒ (xi)i∈I
T

−→ x.

De�ne Ix = {(p, V) ∈ P × N(x) : p ∈ V}, where N(x) is the set of all open neighbourhoods of x, namely,
N(x) = {V ∈ T : x ∈ V}. De�ne also the preorder� on Ix as follows:

(∀(p1, V1), (p2, V2) ∈ Ix) (p1, V1) � (p2, V2)⇐⇒ V2 ⊆ V1.

It is easy to see that Ix is directed. Now, let x(p,V) = p for every (p, V) ∈ Ix. Then one can readily check that

the net (x(p,V))(p,V)∈Ix
T

−→ x, and hence (x(p,V))(p,V)∈Ix
M

−→ x. This means that there exists Mx ∈ M such that
supMx > x, and for every m ∈ Mx, there exists (pm , Vm) ∈ Ix with that x(p,V) = p > m for all (p, V) �
(pm , Vm). Since (p, Vm) � (pm , Vm) for all p ∈ Vm, we have x(p,Vm) = p > m for all p ∈ Vm. This shows

(∀m ∈ Mx) (∃Vm ∈ N(x)) x ∈ Vm ⊆ ↑m. (**)

Next we prove Mx ⊆ HMx. For every m ∈ Mx and every M ∈ M with supM > x, let (x(d,D))(d,D)∈DxM be the net

de�ned in Remark 3.2 (3). Then the net (x(d,D))(d,D)∈DxM
M

−→ x, and thus (x(d,D))(d,D)∈DxM
T

−→ x. It follows from
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Remark 3.2 (4) that there exists M0 v M such that x ∈
⋂
{↑a : a ∈ M0} ⊆ Vm. By Condition (**), we have

x ∈
⋂
{↑a : a ∈ M0} ⊆ Vm ⊆ ↑m. So, m�α(M)x. This shows Mx ⊆ HMx.

Let y ∈ HMx. Then there exists {m1,m2, ...,mn} v Mx such that
⋂
{↑mi : i ∈ {1, 2, ..., n}} ⊆ ↑y as

Mx ∈ M and supMx > x. By Condition (**), it follows that
⋂
{Vmi : i ∈ {1, 2, ..., n}} ⊆

⋂
{↑mi : i ∈

{1, 2, ..., n}} ⊆ ↑y. Considering the net (x(d,D))(d,D)∈DxMx de�ned in Remark 3.2 (3), we have (x(d,D))(d,D)∈DxMx
M

−→

x, and hence (x(d,D))(d,D)∈DxMx
T

−→ x. This implies, by Remark 3.2 (4), that⋂
{↑b : b ∈ M00}

⊆
⋂
{Vmi : i ∈ {1, 2, ..., n}}

⊆
⋂
{↑mi : i ∈ {1, 2, ..., n}} ⊆ ↑y

(* * *)

for some M00 v Mx. Finally, we show
⋂
{↑b : b ∈ M00} ⊆ NMy. For every x′ ∈

⋂
{↑b : b ∈ M00} and every

M′ ∈Mwith supM′ > x′, let (x(d,D))(d,D)∈Dx′
M′

be the net de�ned in Remark 3.2 (3). Then (x(d,D))(d,D)∈Dx′
M′

M

−→ x′,

and thus (x(d,D))(d,D)∈Dx′
M′

T

−→ x′. It follows from Condition (* * *) and Remark 3.2 (4) that there existsM
′

0 v M′

such that ⋂
{↑a′ : a′ ∈ M

′

0}

⊆
⋂
{Vmi : i ∈ {1, 2, ..., n}}

⊆
⋂
{↑mi : i ∈ {1, 2, ..., n}} ⊆ ↑y.

This shows x′ ∈ NMy, and thus
⋂
{↑b : b ∈ M00} ⊆ NMy. Therefore, P is an α*(M)-continuous poset.

Combining Lemma 3.15 and Lemma 3.16, we deduce the following result.

Theorem 3.17. Let (P,M) be a PM-space. The following statements are equivalent:
(1) P is an α*(M)-continuous poset.

(2) For any net (xi)i∈I in P, (xi)i∈I
M

−→ x ∈ P ⇐⇒ (xi)i∈I
OM(P)
−→ x.

(3) The lim-infM-convergence in P is topological.

Proof. (1)⇒ (2): By Lemma 3.15.
(2)⇒ (3): Clear.
(3)⇒ (1): By Lemma 3.16.

Corollary 3.18 ([8]). Let (P,M) be a PM-space with S0(P) ⊆ M ⊆ P(P). Suppose HMa ∈ M and {y ∈ P :
(∃z ∈ P) y�α(M)z�α(M)a} ∈M holds for every a ∈ P. Then the lim-infM-convergence in P is topological if and
only if P is α(M)-continuous.

Proof. (=⇒): To show the α(M)-continuity of P, it su�ces to prove supHMa = a for every a ∈ P. Since the
lim-infM-convergence in P is topological, by Theorem 3.17, P is an α*(M)-continuous poset. This implies that
there exists Ma ∈ M such that supMa ⊆ HMa and supMa = a for every a ∈ P. By Proposition 3.7, we have
HMa ⊆ ↓a. So supHMa = a.

(⇐=): By Proposition 3.9 and Theorem 3.17.
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