Home Accuracy assessment and improvement of SRTM, ASTER, FABDEM, and MERIT DEMs by polynomial and optimization algorithm: A case study (Khuzestan Province, Iran)
Article Open Access

Accuracy assessment and improvement of SRTM, ASTER, FABDEM, and MERIT DEMs by polynomial and optimization algorithm: A case study (Khuzestan Province, Iran)

  • Azim Saberi , Mostafa Kabolizadeh EMAIL logo , Kazem Rangzan and Majid Abrehdary
Published/Copyright: February 27, 2023
Become an author with De Gruyter Brill

Abstract

Satellite digital elevation models (DEMs) are used for decision-making in various fields. Therefore, evaluating and improving vertical accuracy of DEM can increase the quality of end products. This article aimed to increase the vertical accuracy of most popular satellite DEMs (i.e., the ASTER, Shuttle Radar Topography Mission [SRTM], Forest And Buildings removed Copernicus DEM [FABDEM], and Multi-Error-Removed Improved-Terrain [MERIT]) using the particle swarm optimization (PSO) algorithm. For this purpose, at first, the vertical error of DEMs was estimated via ground truth data. Next, a second-order polynomial was applied to model the vertical error in the study area. To select the polynomial with the highest accuracy, employed for vertical error modeling, the coefficients of the polynomial have been optimized using the PSO algorithm. Finally, the efficiency of the proposed algorithm has been evaluated by other ground truth data and in situ observations. The results show that the mean absolute error (MAE) of SRTM DEM is 4.83 m while this factor for ASTER DEM is 5.35 m, for FABDEM is 4.28, and for MERIT is 3.87. The obtained results indicated that the proposed model could improve the MAE of vertical accuracy of SRTM, ASTER, FABDEM, and MERIT DEMs to 0.83, 0.51, 0.37, and 0.29 m, respectively.

1 Introduction

The digital elevation model (DEM) is one of the important products in remote sensing. DEMs may be extracted from different methods with various levels of accuracy and cost. Traditionally, aerial stereo images have been the main source of DEM generation, but these models are now mainly extracted from satellite images [1]. The DEM (DTM according to some studies) is a three-dimensional view of the bare ground without any objects such as plants and buildings, while the digital surface model (DSM) shows the surface with all the objects on it; i.e., all satellite data are DSM model [2,3]. DSM generation methods based on the satellite imagery overweigh traditional methods because of their higher vastness and lower cost [1]. Since DEMs are obtained using different sensors and different geometries, choosing the most appropriate DEM that can accurately represent ground conditions is one of the main requirements in many studies [4]. Satellite DEMs like Shuttle Radar Topography Mission (SRTM) and ASTER have been widely used in environmental research, remote sensing, and GIS applications [511].

Despite many publications about the applications and accuracy assessment of DEMs, studies in the improvement of such products are limited. In the following, some works in this domain are presented. Jarvis et al. investigated the accuracy of SRTM and 1:50,000 scale topographic maps in Honduras and showed that SRTM and maps have average error levels of 8 and 20 m, respectively. They concluded that the vertical accuracy of SRTM is greater than 1:50,000 scale maps [12]. Rodriguez et al. studied the vertical accuracy of SRTM on a global scale using GPS data and other available altitudinal data. They indicated that the absolute error of this model is equal to 7.5 m [13]. Sefercik computed the vertical accuracy of ASTER DEM in Barcelona (Spain) and Zonguldak (Turkey). Based on his research, the vertical root mean square error (RMSE) of this DEM in comparison with reference elevation data is 4 and 8 m in Barcelona and Zonguldak, respectively. He showed that the accuracy of satellite DEMs has a strong correlation with the slope of the area [14]. Du et al. investigated the accuracy of ASTER and SRTM DEMs in two regions of China using statistical analysis. The results showed that the SRTM has 2.38 and 4.43 m RMSE error in these areas. Also, these errors for ASTER were equal to 6.98 and 4.83 m RMSE for these regions [15]. Elkhrachy evaluated the accuracy of ASTER and SRTM DEMs according to GPS data and topographic maps. Based on GPS data, the values of ±5.94 and ±5.07 m were achieved for SRTM and ASTER DEMs’ RMSE, respectively. Also, using the topographic map, the RMSE was ±6.87 and ±7.97 m for SRTM and ASTER DEMs, respectively [16]. Yue et al. have recruited ASTER GDEM v2 to generate a seamless DEM dataset blending SRTM1 [17]. Liu et al. studied the functioning of seven public freely available DEM datasets, including SRTM3 V4.1 DEM, ASTER GDEM V2, AW3D30 DEM, SRTM1 DEM, Multi-Error-Removed Improved-Terrain (MERIT) DEM, VFP-DEM, and Seamless SRTM1 DEM, over the area of High-Mountain Asia (HMA) through reference to elevation data with a great degree of accuracy obtained from ICESat altimetry. It was concluded that the AW3D30 DEM shows the greatest degree of accuracy in HMA land regions among these datasets [18]. González-Moradas and Viveen presented a study with the aim of accuracy assessment of ASTER GDEM2, SRTM v3.0, ALOS AW3D30 and TanDEM-X DEMs in Peru. To achieve this purpose, their elevation values were compared against values measured with a dual-frequency GNSS data. The overall results of the four areas showed that the RMSE was 6.907, 5.113, and 6.246 m RMSE for SRTM3, AW3D30, and ASTER GDEM2, respectively. The RMSE of 1.666 meters for the TanDEM-X was also estimated. The final results stated that the SRTM3 has appropriate performance, while ASTER GDEM2 had always low accuracy. Based on the obtained results, they concluded that SRTM3 delivers the most stable performance in almost all test areas [19]. Mingorance and Lopez reviewed more than 200 references to obtain knowledge about the DEM accuracy assessment methods applied in the last three decades. It was concluded that the relevant accuracy assessment techniques have been improved; however, plenty of factors should also be considered by investigators, proficient associations, and standard organizations, including a shared vocabulary, meta-quality assessment techniques, standardized assessment techniques, and practical quality indicators [20].

A review of the previous studies indicates that despite the high volume of studies performed on the accuracy assessment of DEMs that have provided a better understanding of the models, few studies have been conducted on improving the accuracy of these models. Thus, the present study is made up of two main parts. The first section examines the accuracy of some of the most common freely accessible satellite DEMs given the ground control points prepared by the Iranian Cartography Center. The second section aims to improve the accuracy of the DEMs by modeling error behavior in the study area utilizing an optimized polynomial. Recruiting the particle swarm optimization (PSO) optimization algorithm to fit an optimized polynomial to the error behavior across the region to estimate and reduce error in digital models can be considered the most significant contribution of the present research. Going through details, from 250 points, 190 points were used as control points, for the modeling step, and the rest of them were used as checkpoints, for the accuracy assessment step. It should be noted that although the altitudinal datum of the stated elevation models is different, the aim of this study is not to compare the accuracy of DEMs to recommend the best model for use in the study area, but rather to evaluate the height accuracy of common and existing models and improve their accuracy using the proposed algorithm. Therefore, the models with the accuracy of DEM with their initial height datum were evaluated and improved in this study. Therefore, changing the altitudinal datum has not been required to implement the proposed algorithm.

2 Study area

The study case, Khuzestan Province, has an area of 64,057 km2, located in the southwestern part of Iran between the coordinates of 47°40–50°33′E and 29°57–33°00′N. The elevation ranges from sea level to around 3,500 m above sea level. This province can be divided into two regions, namely the mountainous regions north of the Ahvaz Ridge and the plains to its south. Figure 1 shows the study area and distribution of the reference data of the elevation.

Figure 1 
               Location of the study area and ground truth data.
Figure 1

Location of the study area and ground truth data.

3 Materials and methods

As mentioned before, the purpose of this research is to increase the accuracy of some freely accessible satellite DEMs including SRTM, ASTER, Forest And Buildings removed Copernicus DEM (FABDEM), and MERIT. Therefore, the vertical accuracy of elevation models was estimated in comparison with elevation point data. The control point being utilized in this study was measured with an RMSE of about 5 mm. The RMSE, mean absolute error (MAE), and mean bias error (MBE) were employed to evaluate the accuracy of data. Then, a global polynomial has been utilized to improve the accuracy of these DEMs. To achieve better results, the coefficients of this polynomial were optimized by the PSO algorithm. Figure 2 shows the flowchart of the implemented algorithm.

Figure 2 
               Flowchart of the implemented algorithm.
Figure 2

Flowchart of the implemented algorithm.

3.1 SRTM DEM

In 2000, the SRTM was launched for collecting the data for 11 days. The emitted radar signals’ reflection was utilized by the shuttle within the X-band (wavelength of 3.1 cm) for the X-SAR sensor established by the German Aerospace Agency and the C-band (wavelength of 5.6 cm) for the SIR-C sensor established by the Jet Propulsion Laboratory. In the present study, the SRTM-ver3 DEM with a spatial resolution of 27.83 m has been recruited, which is also known as the 30 m DEM [21,22]. SRTM DEM was obtained from the data archive of USGS (Figure 3).

Figure 3 
                  SRTM DEM in the study area.
Figure 3

SRTM DEM in the study area.

3.2 ASTER DEM

The ASTER DEM is resultant from the TERRA satellite-carried ASTER sensor taking the Earth’s images within 14 various ultraviolet to infrared bands. Because of having such a wide range, the ground resolution is within the range of 15–90 m. Taking stereo images can help to create a DEM. The improved global DEM V3 adds 260,000 extra stereo pairs enhancing the coverage and decreasing the artifacts incidence. A superior spatial resolution is provided by the refined production algorithm increasing the vertical and horizontal accuracy and enhanced discovery and coverage of the water body. Through the ASTER GDEM V2, the Geo-TIFF format is maintained while providing the tile structure and gridding similar to V1, with 1° × 1° tile and 30-m postings [23]. ASTER DEM was obtained from the data archive of USGS.

3.3 FABDEM

FABDEM could be regarded as the first universal DEM capable of removing buildings and forests at a resolution of 30 m. A correction algorithm is applied by the relevant data to remove biases from the Copernicus GLO 30 DSM derived from the existence of objects on the surface of the earth. It leads to the improvement of datasets where natural hazardous events can be universally modeled by the users. These kinds of models are made in greater detail than ever seen before. The relevant data are generated in a tandem arrangement by the University of Bristol and are accessible at a grid spacing of 1 arc-second (about 30 m at the equator) throughout the universe. This kind of data looks quite perfect for those experts who require to comprehend flood risks on a universal scale or in worldwide areas with data scarcity [24].

3.4 MERIT DEM

The development of MERIT DEM was done by eliminating numerous error components, including stripe noise, absolute bias, tree height bias, and speckle noise, from the available spaceborne DEMs (i.e., AW3D-30m v1 and SRTM3 v2.1). It denotes the terrain elevations at a resolution of 3 s (∼90 m at the equator) and covers land regions between 90N–60S based on the EGM96 geoid reference. Stripe noise, absolute bias, tree height bias, and speckle noise were separated by applying numerous filtering methods and satellite datasets. After errors were eliminated, land regions mapped with 2 m or a finer vertical accuracy were improved from 39 to 58% [25].

Figure 3 demonstrates the SRTM DEM of the study area. This figure indicates that the this area can be categorized into three mountainous (region 1), foothill (region 2), and plain (region 3) regions. As the DEM demonstrates, elevation variations decline in these regions, respectively. The efficiency of the proposed model in each of the three regions will be examined separately to evaluate the model efficiency in regions with various elevation behaviors.

3.5 Accuracy assessment

To compute the vertical accuracy of DEMs, MAE, RMSE, and MBE indices were recruited to evaluate the uncertainty of the DEM data with reference data. The altitudinal data were evaluated based on the following equations [26,27]:

(1) MAE = 1 n i = 1 n abs ( P i O i ) ,

(2) RMSE = i = 1 n ( P i O i ) 2 n ,

(3) MBE = 1 n i = 1 n ( P i O i ) ,

where O i is the observation altitude and P i is the DEM elevation.

3.6 Polynomial

A polynomial is mathematically a term including coefficients and containing some single terms. Polynomials are mostly applied in science and mathematics, for instance in forming polynomial equations to encode various elementary to complex scientific problems. Also, they are utilized in approximating simple to complicated functions. In this article, one global polynomial is used to approximate vertical error function in target satellite DEMs. To be more precise, the present study utilized a polynomial to model error behavior across the entire region after estimating the error in control points. In this section, the authors try to estimate the error distribution function in the study area to measure DEM elevation error in various points and correct them. Since the order of the polynomial is determined based on the complexity of the function and considering the relatively uniform error behavior across the region (Figure 4), a second-order polynomial was employed to model the error distribution function (equation (4)). Equation (4) expressed the polynomial employed in this article to model the error behavior of DEMs regarding their horizontal positions.

(4) Δ z = a 0 + a 1 x + a 2 y + a 3 x y + a 4 x 2 + a 5 y 2 ,

where Δz is the vertical error at points (x, y) in DEM. This parameter is computed by comparing the DEM with reference elevation data. Given that the coordinate values (x, y) were much higher than the altitudinal error (Δz), the normal value of these coordinates (normalized by linear method) was used in the equation. Here, a i (I = 1:5) are the coefficients of the polynomial. These coefficients determine how this polynomial approximates the error function.

Figure 4 
                  Error distribution for (a) SRTM, (b) ASTER, (c) FABDEM, and (d) MERIt elevation data.
Figure 4

Error distribution for (a) SRTM, (b) ASTER, (c) FABDEM, and (d) MERIt elevation data.

Determining the coefficients of the polynomial to ensure the best fitting to the desired function is among the most essential steps in using polynomials. To choose the polynomial order, a preliminary evaluation was done using first-, second-, and third-order polynomials, and the results showed that the second order has the most potential in error modeling in the study area. Therefore, this polynomial was used to optimize the coefficients. Provided that proper estimation of the error function across the region is made and deducted from the available DEM, the resulting DEM would be expected to have higher accuracy. Previous studies have used various techniques to determine the best polynomial coefficients, among which optimization algorithms have repeatedly been used over recent years [28]. Hence, the present study aims to use one of the most prevalent optimization techniques to calculate the optimized polynomial coefficient so that the polynomial error modeling function is the most similar to the error rate in the control points.

Therefore, a popular and dominant optimization method should be recruited to valuate these parameters. Given the aim of the present study and the requirement of optimization methods, the final RMSE of the DEM calculated at the control points after deducting the error (Δz) was considered the cost function. The optimization method, applied in this article, is presented in the following.

3.7 PSO

PSO algorithm was proposed by Eberhart and Kennedy [29] for optimization problems in continuous space. PSO is a computational technique optimizing a problem through iteratively attempting to enhance a candidate solution concerning a quality’s definite measure. This evolutionary algorithm starts with a random initial population. The primary values of the searched variables at the first generation, (a0, …, a5), are randomly formed within the range of upper and lower bounds:

(5) a i , 0 = LB + R ( 0 , 1 ) × ( UB LB ) .

In which R(0,1) indicates a uniformly distributed random number between 0 and 1, ai, 0 represents the searched variable at the first generation, and UB and LB are the two values for upper and lower bounds for parameters, respectively. Here, UB and LB were set as 5 and −5, respectively. these values were estimated utilizing a primary least squares error strategy. Each random possible answer is assumed as a particle that travels by a specific velocity that determined in any steps. Each particle’s coordination in the swarm is restricted in a definite searching space.

Furthermore, it is stated that the velocities and positions identify the particles within the swarm. All particles within each training iteration fly across the searching space to discover the superior location for each particle (the optimal fitness value). Equations (6) and (7) illustrate the alternations and updates in the position and velocity of the particles in each repetition [30].

(6) v id ( t + 1 ) = wv id ( t ) + c 1 r 1 ( P best i ( t ) x id ( t ) ) + c 2 r 2 ( G best ( t ) x id ( t ) ) ,

(7) P id ( t + 1 ) = P id ( t ) + v id ( t + 1 ) ,

where r 1 and r 2 denote random values between 0 and 1, c 1 and c 2 represent acceleration constants (equal to c 1 = c 2 = 1.496 in this study), w shows the inertia weight (equal to w = 1 in this study), x id(t) signifies the ith particle position in a searching space with d-dimension indicating a candidate solution to the problem at repetition t, v id(t) denotes the corresponding velocity, and P id ( t ) denotes the particle position of the ith particle, Gbest(t) ∈ Rd indicates the best global position used for all routes and particles, Pbesti(t) ∈ Rd implies the best position of the particle during its previous route, “s(·)” denotes the sigmoid transformation function, and r 3(t) represents the uniformly distributed random number ∈ [0,1]. The best-known position of each particle affects its movement; however, it is also directed toward the best-known locations in the search-space updated as the superior locations found by other particles. It is expected that this moves the swarm toward the greatest solutions. Nevertheless, finding an optimum solution is not guaranteed by meta-heuristics like PSO. Moreover, the optimized problem’s gradient is not used by PSO, indicating that the differentiability of the optimization problem is not required by PSO compared to the classic optimization approaches. In this study, it is possible to transfer the polynomial parameters to each particle’s coordination in the swarm for optimization. Hence, the value of our suggested objective function measures each particle position merit. This value is also known as the cost value in this work.

Then, the swarm’s best location is defined through the selection of the particle position with the lowest cost value. Over the optimizing procedure, numerous variables were explored by the PSO population as the polynomial parameters. Ultimately, the polynomial parameters’ best values are extracted as the coordination of the swarm’s best location. Ultimately, after identification of optimized values of polynomial parameters, the error value, calculated by polynomial, has been used to improve DEM accuracy in all DEMM pixels:

(8) Z corrected ( x , y ) = Z DEM ( x , y ) Δ z ,

where Z corrected(x, y) is the corrected value of elevation at (x, y), Z DEM(x, y) is the elevation of (ASTER, SRTM, FABDEM, or MERIT) DEM, and Δz is the correction value calculated by polynomial at the (x, y) position (equation (8)).

4 Results and discussion

The first step is regarded as altitudinal accuracy assessment for the above-stated DEMs in the study area. For this purpose, 190 points in the Khuzestan Province were selected as ground truth data to evaluate the vertical accuracy in the above-mentioned numerical models. Table 1 demonstrates the results of the error estimation including altitudinal error for the SRTM, ASTER, FABDEM, and MERIT DEMs in comparison with ground truth checkpoints. The RMSE values for Khuzestan Province were 5.79, 6.23, 5.01, and 4.32 m, respectively.

Table 1

Numerical results acquired from accuracy assessment of the ASTER, SRTM, FABDEM, and MERIT DEMs compared with the ground truth data

Point no. Latitude Longitude Z Z Z Z Z Error Error Error Error Region number
Geoid ASTER SRTM FABDEM MERIT ASTER SRTM FABDEM MERIT
1 32.01589 48.03482 137.938 143 142 140.631 140.843 −4.938 −1.938 2.693 2.905 2
2 31.99345 49.92993 876.254 885 883 882.125 881.914 8.746 6.746 5.871 5.66 1
3 32.71966 49.3284 2427.015 2,438 2,435 2433.581 2433.109 10.985 7.985 6.566 6.094 1
4 32.64732 48.59934 651.733 645 649 649.531 649.968 −6.733 −2.733 −2.202 −1.765 1
5 32.75017 48.2441 487.644 497 495 494.417 493.319 9.356 7.356 6.773 5.675 1
6 31.56039 50.11553 2880.705 2,887 2,888 2885.825 2885.182 6.295 7.295 5.12 4.477 1
7 30.48187 49.62003 18.123 16 17 16.316 16.519 −1.123 −0.123 −1.807 −1.604 3
8 30.80467 49.06381 9.299 7 8 7.614 8.0591 −1.299 −0.299 −1.685 −1.2399 3
9 31.30483 48.64483 24.005 21 23 22.829 22.549 0.995 1.995 −1.176 −1.456 3
10 30.75944 48.2789 8.715 11 10 12.531 12.337 1.285 0.285 2.816 2.622 3
11 31.27695 47.98609 15.262 12 14 13.673 14.149 −0.262 −1.262 −1.589 −1.113 3
12 30.22265 49.76137 17.67 15 17 16.206 16.591 −1.67 −0.67 −1.464 −1.079 3
13 30.85111 49.82291 211.468 207 210 210.481 210.572 −4.468 −1.468 1.013 1.104 2
14 31.56393 49.36068 215.481 220 219 218.182 217.893 3.519 2.519 1.701 1.412 2
15 32.2184 49.43259 693.153 687 691 691.018 691.32 −6.153 −2.153 −2.135 −1.833 1
16 32.27739 48.51004 106.569 103 105 105.749 105.807 −3.569 −1.569 −0.82 −0.762 2
17 30.49058 48.77732 12.13 15 14 16.081 16.241 1.87 0.87 2.951 3.111 3
18 31.87507 48.55341 41.533 45 46 43.769 43.934 2.467 3.467 2.236 2.401 2
19 31.24402 49.18028 34.39 31 33 33.619 33.495 −3.39 −1.39 −0.771 −0.895 2
20 30.2996 50.38949 238.128 234 236 237.437 237.518 −3.128 −1.128 −0.691 −0.61 2
Min 8.715 7 8 7.614 8.0591 −6.733 −2.733 −2.202 −1.833
Max 2880.705 2,887 2,888 2885.825 2885.182 10.985 7.985 6.773 6.094
Mean 455.3608 455.95 456.75 456.5808 456.566 0.43925 1.18925 1.17 1.155205
Standard deviation 799.1949 801.9891 801.4647 800.8867 800.6845 5.193281 3.534206 3.064291 2.767891

To prepare the error map of DEMs in the study area, the inverse distance weighting interpolation method was employed (Figure 4). The values of this map represent the distribution of error for study area estimating the difference between the satellite elevation data and the reference altitudinal data in all control points. Based on the results, the highest elevation error for all DEMs was observed in the eastern and northern parts of Khuzestan Province. According to the findings of this study, error distribution manifested the same behavior in SRTM and ASTER data. The largest positive error was thus observed in northern and northeastern regions, while the largest negative error was observed in the center of the province. Meanwhile, southern low-altitude regions had the smallest error. Although the overall error of SRTM data in most parts of the study area is less than ASTER data, SRTM data in some areas such as the western and southeast parts of the province demonstrate a higher error rate than ASTER. Moreover, in the two MERIT and FABDEM models, the largest positive error is observed in regions with high elevation. The error magnitude declines as the elevation drops and reaches its minimum in the center of the province. As the elevation keeps declining in southern areas, the error tends to have negative values in this region (Figure 4).

In contrast with the vast range of elevation in the study area, the range of altitudinal error behaves more uniformly. Therefore, a second-order polynomial could reveal proper efficiency for modeling error behavior in such areas. As coefficients’ estimation could be regarded as an important step in polynomial employment, a popular optimization method has been recruited to approximate these parameters properly.

The searching space used for implementing PSO is regarded as all candidate polynomial coefficients, and the primary population is based on a random assignment. Every particle position is indicated by a vector with a length equivalent to the polynomial coefficient number. To delve into the issue, in the model-training stage, using PSO optimization, the pre-mentioned cost function (equation (2)) is minimized. In this study, to improve the exploration feature and achieve a novel solution in the searching space, the inertia weight damping ratio = 0.9997 is regarded for the calculation of w in each repetition (w = w × damping ratio), where an increase in the repetition number leads to a reduction in the w value [30]. Moreover, in this study, the quality of measure, or instead the cost function, was chosen in conformity with the final accuracy of DEM and evaluation criteria (equation (2)). Therefore, the cost function was computed by the implementation of the polynomial in every repetition and the use of the validation technique for validation and training subsets. Discovering the global best values (optimal features) is a kind of repetitive process until the termination criterion is satisfied. Consequently, these optimal features are subsets with the greatest accuracy. Going through details, at the optimization stage, an inferior set of parameters is discarded in the PSO algorithm method and it progressively directs the population toward areas with a convincing set of parameters. According to this mechanism, the training stage of the polynomial can be performed using better solutions to the problem.

To estimate the proposed method perfectly, this method was evaluated using ground truth data, which are not used in the training step. The results are summarized in Table 2. After calculating polynomial coefficients using control points, as well as evaluating it using checkpoints, this polynomial has been used to calculate the corrected height in all raster points.

Table 2

Numerical results obtained from accuracy assessment of the corrected ASTER and SRTM DEM utilizing proposed method

Point no. Latitude Longitude Z Z Z Z Z Error Error Error Error Region number
Geoid ASTER SRTM FABDEM MERIT ASTER SRTM FABDEM MERIT
1 32.01589 48.03482 137.938 143 142 140.631 140.843 0.025 0.057 −0.058 −0.024 2
2 31.99345 49.92993 876.254 885 883 882.125 881.914 −0.044 −0.058 −0.132 −0.049 1
3 32.71966 49.3284 2427.015 2,438 2,435 2433.581 2433.109 0.081 0.068 −0.087 −0.070 1
4 32.64732 48.59934 651.733 645 649 649.531 649.968 0.218 0.118 0.206 0.044 1
5 32.75017 48.2441 487.644 497 495 494.417 493.319 −0.043 −0.146 −0.400 −0.148 1
6 31.56039 50.11553 2880.705 2,887 2,888 2885.825 2885.182 0.008 0.140 0.038 0.006 1
7 30.48187 49.62003 18.123 16 17 16.316 16.519 0.169 0.201 0.260 0.104 3
8 30.80467 49.06381 9.299 7 8 7.614 8.0591 −0.145 −0.083 −0.112 0.082 3
9 31.30483 48.64483 24.005 21 23 22.829 22.549 0.067 0.103 −0.070 −0.111 3
10 30.75944 48.2789 8.715 11 10 12.531 12.337 −0.353 −0.266 0.011 0.005 3
11 31.27695 47.98609 15.262 12 14 13.673 14.149 −0.024 0.001 0.117 0.035 3
12 30.22265 49.76137 17.67 15 17 16.206 16.591 0.013 0.024 0.008 −0.009 3
13 30.85111 49.82291 211.468 207 210 210.481 210.572 −0.141 −0.145 0.086 −0.002 2
14 31.56393 49.36068 215.481 220 219 218.182 217.893 0.046 −0.022 0.073 −0.007 2
15 32.2184 49.43259 693.153 687 691 691.018 691.32 0.085 −0.012 0.005 −0.013 1
16 32.27739 48.51004 106.569 103 105 105.749 105.807 0.042 −0.042 −0.087 −0.027 2
17 30.49058 48.77732 12.13 15 14 16.081 16.241 0.030 0.061 −0.163 −0.010 3
18 31.87507 48.55341 41.533 45 46 43.769 43.934 −0.085 −0.091 0.188 −0.049 2
19 31.24402 49.18028 34.39 31 33 33.619 33.495 0.068 0.055 0.015 −0.001 2
20 30.2996 50.38949 238.128 234 236 237.437 237.518 0.104 0.157 0.067 0.017 2
Min 8.715 7 8 7.614 8.0591 −0.353 −0.266 −0.4 −0.148
Max 2880.705 2,887 2,888 2885.825 2885.182 0.218 0.201 0.26 0.104
Mean 455.36075 455.95 456.75 456.58075 456.565955 0.00605 0.006 −0.00175 −0.01135
Standard deviation 799.1949 801.9891 801.4647 800.8867 800.6845 0.123928 0.116457 0.148331 0.058088

In the next step, the error distribution maps of corrected DEMs were produced. Figure 5 shows the error map of satellite DEMs. Based on this figure, the vertical error of SRTM, ASTER, FABDEM, and MERIT based on RMSE index has been improved to 0.95, 0.63, 0.44, and 0.36 m, respectively. The results showed that, using the proposed algorithm, the accuracy of DEMs in the study area increased significantly. Due to the fact that error behavior in these areas is a bit different in small parts such that a second-order polynomial cannot model this error properly, in some parts, the accuracy has not increased much and even may be decreased.

Figure 5 
               Error distribution for corrected (a) SRTM, (b) ASTER, (c) FABDEM, and (d) MERIt elevation data.
Figure 5

Error distribution for corrected (a) SRTM, (b) ASTER, (c) FABDEM, and (d) MERIt elevation data.

The resulting maps from the interpolation of error distribution in the four studied DEMs indicated that the error range in MERIT DEM was smaller so that in most areas the residual error after correction with the proposed model ranged between −0.014 and 0.07 m. This indicates that the proposed model was the most efficient in this DEM. On the other hand, the accuracy improvement was more tangible in ASTER compared to the other models. In other words, although the initial ASTER DEM had the lowest accuracy among the selected ones, its final DEM presented a higher accuracy than SRTM. The error range in the corrected FABDEM model in most parts of the study area was also between −0.06 and −0.03 m; however, positive errors are also observed across the entire region. These errors indicate the non-compliance of the error behavior with the second-order polynomial; however, the small error values indicate that there is no need to increase the order of the polynomial. The corrected STRM output also indicates positive errors in the eastern and northwestern areas of the region, whereas the largest negative errors were observed in the central and southern areas. According to Yamazaki et al., The MERIT DEM was developed by removing multiple error components (absolute bias, stripe noise, speckle noise, and tree height bias) from the existing DEMs (SRTM3 v2.1 and AW3D-30m v1). Although, in Merit's model, many errors have been removed from the elevation model, this model still has an average error of 1.83 m in the studied area. On the contrary, the error has been significantly reduced by the proposed method, in comparison with the mentioned study.

To evaluate the relationship between elevation and vertical error in the digital elevation/surface models, linear regression has been used (Figure 6a and b). According to Figure 6a, after applying the linear regression between elevation and vertical error, a strong positive relationship between these two parameters can be clearly witnessed. This means that with the increase in elevation in all models, the error will also increase. To be more precise, this relationship is stronger in the SRTM and ASTER models than in the other two models. On the contrary and according to Figure 6b, after applying the proposed algorithm to reduce the vertical error, in both SRTM and ASTER models, a positive relationship between the stated parameters can still be observed, but this relationship is very weak and can be ignored. In the case of FABDEM and MERIT models, a very weak negative relationship can be seen between such parameters. So these two parameters can be assumed to be independent in the corrected models.

Figure 6 
               Linear regression relationship between elevation and error (a) before algorithm implementation (b) after algorithm implementation.
Figure 6

Linear regression relationship between elevation and error (a) before algorithm implementation (b) after algorithm implementation.

To perform a more accurate investigation of the algorithm in regions with various elevation features, the following table demonstrates the error of satellite models before and after the implementation of the proposed algorithm in three mountainous, foothill, and plain regions.

Table 3 shows that the proposed model makes a great contribution to reducing bias in elevation models. Going through details, before applying corrections, high rates of positive and negative bias could be witnessed in all models. In contrast, after applying them, the bias values will decrease significantly.

Table 3

Comparison of error propagation in three regions with various altitudinal behaviors

Region 1 Region 2 Region 3
Max-Z_Geoid 2944.2848 468.1456 41.5192
Min-Z_Geoid 174.3882 33.3606 17.0099
Mean-Z_Geoid 887.94435 141.740397 25.432011
Standard deviation-Z_Geoid 653.95891 111.415 6.109
MAE-SRTM-before 9.427 4.585 1.460
MAE-SRTM-after 1.031 0.737 0.312
MAE-ASTER-before 10.15 5.388 1.960
MAE-ASTER-after 0.811 0.693 0.313
MAE-FABDEM-before 8.283 1.189 4.470
MAE-FABDEM-after 0.552 0.391 0.271
MAE-MERIT-before 7.314 0.940 3.877
MAE-MERIT-after 0.484 0.346 0.190
MBE-SRTM-before 6.099 −3.985 2.460
MBE-SRTM-after 0.140 −0.136 0.096
MBE-ASTER-before 6.966 −3.888 2.060
MBE-ASTER-after 0.145 −0.144 0.106
MBE-FABDEM-before 5.198 −1.889 −2.170
MBE-FABDEM-after 0.043 −0.046 0.038
MBE-MERIT-before 4.819 −0.917 −1.377
MBE-MERIT-after 0.0136 −0.0334 0.024

It should be noted that the proposed model could be implemented in other areas with different roughness and also different error rates of DEMs. The only possible required changes will be to determine the polynomial order. As stated earlier, in this study, due to the relatively uniform error behavior, the second-order polynomial has been utilized. If the error behavior is more uniform in a region, the first-order polynomial can achieve proper accuracy. On the other hand, if the error rate in a region is more complex, there will probably be a need to use higher-order polynomials.

5 Conclusion

In this study, the accuracy of SRTM, ASTER FABDEM, and MERIT DEMs was assessed by comparing them with high-accuracy altitudinal points prepared by the Iranian Cartography Center in the Khuzestan Province. Although all elevation data models have almost same horizontal resolution, they accounted for various rates of altitudinal accuracies in the study area. As a result, based on the MAE index, the error values of 4.83, 5.35, 4.28, and 3.87 m were obtained for SRTM, ASTER, FABDEM, and MERIT data, respectively. The evaluation results obtained by the RMSE index for SRTM, ASTER, FABDEM, and MERIT data were 5.79, 6.23, 5.01, and 4.32 m, respectively. Based on the findings of the present study, it can be concluded that in most parts of the study area, the DEM obtained by MERIT explained higher performance in comparison with other digital models. In the next section, the accuracy of these models was improved by the optimized second-order polynomial. PSO algorithm was employed to optimize the coefficients of the polynomial. The corrected DEM was computed by subtracting the estimated error by polynomial from DEM elevation. The results illustrated that the altitudinal accuracy (MAE) was increased to 0.83, 0.51, 0.37, and 0.29 m for SRTM, ASTER FABDEM, and MERIT DEMs, respectively. Therefore, according to the results obtained in the study area, which consists of three separate parts, mountainous, foothills, and plains, the proposed algorithm has obtained acceptable results in different areas.

Acknowledgements

We are grateful to the Research Council of Shahid Chamran University of Ahvaz for financial support (SCU.EG1400.26151).

  1. Author contributions: MK, KR and MA designed the algorithms and AS carried them out. MK and AS developed the model code and performed the simulations. AS prepared the manuscript with contributions from all co-authors. The authors applied the SDC approach for the sequence of authors.

  2. Conflict of interest: The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

  3. Data availability statement: Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

[1] Aghataher R, Samadi M, Laliniat I, Najafi I. Comparative assessment of vertical accuracy of SRTM and ASTER GDEM elevation data. Sci-Res Q Geogr Data (SEPEHR). 2016;25(99):103–13.Search in Google Scholar

[2] Li Z, Zhu C, Gold C. Digital terrain modeling: Principles and methodology. CRC Press; 2004.10.1201/9780203357132Search in Google Scholar

[3] Maune DF. Digital elevation model technologies and applications: The DEM users manual. 2nd edn. Bethesda (Md.): American Society for Photogrammetry and Remote Sensing; 2007.Search in Google Scholar

[4] Vadon H. 3D Navigation over merged Panchromatic-Multispectral high resolution SPOT5 images. Int Arch Photogramm Remote Sens Spat Inf Sci. 2003;36(5):W10.Search in Google Scholar

[5] Dai W, Yang X, Na J, Li J, Brus D, Xiong L, et al. Effects of DEM resolution on the accuracy of gully maps in loess hilly areas. Catena. 2019;177:114–25.10.1016/j.catena.2019.02.010Search in Google Scholar

[6] de Albuquerque AO, de Carvalho Júnior OA, Guimarães RF, Gomes RAT, Hermuche PM. Assessment of gully development using geomorphic change detection between pre-and post-urbanization scenarios. Environ Earth Sci. 2020;79(10):1–14.10.1007/s12665-020-08958-9Search in Google Scholar

[7] Deng F, Rodgers M, Xie S, Dixon TH, Charbonnier S, Gallant EA, et al. High-resolution DEM generation from spaceborne and terrestrial remote sensing data for improved volcano hazard assessment—A case study at Nevado del Ruiz, Colombia. Remote Sens Environ. 2019;233:111348.10.1016/j.rse.2019.111348Search in Google Scholar

[8] Gashaw T, Tulu T, Argaw M, Worqlul AW. Modeling the impacts of land use–land cover changes on soil erosion and sediment yield in the Andassa watershed, upper Blue Nile basin, Ethiopia. Environ Earth Sci. 2019;78(24):1–22.10.1007/s12665-019-8726-xSearch in Google Scholar

[9] Hazra P, Krishna AP. Spatio-temporal and surface elevation change assessment of glaciers of Sikkim Himalaya (India) across different size classes using geospatial techniques. Environ Earth Sci. 2019;78(14):1–20.10.1007/s12665-019-8390-1Search in Google Scholar

[10] Karabulut MS, Özdemir H. Comparison of basin morphometry analyses derived from different DEMs on two drainage basins in Turkey. Environ Earth Sci. 2019;78(18):1–14.10.1007/s12665-019-8585-5Search in Google Scholar

[11] Soliman A, Han L. Effects of vertical accuracy of digital elevation model (DEM) data on automatic lineaments extraction from shaded DEM. Adv Space Res. 2019;64(3):603–22.10.1016/j.asr.2019.05.009Search in Google Scholar

[12] Jarvis A, Rubiano Mejía JE, Nelson A, Farrow A, Mulligan M Practical use of SRTM data in the tropics: Comparisons with digital elevation models generated cartographic data; Centro Internacional de Agricultura Tropical (CIAT), 2004. 32 p. (Working document no. 198).Search in Google Scholar

[13] Rodriguez E, Morris C, Belz J, Chapin E, Martin J, Daffer W, et al. An assessment of the SRTM topographic products; 2005.Search in Google Scholar

[14] Sefercik UG. Performance estimation of ASTER Global DEM depending upon the terrain inclination. J Indian Soc Remote Sens. 2012;40(4):565–76.10.1007/s12524-012-0202-ySearch in Google Scholar

[15] Du X, Guo H, Fan X, Zhu J, Yan Z, Zhan Q, editors. Vertical accuracy assessment of SRTM and ASTER gdem overcoastal regions of china: A comparative analysis. 33rd Asian Conference on Remote Sensing; 2012.Search in Google Scholar

[16] Elkhrachy I. Vertical accuracy assessment for SRTM and ASTER digital elevation models: A case study of Najran city, Saudi Arabia. Ain Shams Eng J. 2018;9(4):1807–17.10.1016/j.asej.2017.01.007Search in Google Scholar

[17] Yue L, Shen H, Zhang L, Zheng X, Zhang F, Yuan Q. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS J Photogramm Remote Sens. 2017;123:20–34.10.1016/j.isprsjprs.2016.11.002Search in Google Scholar

[18] Liu K, Song C, Ke L, Jiang L, Pan Y, Ma R. Global open-access DEM performances in Earth's most rugged region High Mountain Asia: A multi-level assessment. Geomorphology. 2019;338:16–26.10.1016/j.geomorph.2019.04.012Search in Google Scholar

[19] del Rosario Gonzalez-Moradas M, Viveen W. Evaluation of ASTER GDEM2, SRTMv3. 0, ALOS AW3D30 and TanDEM-X DEMs for the Peruvian Andes against highly accurate GNSS ground control points and geomorphological-hydrological metrics. Remote Sens Environ. 2020;237:111509.10.1016/j.rse.2019.111509Search in Google Scholar

[20] Mesa-Mingorance JL, Ariza-López FJ. Accuracy assessment of digital elevation models (DEMs): A critical review of practices of the past three decades. Remote Sens. 2020;12(16):2630.10.3390/rs12162630Search in Google Scholar

[21] DAAC L. The shuttle radar topography mission (SRTM) collection user guide. Sioux Falls, SD, USA: NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center; 2015.Search in Google Scholar

[22] Rodriguez E, Morris CS, Belz JE. A global assessment of the SRTM performance. Photogramm Eng Remote Sens. 2006;72(3):249–60.10.14358/PERS.72.3.249Search in Google Scholar

[23] Abrams M, Crippen R, Fujisada H. ASTER global digital elevation model (GDEM) and ASTER global water body dataset (ASTWBD). Remote Sens. 2020;12(7):1156.10.3390/rs12071156Search in Google Scholar

[24] Hawker L, Uhe P, Paulo L, Sosa J, Savage J, Sampson C, et al. A 30 m global map of elevation with forests and buildings removed. Environ Res Lett. 2022;17(2):024016.10.1088/1748-9326/ac4d4fSearch in Google Scholar

[25] Yamazaki D, Ikeshima D, Tawatari R, Yamaguchi T, O'Loughlin F, Neal JC, et al. A high‐accuracy map of global terrain elevations. Geophys Res Lett. 2017;44(11):5844–53.10.1002/2017GL072874Search in Google Scholar

[26] Congalton RG, Green K. Assessing the accuracy of remotely sensed data: Principles and practices. CRC Press; 2019.10.1201/9780429052729Search in Google Scholar

[27] Raventos-Duran T, Camredon M, Valorso R, Mouchel-Vallon C, Aumont B. Structure-activity relationships to estimate the effective Henry's law constants of organics of atmospheric interest. Atmos Chem Phys. 2010;10(16):7643–54.10.5194/acp-10-7643-2010Search in Google Scholar

[28] van Zyl J-P, Engelbrecht AP, editors. Polynomial approximation using set-based particle swarm optimization. Advances in Swarm Intelligence: 12th International Conference, ICSI 2021. Qingdao, China: Proceedings, Part I 12; 17–21, 2021. Springer.10.1007/978-3-030-78743-1_19Search in Google Scholar

[29] Kennedy J, Eberhart R, editors. Particle swarm optimization. Proceedings of ICNN'95-International Conference on Neural Networks. Perth, WA, Australia: IEEE; 1995.10.1109/ICNN.1995.488968Search in Google Scholar

[30] Naeini AA, Babadi M, Mirzadeh SMJ, Amini S. Particle swarm optimization for object-based feature selection of VHSR satellite images. IEEE Geosci Remote Sens Lett. 2018;15(3):379–83.10.1109/LGRS.2017.2789194Search in Google Scholar

Received: 2022-04-24
Revised: 2022-11-20
Accepted: 2022-12-21
Published Online: 2023-02-27

© 2023 the author(s), published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Regular Articles
  2. Diagenesis and evolution of deep tight reservoirs: A case study of the fourth member of Shahejie Formation (cg: 50.4-42 Ma) in Bozhong Sag
  3. Petrography and mineralogy of the Oligocene flysch in Ionian Zone, Albania: Implications for the evolution of sediment provenance and paleoenvironment
  4. Biostratigraphy of the Late Campanian–Maastrichtian of the Duwi Basin, Red Sea, Egypt
  5. Structural deformation and its implication for hydrocarbon accumulation in the Wuxia fault belt, northwestern Junggar basin, China
  6. Carbonate texture identification using multi-layer perceptron neural network
  7. Metallogenic model of the Hongqiling Cu–Ni sulfide intrusions, Central Asian Orogenic Belt: Insight from long-period magnetotellurics
  8. Assessments of recent Global Geopotential Models based on GPS/levelling and gravity data along coastal zones of Egypt
  9. Accuracy assessment and improvement of SRTM, ASTER, FABDEM, and MERIT DEMs by polynomial and optimization algorithm: A case study (Khuzestan Province, Iran)
  10. Uncertainty assessment of 3D geological models based on spatial diffusion and merging model
  11. Evaluation of dynamic behavior of varved clays from the Warsaw ice-dammed lake, Poland
  12. Impact of AMSU-A and MHS radiances assimilation on Typhoon Megi (2016) forecasting
  13. Contribution to the building of a weather information service for solar panel cleaning operations at Diass plant (Senegal, Western Sahel)
  14. Measuring spatiotemporal accessibility to healthcare with multimodal transport modes in the dynamic traffic environment
  15. Mathematical model for conversion of groundwater flow from confined to unconfined aquifers with power law processes
  16. NSP variation on SWAT with high-resolution data: A case study
  17. Reconstruction of paleoglacial equilibrium-line altitudes during the Last Glacial Maximum in the Diancang Massif, Northwest Yunnan Province, China
  18. A prediction model for Xiangyang Neolithic sites based on a random forest algorithm
  19. Determining the long-term impact area of coastal thermal discharge based on a harmonic model of sea surface temperature
  20. Origin of block accumulations based on the near-surface geophysics
  21. Investigating the limestone quarries as geoheritage sites: Case of Mardin ancient quarry
  22. Population genetics and pedigree geography of Trionychia japonica in the four mountains of Henan Province and the Taihang Mountains
  23. Performance audit evaluation of marine development projects based on SPA and BP neural network model
  24. Study on the Early Cretaceous fluvial-desert sedimentary paleogeography in the Northwest of Ordos Basin
  25. Detecting window line using an improved stacked hourglass network based on new real-world building façade dataset
  26. Automated identification and mapping of geological folds in cross sections
  27. Silicate and carbonate mixed shelf formation and its controlling factors, a case study from the Cambrian Canglangpu formation in Sichuan basin, China
  28. Ground penetrating radar and magnetic gradient distribution approach for subsurface investigation of solution pipes in post-glacial settings
  29. Research on pore structures of fine-grained carbonate reservoirs and their influence on waterflood development
  30. Risk assessment of rain-induced debris flow in the lower reaches of Yajiang River based on GIS and CF coupling models
  31. Multifractal analysis of temporal and spatial characteristics of earthquakes in Eurasian seismic belt
  32. Surface deformation and damage of 2022 (M 6.8) Luding earthquake in China and its tectonic implications
  33. Differential analysis of landscape patterns of land cover products in tropical marine climate zones – A case study in Malaysia
  34. DEM-based analysis of tectonic geomorphologic characteristics and tectonic activity intensity of the Dabanghe River Basin in South China Karst
  35. Distribution, pollution levels, and health risk assessment of heavy metals in groundwater in the main pepper production area of China
  36. Study on soil quality effect of reconstructing by Pisha sandstone and sand soil
  37. Understanding the characteristics of loess strata and quaternary climate changes in Luochuan, Shaanxi Province, China, through core analysis
  38. Dynamic variation of groundwater level and its influencing factors in typical oasis irrigated areas in Northwest China
  39. Creating digital maps for geotechnical characteristics of soil based on GIS technology and remote sensing
  40. Changes in the course of constant loading consolidation in soil with modeled granulometric composition contaminated with petroleum substances
  41. Correlation between the deformation of mineral crystal structures and fault activity: A case study of the Yingxiu-Beichuan fault and the Milin fault
  42. Cognitive characteristics of the Qiang religious culture and its influencing factors in Southwest China
  43. Spatiotemporal variation characteristics analysis of infrastructure iron stock in China based on nighttime light data
  44. Interpretation of aeromagnetic and remote sensing data of Auchi and Idah sheets of the Benin-arm Anambra basin: Implication of mineral resources
  45. Building element recognition with MTL-AINet considering view perspectives
  46. Characteristics of the present crustal deformation in the Tibetan Plateau and its relationship with strong earthquakes
  47. Influence of fractures in tight sandstone oil reservoir on hydrocarbon accumulation: A case study of Yanchang Formation in southeastern Ordos Basin
  48. Nutrient assessment and land reclamation in the Loess hills and Gulch region in the context of gully control
  49. Handling imbalanced data in supervised machine learning for lithological mapping using remote sensing and airborne geophysical data
  50. Spatial variation of soil nutrients and evaluation of cultivated land quality based on field scale
  51. Lignin analysis of sediments from around 2,000 to 1,000 years ago (Jiulong River estuary, southeast China)
  52. Assessing OpenStreetMap roads fitness-for-use for disaster risk assessment in developing countries: The case of Burundi
  53. Transforming text into knowledge graph: Extracting and structuring information from spatial development plans
  54. A symmetrical exponential model of soil temperature in temperate steppe regions of China
  55. A landslide susceptibility assessment method based on auto-encoder improved deep belief network
  56. Numerical simulation analysis of ecological monitoring of small reservoir dam based on maximum entropy algorithm
  57. Morphometry of the cold-climate Bory Stobrawskie Dune Field (SW Poland): Evidence for multi-phase Lateglacial aeolian activity within the European Sand Belt
  58. Adopting a new approach for finding missing people using GIS techniques: A case study in Saudi Arabia’s desert area
  59. Geological earthquake simulations generated by kinematic heterogeneous energy-based method: Self-arrested ruptures and asperity criterion
  60. Semi-automated classification of layered rock slopes using digital elevation model and geological map
  61. Geochemical characteristics of arc fractionated I-type granitoids of eastern Tak Batholith, Thailand
  62. Lithology classification of igneous rocks using C-band and L-band dual-polarization SAR data
  63. Analysis of artificial intelligence approaches to predict the wall deflection induced by deep excavation
  64. Evaluation of the current in situ stress in the middle Permian Maokou Formation in the Longnüsi area of the central Sichuan Basin, China
  65. Utilizing microresistivity image logs to recognize conglomeratic channel architectural elements of Baikouquan Formation in slope of Mahu Sag
  66. Resistivity cutoff of low-resistivity and low-contrast pays in sandstone reservoirs from conventional well logs: A case of Paleogene Enping Formation in A-Oilfield, Pearl River Mouth Basin, South China Sea
  67. Examining the evacuation routes of the sister village program by using the ant colony optimization algorithm
  68. Spatial objects classification using machine learning and spatial walk algorithm
  69. Study on the stabilization mechanism of aeolian sandy soil formation by adding a natural soft rock
  70. Bump feature detection of the road surface based on the Bi-LSTM
  71. The origin and evolution of the ore-forming fluids at the Manondo-Choma gold prospect, Kirk range, southern Malawi
  72. A retrieval model of surface geochemistry composition based on remotely sensed data
  73. Exploring the spatial dynamics of cultural facilities based on multi-source data: A case study of Nanjing’s art institutions
  74. Study of pore-throat structure characteristics and fluid mobility of Chang 7 tight sandstone reservoir in Jiyuan area, Ordos Basin
  75. Study of fracturing fluid re-discharge based on percolation experiments and sampling tests – An example of Fuling shale gas Jiangdong block, China
  76. Impacts of marine cloud brightening scheme on climatic extremes in the Tibetan Plateau
  77. Ecological protection on the West Coast of Taiwan Strait under economic zone construction: A case study of land use in Yueqing
  78. The time-dependent deformation and damage constitutive model of rock based on dynamic disturbance tests
  79. Evaluation of spatial form of rural ecological landscape and vulnerability of water ecological environment based on analytic hierarchy process
  80. Fingerprint of magma mixture in the leucogranites: Spectroscopic and petrochemical approach, Kalebalta-Central Anatolia, Türkiye
  81. Principles of self-calibration and visual effects for digital camera distortion
  82. UAV-based doline mapping in Brazilian karst: A cave heritage protection reconnaissance
  83. Evaluation and low carbon ecological urban–rural planning and construction based on energy planning mechanism
  84. Modified non-local means: A novel denoising approach to process gravity field data
  85. A novel travel route planning method based on an ant colony optimization algorithm
  86. Effect of time-variant NDVI on landside susceptibility: A case study in Quang Ngai province, Vietnam
  87. Regional tectonic uplift indicated by geomorphological parameters in the Bahe River Basin, central China
  88. Computer information technology-based green excavation of tunnels in complex strata and technical decision of deformation control
  89. Spatial evolution of coastal environmental enterprises: An exploration of driving factors in Jiangsu Province
  90. A comparative assessment and geospatial simulation of three hydrological models in urban basins
  91. Aquaculture industry under the blue transformation in Jiangsu, China: Structure evolution and spatial agglomeration
  92. Quantitative and qualitative interpretation of community partitions by map overlaying and calculating the distribution of related geographical features
  93. Numerical investigation of gravity-grouted soil-nail pullout capacity in sand
  94. Analysis of heavy pollution weather in Shenyang City and numerical simulation of main pollutants
  95. Road cut slope stability analysis for static and dynamic (pseudo-static analysis) loading conditions
  96. Forest biomass assessment combining field inventorying and remote sensing data
  97. Late Jurassic Haobugao granites from the southern Great Xing’an Range, NE China: Implications for postcollision extension of the Mongol–Okhotsk Ocean
  98. Petrogenesis of the Sukadana Basalt based on petrology and whole rock geochemistry, Lampung, Indonesia: Geodynamic significances
  99. Numerical study on the group wall effect of nodular diaphragm wall foundation in high-rise buildings
  100. Water resources utilization and tourism environment assessment based on water footprint
  101. Geochemical evaluation of the carbonaceous shale associated with the Permian Mikambeni Formation of the Tuli Basin for potential gas generation, South Africa
  102. Detection and characterization of lineaments using gravity data in the south-west Cameroon zone: Hydrogeological implications
  103. Study on spatial pattern of tourism landscape resources in county cities of Yangtze River Economic Belt
  104. The effect of weathering on drillability of dolomites
  105. Noise masking of near-surface scattering (heterogeneities) on subsurface seismic reflectivity
  106. Query optimization-oriented lateral expansion method of distributed geological borehole database
  107. Petrogenesis of the Morobe Granodiorite and their shoshonitic mafic microgranular enclaves in Maramuni arc, Papua New Guinea
  108. Environmental health risk assessment of urban water sources based on fuzzy set theory
  109. Spatial distribution of urban basic education resources in Shanghai: Accessibility and supply-demand matching evaluation
  110. Spatiotemporal changes in land use and residential satisfaction in the Huai River-Gaoyou Lake Rim area
  111. Walkaway vertical seismic profiling first-arrival traveltime tomography with velocity structure constraints
  112. Study on the evaluation system and risk factor traceability of receiving water body
  113. Predicting copper-polymetallic deposits in Kalatag using the weight of evidence model and novel data sources
  114. Temporal dynamics of green urban areas in Romania. A comparison between spatial and statistical data
  115. Passenger flow forecast of tourist attraction based on MACBL in LBS big data environment
  116. Varying particle size selectivity of soil erosion along a cultivated catena
  117. Relationship between annual soil erosion and surface runoff in Wadi Hanifa sub-basins
  118. Influence of nappe structure on the Carboniferous volcanic reservoir in the middle of the Hongche Fault Zone, Junggar Basin, China
  119. Dynamic analysis of MSE wall subjected to surface vibration loading
  120. Pre-collisional architecture of the European distal margin: Inferences from the high-pressure continental units of central Corsica (France)
  121. The interrelation of natural diversity with tourism in Kosovo
  122. Assessment of geosites as a basis for geotourism development: A case study of the Toplica District, Serbia
  123. IG-YOLOv5-based underwater biological recognition and detection for marine protection
  124. Monitoring drought dynamics using remote sensing-based combined drought index in Ergene Basin, Türkiye
  125. Review Articles
  126. The actual state of the geodetic and cartographic resources and legislation in Poland
  127. Evaluation studies of the new mining projects
  128. Comparison and significance of grain size parameters of the Menyuan loess calculated using different methods
  129. Scientometric analysis of flood forecasting for Asia region and discussion on machine learning methods
  130. Rainfall-induced transportation embankment failure: A review
  131. Rapid Communication
  132. Branch fault discovered in Tangshan fault zone on the Kaiping-Guye boundary, North China
  133. Technical Note
  134. Introducing an intelligent multi-level retrieval method for mineral resource potential evaluation result data
  135. Erratum
  136. Erratum to “Forest cover assessment using remote-sensing techniques in Crete Island, Greece”
  137. Addendum
  138. The relationship between heat flow and seismicity in global tectonically active zones
  139. Commentary
  140. Improved entropy weight methods and their comparisons in evaluating the high-quality development of Qinghai, China
  141. Special Issue: Geoethics 2022 - Part II
  142. Loess and geotourism potential of the Braničevo District (NE Serbia): From overexploitation to paleoclimate interpretation
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/geo-2022-0455/html
Scroll to top button