Abstract
Bacillus thuringiensis (Bt) is a well-known entomopathogen. In this study, we cloned the vip3Aa1 gene from Bt strain GIM1.147 and investigated the insecticidal activity of Bt Vip3Aa1 protein produced by Escherichia coli against Periplaneta americana and Blattella germanica. The results showed that purified Vip3Aa1 exhibited an LC50 at 24 h against P. americana and B. germanica of 0.182 mg·ml-1 and 0.276 mg·ml-1, respectively. Investigations of its mode of action showed that Vip3Aa1 could be proteolyzed into a 62-kDa toxic protein by P. americana gut-soluble proteases. In addition, Vip3Aa1 caused severe damage to the columnar colon and the midgut, as observed through hematoxylin-eosin staining and scanning electron microscopy. The 62-kDa activated Vip3Aa1 protein could form ion channels in the colon and the midgut in vitro. Based on protease activity analysis, Vip3Aa1 at concentrations of 0.125 mg·ml-1 and 0.031 mg·ml-1 could downregulate the activities of glutathione S-transferase, α-NA esterase, trypsin, and chymotrypsin. This report provides the first description of the activity of Vip3Aa1 toxins toward P. americana and B. germanica and demonstrates that the mechanism through which Vip3Aa1 kills P. americana and B. germanica differs from that involved in the killing of lepidopteran insects.
1 Introduction
The cockroach species Periplaneta americana and Blattella germanica exhibit very strong breeding ability and environmental adaptability, and as a result are found as pests in households, hospitals and residential areas worldwide. As they carry viral and bacterial pathogens on their bodies and in their feces, these pests can cause serious health problems, including poisoning, diarrhea, dysentery, asthma and allergies [1].
The alimentary tract of P. americana is mainly divided into three regions, the foregut, midgut and colon. The foregut consists of the esophagus, crop and proventriculus. The crop is covered by a layer of well-defined squamous epithelium, the epidermis has thorns on its surface, and the squamous epithelial cells fold to form a crest. The midgut and the columnar colon have a similar morphology, but the ridge is thicker in the columnar colon than in the midgut. A peritrophic membrane covers the surface of the epithelial cells and protects these cells from food abrasion and pathogenic microorganisms. The epithelium is composed of columnar cells, goblet cells and brush border membranes, and the columnar cells are covered with numerous microvilli.
At present, the primary method used for controlling cockroaches involves the use of chemical pesticides (organophosphates, pyrethroids, and carbamates), which can accumulate in organs and fat, causing chronic poisoning and damage in animal species including humans. In addition, the development of insecticide resistance in cockroaches is a serious problem related to the control of these insects [2]. Therefore, the development of a new and more sustainable approach for the reduction or management of cockroach populations is important, and the use of biological pesticides and their metabolites instead of chemical pesticides for cockroach control is a potentially promising approach because these could reduce risks to human health and provide a longer-term effect.
Bacillus thuringiensis (Bt), a gram-positive bacillus bacteria found throughout the world, can produce toxins that are harmful to a variety of insects and other invertebrates. During its growth, Bt can synthesize many types of active compounds, including vegetative insecticidal proteins (Vips), secreted insecticidal proteins [3], chitinase, and s-layer proteins [4]. Vip3 protein, which is currently the most studied Vip protein, shows high insecticidal activity against lepidopteran insects, such as Helicoverpa armigera [5], Spodoptera exigua [6], Spodoptera frugiperda [7], Heliothis virescens [8], Plutella xylostella, Spodoptera litura [9], Agrotis ipsilon [10] and other agricultural pests. Although the mode of action of Vip3 remains to some extent controversial, it is widely accepted that Vip3 protein exerts its toxic action through a number of processes, including: activation by midgut protease, binding to some receptor, and pore formation [11]. In recent studies, some researchers report that Vip3 exerts toxicity by inducing apoptosis.
In this study, we sequenced and cloned the vip3Aa1 gene and produced Vip3Aa1 protein. We also performed the first evaluation of the activity of the Vip3Aa1 toxin against P. americana and B. germanica and investigated the activation process, histopathological effects and pore formation of Vip3Aa1 in the midgut and columnar colon of P. americana.
2 Materials and methods
2.1 Strains and growth conditions
The Bt strain (GIM 1.147) used in this study was obtained from the Guangdong Culture Collection Center and maintained in nutrient agar medium (1.0% peptone, 0.3% beef extract, 0.5% NaCl, and 1.5% agar, pH 7.4). E. coli DH-5α and E. coli BL21(DE3) were purchased from Takara (Japan) and maintained in LB medium (1% peptone, 0.5% yeast extract, 1.0% NaCl, and 1.5% agar, pH 7.4). P. americana and B. germanica were purchased from the Guangdong Provincial Centers for Disease Control and Prevention. The insects were maintained in the rearing facility at 28±1°C with 65±5% relative humidity and a photoperiod of 12:12 light/dark and given mouse food.
2.2 Expression of vip3Aa1 in E. coli
The Bt strain GIM 1.147 was maintained in nutrient agar medium, and DNA was isolated using a TIANamp Bacteria DNA Kit (Tiangen Biotech Co., Ltd., China). The vip3Aa1 gene (GenBank accession number: JQ228435.1) was amplified using a pair of primers, which were designed based on the vip3Aa1 gene with the addition of a 6× His-tag sequence and thus had the following sequences: F-CGCGGATCCATGAACAAGAATAATACTAA and R-CCGCTCGAGTTAATGGTGATGGTGATGATGCTTAATAGA-GACATCGT. A BamH I (bold) restriction enzyme site was introduced upstream of the vip3Aa1 gene, and an Xho I (italic) restriction enzyme site and hexahistidine tag (underlined) were introduced downstream of the vip3Aa1 gene. A 2370-bp fragment was amplified and cloned into a T-vector (pMD-20, Takara, Japan) and then sequenced by Invitrogen Corporation. The vip3Aa1 gene was excised from pMD-20 using the Bam I and Xho I restriction enzymes and then cloned into the E. coli expression vector pET21b. The recombinant plasmid pET21b-vip3Aa1 was transformed into E. coli BL21(DE3), and pET21b-Vip3Aa1/BL21 E. coli grown overnight, diluted 100 fold with LB medium and grown to an optical density of 0.6 (at 600 nm, OD 600) at 37℃.
Expression of Vip3Aa1 protein was induced with 0.1 mmol·l-1 isopropyl-β-D-thiogalactoside (IPTG) for 24 h at 20°C. After fermentation, the bacterial cells were recovered by centrifugation (8000 g, 10 min, 4°C) and resuspended in 40 ml lysis buffer (25 mmol·l-1 Tris-HCl, pH 8.0, 300 mmol·l-1 NaCl, and 5 mmol·l-1 β-mercaptoethanol). After incubation for 30 min at 37°C, the lysate was subjected to ultrasonic fragmentation for 12 min at 4°C (250 W, work 6 s, off 6 s). The sonicated extracts were centrifuged at 12,000 g and 4°C for 30 min, and the supernatant was applied to a 18 mL HisTrap FF affinity column (GE Healthcare). The column was washed with 100 ml binding buffer (20 mM Tris-HCl, 400 mM NaCl, 50 mM imidazole; pH 7.4) to remove any nonspecific binding, and Vip3Aa1 protein was separated with a linear imidazole gradient from 50 mM to 1 M imidazole for 15min. The fractions were collected in tubes, desalted and freeze-dried.
2.3 Insect toxicity bioassays
Ten adult P. americana (13 instar) specimens and 15 adult (7 instar) B. germanica specimens were used in the bioassay. The purified toxins were diluted in phosphate-buffered saline (PBS) at pH 7.4, and PBS alone was used as a control. P. americana or B. germanica were fasted for 24 h, placed in a Petri dish with 1 ml of toxin solution (2 mg·ml-1, 0.5 mg·ml-1, 0.125 mg·ml-1, or 0.03125 mg·ml-1) and incubated under the above-mentioned rearing conditions. The mortality of the insects was scored after 12 h, 24 h, and 36 h, and the LC50 was calculated using the Probit method [12]. The experiment was repeated three times. The full P. americana alimentary tract (include foregut, midgut, colon) were carefully excised, and the length objectively measured by a ruler.
2.4 Gut juice preparation, proteolysis of Vip3Aa1 and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
Proteinases were obtained from the midguts of P. americana. The P. americana specimens were cold immobilized and dissected, and their midgut contents were extracted using a pipette and centrifuged at 4°C and 12,000 g for 20 min. The supernatant was collected and used for proteolytic analysis. The protein concentrations were determined using the Bradford assay. Purified Vip3Aa1 (1 mg·ml-1) was dissolved in PBS and incubated with gut juice (0.5 mg·ml-1), trypsin (0.250%) or chymotrypsin (0.250%) for different time periods. The protease activity was then terminated by the addition of 0.1 mmol·l-1 PMSF, and the reaction products were separated by 10% SDS-PAGE.
2.5 Preparation and sectioning of insect tissues
As described in the section 2.3, P. americana specimens were fed purified PBS or 0.125 mg·ml-1 Vip3Aa1 protein solution for 24 h. The P. americana guts (crop, midgut, and columnar colon) were then excised, preserved in 10% formol, dehydrated using solutions with different ethanol concentrations (50%, 70%, 85%, 95% and 100%), vitrified by dimethylbenzene, and fixed in 52-54°C paraffin wax. The embedded gut sections were sectioned longitudinally at a thickness of 4 μm. After deparaffinization and hydration, the sections were stained with hematoxylineosin (HE) and prepared for photomicroscopy.
2.6 Scanning electron microscopy (SEM)
Guts (crop, midgut, and columnar colon) were collected in cold 2.5% glutaraldehyde and postfixed with 1% osmium acid. The tissues were then dehydrated using solutions with different concentrations of ethanol (30%, 50%, 70%, 80%, 90% and 100%) and subjected to CO2 critical point fixation. After tissue surface was sputter-coated with gold, the tissues were viewed using a JEM1400 transmission electron microscope at 120 kV (JEOL, Japan).
2.7 Immunolocalization analysis
For the pore formation activity and immunolocalization analyses, full-length 88-kDa Vip3Aa1 was hydrolyzed by trypsin to generate 62-kDa activated Vip3Aa1 (J-Vip3Aa1), and J-Vip3Aa1 was then further purified using a Superdex 75 column.
FITC was dissolved in DMSO at a concentration of 1 mg·ml-1, and J-Vip3Aa1 was dissolved in Na2CO3-NaHCO3 buffer to a concentration of 2 mg·ml-1 [13]. A mixture of the FITC and J-Vip3Aa1 solutions was then prepared, and the pH was adjusted to 8.5 using sodium hydroxide solution. The solution was stirred overnight at 4°C and loaded onto a Sephadex G-25 column to remove free FITC. The peaks were collected, and the fluorescence detected using a fluorescence imaging system (Tiangen Biotech Co., China). The columnar colon, midgut, and crop tissues of healthy P. americana were separately sectioned at 10 μm under a Leica freezing microtome (Leica, Germany). The sections were then fixed in cold acetone for 10 min, subjected to three 5-min washes with 0.02 M PBS and blocked with 2% BSA for 60 min. The sections were subsequently incubated with FITC-J-Vip3Aa1 at 37°C for 30 min and subjected to three 5-min washes with 0.02 M PBS. The nuclei were counterstained with diamidino-2-phenylindole (DAPI), and the sections were sealed with nail polish and observed under a fluorescence microscope (Leica DMI3000B, Germany).
2.8 Pore formation activity of Vip3Aa1
P. americana were excised, and the columnar colons, midguts, and crops were removed. Ten grams of tissue was added to 33 ml of buffer A (300 mM mannitol and 10 mM Tris-HCl, pH 7.1). The samples were homogenized, CaCl2 was added to a final concentration of 10 mM, and the samples were incubated for 15 min at 4°C. The homogenate was centrifuged at 3000 g and 4°C for 15 min, and the supernatant was collected and centrifuged at 28,000 g and 4°C for 15 min. The precipitate was resuspended in 4 ml of buffer B (50 mM mannitol and 10 mM Tris-HCl, pH 7.1) and centrifuged at 28,000 g and 4°C for 30 min. The resulting brush border membrane vesicle (BBMV) pellet was resuspended in buffer A to obtain 1.0 mg·ml-1 BBMVs.
The channel activity was assayed based on the fluorescence quenching of the voltage-sensitive cyanine dye 3,3’-dipropylthiodicarbocyanine iodide DiSC3(5). BBMVs were incubated with buffer, 100 μM valinomycin or 4 μg ml-1 J-Vip3Aa1 at 4°C for 30 min, and 6 μl of 1 mM DiSC3(5) was then added. Subsequently, 10 μl of 2 M KCl was added to the mixture at 30S intervals, and the fluorescence was recorded every 3 s using an RF6000 fluorescence spectrophotometer (Shimadzu, Japan) with excitation and emission wavelengths of 645 and 665 nm, respectively. Each experiment was repeated three times.
2.9 Protease activity analysis
As described in the section 2.3, P. americana specimens were fed purified PBS or 0.125 mg·ml-1 or 0.031 mg·ml-1 Vip3Aa1 protein solution for 24 h.
Tryptase activity was assayed using N-a-benzoyl-DL-arginine-p-nitroanilide as substrate [14], glutathione S-transferase (GSH) activity was assayed using 2,4-Dinitrochlorbenzene (CDNB) as substrate [15], chymotrypsin-like proteinase activity was assayed using N-succinyl-alanine-alanineproline-phenylalanine p-nitroanilide (SAAPFpNA) as substrate [16], and α-naphyle esterase activity was assayed using α-NA as substrate [17]. For the assessment of all protease activities, the absorbance was read at 410 nm using an Elx808 microplate reader (BioTek, USA).
Ethical approval: The conducted research is not related to either human or animals use.
3 Results
3.1 Expression and purification of Vip3Aa1 in E. coli BL21(DE3)
A 2.37-kb fragment that was amplified by PCR from the Bt strain total DNA was cloned into the pMD-20 vector and completely sequenced, and a BLAST search identified the gene as vip3Aa1 (GenBank accession number: JQ228435.1).
After induction by IPTG, a novel protein with a size of approximately 88-kDa was found on the SDS-PAGE gel. After sonication of IPTG-induced E. coli (pET-21b/ Vip3Aa1), the supernatant proteins and precipitate were separated by centrifugation, and the 88-kDa protein was found to be mainly concentrated in the supernatant proteins (Figure 1C, Lane 2). In addition, Vip3Aa1 protein was soluble, and 88-kDa Vip3Aa1 was further purified by HisTrap resin (Figure 1B).

Expression and purification of Vip3Aa1 in E. coli BL21(DE3). Lane M: DNA marker; Lane 3: pET21b/BL21 digested with BamH I; Lane 3: pET21b/BL21 digested with Xho I; Lane 1: pET21b/BL21 digested with BamH I and Xho I. (B) Lane 1: purified Vip3Aa1 protein; Lane M: protein marker. (C) Lane M: protein marker; Lane 1: pET21b/BL21-induced whole-cell extract; Lane 2: pET21b-vip3Aa1/BL21-induced whole-cell extract; Lane 3: crude cytosolic extract.
3.2 Biological activity of Vip3Aa1 protein against P. americana and B. germanica
After feeding on Vip3Aa1 proteins, P. americana showed typical symptoms of poisoning, including reduced eating, vomiting, shaking, lack of balance while walking, overall paralysis, and death. An analysis of the alimentary system of P. americana revealed that the length of the alimentary system of the insects in the experimental group was significantly shortened compared with that of the control insects (Figure 2A). Under normal circumstances, the cockroach crop is empty or full of food, but the crop of most of the cockroaches in the experimental group was obviously expanded and full of gas. No similar phenomenon has been reported previously (Figure 2B and Figure 2C).

Insecticidal activity of Vip3Aa1 protein against Periplaneta americana. (A) Effect of Vip3Aa1 on the length of the alimentary system of Periplaneta americana: (a) Periplaneta americana fed PBS and (b) Periplaneta americana fed Vip3Aa1. (B) Image of Periplaneta americana after feeding on PBS Vip3Aa1.(C) Image of Periplaneta americana after feeding on PBS.
The Vip3Aa1 toxins were tested against adult P. americana and B. germanica. The estimated 12-h, 24-h, and 36-h LC50 values of Vip3Aa1 toward P. americana were approximately 0.703, 0.182, and 0.159 mg·ml-1, respectively, and the corresponding values against B. germanica were approximately 0.546, 0.276, and 0.118 mg·ml-1, respectively (Table 1 and Table 2).
Probit analysis for Vip3Aa1 toxins and Boric acid again P. americana
Slope±SE | LC50 | Range of 95% CL | Relative potency | ||
---|---|---|---|---|---|
12h | Boric acid | 7.630±3.682 | 0.290g | 0.233~1.852 | 1.0 |
Vip3Aa1 | 1.567±0.325 | 0.703mg | 0.425~1.372 | 412.0 | |
24h | Boric acid | 3.909±1.417 | 0.127g | 0.059~0.175 | 1.0 |
Vip3Aa1 | 2.147±0.386 | 0.182mg | 0.119~0.281 | 697.0 | |
36h | Boric acid | 2.584±1.811 | 0.050g | 2.709~0.104 | 1.0 |
Vip3Aa1 | 2.255±0.414 | 0.159mg | 0.105~0.243 | 314.0 |
Probit analysis for Vip3Aa1 toxins and Boric acid again B. germanica
Slope±SE | LC50 | Range of 95% CL | Relative potency | ||
---|---|---|---|---|---|
12h | Boric acid | 1.814±0.789 | 0.916g | 0.364~5.394 | 1.0 |
Vip3Aa1 | 1.480±0.300 | 0.546mg | 0.324~1.025 | 1677.0 | |
24h | Boric acid | 1.602±0.615 | 0.481g | 0.245~36.173 | 1.0 |
Vip3Aa1 | 1.532±0.203 | 0.443mg | 0.320~0.633 | 1085.0 | |
36h | Boric acid | 1.570±0.755 | 0.310g | 0.180~5.701 | 1.0 |
Vip3Aa1 | 1.815±0.351 | 0.118mg | 0.060~0.215 | 2627.0 |
The biological activities of the Vip3Aa1 toxins were compared with that of boric acid, the Vip3Aa1 toxins were approximately 412.0, 697.0, 314.0-fold more potent than boric acid toward P. americana at 12-h, 24-h, and 36-h, respectively. At the same time points, they were 1677.0, 1085.0, 2627.0 -fold more potent toward B. germanica, respectively.
3.3 Vip3Aa1 proteolytic activation by P. americana gut-soluble proteases
In vitro proteolysis studies were conducted to characterize both the stability and the processing of Vip3Aa1 protein in the midgut environment of P. americana. The 88-kDa Vip3Aa1 protein could be hydrolyzed into a 62-kDa protein core fragment by gut-soluble proteases (Figure 3A), trypsin (Figure 3C) or chymotrypsin (Figure 3B), and the three proteases showed similar kinetic activation patterns. In addition, the 62-kDa fragment was gradually degraded over time by the gut-soluble proteases. Vip3Aa1 protein exhibited significantly higher sensitivity to trypsin than to gut-soluble proteases and chymotrypsin.

Proteolytic processing of Vip3Aa1 protein by trypsin, gut-soluble proteases and chymotrypsin. (A) Proteolytic processing of Vip3Aa1(1 mg·ml-1) protein by gut-soluble proteases (0.5 mg·ml-1) over times. (B) Proteolytic processing of Vip3Aa1(1 mg·ml-1) protein by chymotrypsin (0.250%) over time. (C) Proteolytic processing of Vip3Aa1(1 mg·ml-1) protein by trypsin (0.250%) over time. Lane M: M, protein marker; Lanes 1-7, incubation times of 0 min, 60 min, 120 min, 180 min, 240 min, 300 min, and 360 min, 420min, 480min respectively.
3.4 P. americana intestinal HE and SEM
The histopathological changes induced by Vip3Aa1 were observed by HE staining and SEM, and the results showed that the midgut and columnar colon epithelial cells were severely disrupted. Specifically, the peripheral membrane was wrinkled and shed from the surface of the epithelial cells, leading to the eventual rupture of individual or small groups of epithelial cells (Figure 4). The SEM results showed that the epithelium was severely damaged, the thorns on the epithelium surface had disappeared, and the epithelium was shed. These histopathological changes contributed to the death of P. americana(Figure 5).

Histopathology (HE staining) of Vip3Aa1 in the midgut and columnar colon. (A) HE staining of the midgut of Periplaneta americana fed PBS (400×). (B) HE staining of the midgut of Periplaneta americana fed Vip3Aa1 (400×). (C) HE staining of the columnar colon of Periplaneta americana fed PBS (400×). (D) HE staining of the columnar colon of Periplaneta americana fed Vip3Aa1 (400×).

Histopathology (SEM) of Vip3Aa1 in the midgut and columnar colon. (A) SEM of the midgut of Periplaneta americana fed PBS (1000×). (B) SEM of the columnar colon of Periplaneta americana fed PBS (1000×). (C) SEM of the midgut of Periplaneta americana fed Vip3Aa1 (1000×). (D) SEM of the columnar colon of Periplaneta americana fed Vip3Aa1 (1000×).
3.5 Effect of the Vip3Aa1 protein on P. americana proteolytic activity
We tested four types of enzymes in the midgut, including two digestive enzymes (trypsin and chymotrypsin) and two detoxifying enzymes (glutathione S-transferase and α-NA esterase) (Table 3, 4, 5 and 6). As indicated by one way ANOVA, the activities of trypsin and chymotrypsin, glutathione S-transferase, α-NA esterase were significantly different among 0.125 mg·ml-1 Vip3Aa1 group, 0.031 mg ml-1 Vip3Aa1 group and the control group. The activities of trypsin and chymotrypsin were significantly lower in the control group than in the groups treated with 0.125 mg·ml-1 and 0.031 mg ml-1 Vip3Aa1 (p<0.05). In addition, the activities of glutathione S-transferase and α-NA esterase in the control group were significantly lower than those in the groups treated with 0.125 mg·ml-1 and 0.031 mg ml-1 Vip3Aa1 (p<0.05).
Effect of Vip3Aa1 protein on tryptase
Groups | n | F | P | |
---|---|---|---|---|
Control group | 10 | 0.462±0.0789 | ||
0.125 mg·ml-1 group | 10 | 0.818±0.0604 | 107.1 | p<0.01 |
0.031 mg·ml-1 group | 10 | 0.820±0.045 |
Effect of Vip3Aa1 protein on chymotrypsin-like proteinase in Periplaneta americana
Groups | n | F | P | |
---|---|---|---|---|
Control group | 10 | 0.418±0.097 | ||
0.125 mg·ml-1 group | 10 | 1.203±0.262 | 64.33 | p<0.01 |
0.031 mg·ml-1 group | 10 | 1.351±0.198 |
Effect of Vip3Aa1 protein on glutathione S-transferase
Groups | n | F | P | |
---|---|---|---|---|
Control group | 10 | 0.123±0.018 | ||
0.125 mg·ml-1 group | 10 | 0.215±0.013 | 123.8 | p<0.01 |
0.031 mg·ml-1 group | 10 | 0.234±0.019 |
Effect of Vip3Aa1 protein on α-NA esterase
Groups | n | F | P | |
---|---|---|---|---|
Control group | 10 | 0.068±0.008 | ||
0.125 mg·ml-1 group | 10 | 0.116±0.006 | 168.6 | p<0.05 |
0.031 mg·ml-1 group | 10 | 0.120±0.007 |
3.6 Immunolocalization analysis
The present study showed that Vip3Aa1 protein can bind to certain receptors in the midgut to exert toxic effects [18]. To test whether J-Vip3Aa1 binds to the columnar colon, midgut or crop, J-Vip3Aa1 was labeled with the fluorescent dye fluorescein isothiocyanate (FITC), and purified FITC-J-Vip3Aa1 protein was confirmed using a fluorescence imaging system. Sections from P. americana were observed under a fluorescence microscope, and an immunolocalization analysis revealed no green fluorescence either inside the cells or in the apical membrane of the columnar colons and midgut (Figure 6E & Figure 6F). Surprisingly, green fluorescence was observed along the entire crop apical surface, which indicated that J-Vip3Aa1 can bind to a receptor in the crop (Figure 6D).

Immunolocalization of J-Vip3Aa1 in crop, midgut, and columnar colon tissue sections. (A) Crop (400× magnification). (B) Midgut (400× magnification). (C) Columnar colon (400× magnification). (D) Crop incubation with J-Vip3Aa1(400× magnification). (E) Midgut incubation with J-Vip3Aa1(400× magnification). (F) Columnar colon incubation with J-Vip3Aa1(400× magnification). AM, apical membrane; L, gut lumen.
3.7 Pore formation activity of Vip3Aa1
As shown in Figure 7, the fluorescence intensity in the crop exhibited no changes. Because BBMVs exhibit an intrinsic permeability to K+, KCl was added to the midgut or columnar colon BBMV mixture at different time points, and an increase in fluorescence intensity was detected in the buffer-treated BBMVs. Valinomycin, as a K+ ionophore, significantly enhanced the permeability to K+ of BBMVs in the midgut and columnar colon. The increase in permeability was notably greater in the presence than in the absence of J-Vip3Aa1, slightly smaller than that obtained with valinomycin in the midgut and greater than that obtained with valinomycin in the columnar colon.

Formation of an ion channel on BBMVs from Periplaneta americana by J-Vip3Aa1. (A) Crop. (B) Midgut. (C) Columnar colon. BBMVs were incubated with buffer, 100 μM valinomycin or 4 μg/ml J-Vip3Aa at 4°C for 30 min, and 6 μl of 1 mM DiS-C3 was then added (5). KCl was added at the times indicated with arrows. Each experiment was repeated three times.
4 Discussion
Vips, a new type of broad-spectrum insecticidal protein whose mechanisms differ from those of Cry1A toxins, might become a new approach for controlling pests. Vips are produced during the vegetative growth phase of Bt and are highly stable. To date, 15 variants of Vip1 proteins, 20 variants of Vip2 proteins and 101 variants of Vip3 proteins have been identified [19]. In this study, a vip3Aa1 gene was amplified from a Bt strain preserved in our laboratory. Based on its sequence and the results of subsequent BLAST searches, the gene was identified as vip3Aa1 (GenBank accession number: JQ228435.1). Vip3Aa1 protein is toxic to many Lepidoptera species, such as Ephestia kuehniella, Prays oleae, Spodoptera frugiperda [20], Helicoverpa armigera [21], Spodoptera litura [22], and Spodoptera exigua [23], but we did not find any reports describing the activity of Vip3Aa1 against P. americana or B. germanica.
Damage to the P. americana midgut and columnar colon epithelium was clearly induced by Vip3Aa1. Previous studies have not observed any damage in the crop, columnar colon, or midgut of non-susceptible insects, but in our study, both HE staining and SEM revealed that Vip3Aa1 caused severe damage to the columnar colon and midgut. Midgut is considered as the most important site for terminal digestion and absorption of nutrition.
The proventriculus of P. americana, which connects the midgut and crop, bears on its inner surface a series of six large, radially arranged chitinous teeth surrounded by a heavy ring of circular muscles. When the circular muscles contract, the six teeth entirely occlude the lumen between the midgut and the crop [24]. We thus speculate that Vip3Aa1 might induce circular muscle contractions, and as result, food and water cannot enter the midgut, resulting in crop expansion. However, the mechanism underlying this phenomenon is unclear.
The mechanism underlying the insecticidal action of Vip3Aa1 protein is unclear. Both Vip3Aa1 and crystal proteins have a similar mode of insecticidal action: (1) the full-length toxin is hydrolyzed into active toxin by midgut proteases; (2) the toxin binds to a specific receptor in midgut cells; (3) pore formation occurs; (4) and the midgut cells burst, causing insect death.
Based on previous studies, Vip3Aa1 proteins need to be hydrolyzed into active proteins by gut-soluble proteases, and unactivated proteins cannot form pores in vitro. However, full-length Vip3Aa1 can be hydrolyzed by both susceptible and non-susceptible insects [25]. In addition, that Vip3Aa1 can be activated into 55-70-kDa toxic peptides by a variety of alkaline proteases, such as trypsin, chymotrypsin, elastase, and thiol protease. Thus, the proteolytic step is not a determining factor for insect specificity but rather serves as an activation step. In our study, the 88-kDa Vip3Aa1 protein was incubated with trypsin, chymotrypsin, or P. americana gut-soluble proteases for different incubation times, as shown in Figure 3. A dominant stable 62-kDa protein is obtained by the action of gut-soluble proteases, trypsin, or chymotrypsin, which is consistent with the published literature. Vip3Aa1 was more sensitive to proteolytic activation by trypsin than to that by chymotrypsin or gutsoluble proteases. The 62-kDa protein was unstable and broke down even before all the pro-toxin was processed [26].
The pore formation activity directly reflects the toxicity of J-Vip3Aa1. To assess the ability of J-Vip3Aa1 to form ion channels on BBMVs from P. americana, the permeability of BBMVs to K+ was examined using the voltage-sensitive cyanine dye DiSC3(5), and we discovered that J-Vip3Aa1 is able to form pores in the midgut and columnar colon but not in the crop. The pore formation activity observed in vitro can likely account for the documented histological changes in the midgut, columnar colon and crop. Because the three-dimensional structure of J-Vip3Aa1 has not yet been resolved, the mechanism through which Vip3Aa1 promotes pore formation remains unclear. Primary sequence divergence and an examination of the predicted secondary structure have indicated that the channels of Vip3Aa1 differ from those of Cry proteins [27]. In future research, the three-dimensional structure of Vip3Aa1 protein will be studied to hopefully clarify its mechanism of insecticidal action.
Most studies have not considered toxin activation to be a determining factor for insect specificity, and the toxicity of Vip3Aa1 protein depends on its ability to bind to specific receptors in the midgut. It remains unknown whether activated Vip3Aa1 protein has an appropriate receptor in the P. americana digestive tract. To test whether J-Vip3Aa1 can bind to the P. americana digestive tract, J-Vip3Aa1 was labeled with FITC. As shown in Figure 7, in contrast to previous studies [28], FITC-J-Vip3Aa1 did not bind to the midgut or columnar colon but bound to the crop, but no damage was observed in the crop. Unlike for Cry proteins, no Vip3Aa1-binding protein has been identified to date, and previous studies have not provided any direct evidence showing that Vip3Aa1 exerts insecticidal activity by binding to receptors. Mi Kyong Lee hypothesized that the pore-forming properties of Vip3Aa1 alone might account for its observed toxicity and did not preclude the possibility that unique binding events might mediate other aspects of Vip3A bioactivity [27]. In Kun Jiang’s study, Vip3Aa1 induced the apoptosis of Sf9 cells through mitochondrial-mediated and caspase-dependent pathways [29]. The study performed by Patricia Hernández Martínez revealed that the exposure of S. exigua larvae to sublethal concentrations of Vip3Ca triggered caspase-dependent pathways and led to apoptotic cell death [30]. We hypothesize that activated Vip3Aa1 does not need to bind to a receptor and can directly damage the midgut and columnar colon.
Vip3Aa1 is mainly activated by trypsin and chymotrypsin, the midgut protease of insects is closely related to the production of resistance. If the hydrolysis activity of trypsin and chymotrypsin is significantly reduced or significantly increased by gene mutation, the Vip3Aa1 will deficient proteolysis or over-hydrolyzed, this will lead to increased resistance of insects to Vip3Aa1[31, 32]. The activities of trypsin and chymotrypsin in the Vip3Aa1-treated groups were significantly increased, and this result was consistent with that reported by Feifei Song [22], who analyzed the transcriptional profile of Spodoptera litura larvae fed Vip3Aa1 and found that most trypsin and chymotrypsin genes were upregulated. Other studies have revealed that increased trypsin and chymotrypsin activities could reduce insect resistance to Cry protein [17, 33].
Glutathione S-transferase is known to be involved in the metabolization of various endogenous compounds, but is also recognized as one of the major mechanisms conferring insecticide resistance in many pests. Biochemical data revealed an induction in Glutathione S-transferase activities confirming the observation previously reported in Spodoptera frugiperda [34].
Glutathione S-transferase and α-NA esterase help protect cockroaches against toxic and foreign substances, but the approaches used by cockroaches to detoxify toxic proteins have not been investigated. In the present study, we found that the activities of glutathione S-transferase and α-NA esterase in the P. americana midgut were increased after the cockroaches fed on Vip3Aa1. Significantly increased midgut α-NA esterase activity has been associated with Bt resistance in some lepidopteran pests [35], and α-NA esterase has the ability to bind to and detoxify Cry1Ac. The detoxification protein glutathione S-transferase was strongly upregulated in Spodoptera exigua after the insect fed on Vip3Aa1 [22].
In conclusion, we demonstrated the novel finding that Vip3Aa1 protein exhibits activity against P. americana and B. germanica. In addition, we found that the mechanism through which Vip3Aa1 kills cockroaches might differ from that through used by the protein to kill lepidopteran insects. Vip3Aa1 protein does not need to bind to receptors and can directly exert its toxic effects, and the Vip3Aa1 toxin was thus found to be effective for the control of cockroaches. These results highlight the usefulness of Vip3Aa1 for cockroach control.
Acknowledgements
This work was supported by the Medical Scientific Research Foundation of Guangdong Province (No. A2017125).
Conflict of interest: Authors state no conflict of interest.
References
[1] Sohn MH, Kim KE. The Cockroach and Allergic Diseases. Allergy Asthma Immun. 2012; 4(5): 264-9.10.4168/aair.2012.4.5.264Search in Google Scholar PubMed PubMed Central
[2] Dingha B, Jackai L, Monteverdi RH, Ibrahim J. Pest Control Practices for the German Cockroach (Blattodea: Blattellidae): A Survey of Rural Residents in North Carolina. Fla Entomol. 2013; 96(3): 1009-15.10.1653/024.096.0339Search in Google Scholar
[3] Donovan WP, Engleman JT, Donovan JC, Baum JA, Bunkers GJ, Chi DJ, et al. Discovery and characterization of Sip1A: A novel secreted protein from Bacillus thuringiensis with activity against coleopteran larvae. Appl Microbiol Biotechnol. 2006; 72(4): 713-9.10.1007/s00253-006-0332-7Search in Google Scholar PubMed
[4] Peña G, Miranda-Rios J, de la Riva G, Pardo-López L, Soberón M, Bravo A. A Bacillus thuringiensis S-layer protein involved in toxicity against Epilachna varivestis (Coleoptera: Coccinellidae). Appl Environ Microb. 2006; 72(1): 353-60.10.1128/AEM.72.1.353-360.2006Search in Google Scholar PubMed PubMed Central
[5] Lone SA, Malik A, Padaria JC. Molecular cloning and characterization of a novel vip 3-type gene from Bacillus thuringiensis and evaluation of its toxicity against Helicoverpa armigera. Microb Pathogenesis. 2017; 114: 464-9.10.1016/j.micpath.2017.12.025Search in Google Scholar PubMed
[6] Chen W, Lu G, Cheng H, Liu C, Xiao Y, Xu C, et al. Transgenic cotton coexpressing Vip3A and Cry1Ac has a broad insecticidal spectrum against lepidopteran pests. J Invertebr Pathol. 2017; 149: 59-65.10.1016/j.jip.2017.08.001Search in Google Scholar PubMed
[7] Sena JA, Hernández Rodríguez CS, Ferré J. Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites. Appl Environ Microb. 2009; 75(7): 2236-7.10.1128/AEM.02342-08Search in Google Scholar PubMed PubMed Central
[8] Jackson RE, Marcus MA, Gould F, Bradley JR, Van Duyn JW. Cross-Resistance Responses of Cry1Ac-Selected Heliothis virescens (Lepidoptera: Noctuidae) to the Bacillus thuringiensis Protein Vip3A. J Econ Entomol. 2007; 100(1):180-6.10.1093/jee/100.1.180Search in Google Scholar
[9] Yi Q, Ying SH, Ying C, Shen ZC, Feng MG. Integration of insecticidal protein Vip3Aa1 into Beauveria bassiana enhances fungal virulence to Spodoptera litura larvae by cuticle and per os infection. Appl Environ Microb. 2010; 76(14): 4611-18.10.1128/AEM.00302-10Search in Google Scholar PubMed PubMed Central
[10] Escudero IR, Banyuls N, Bel Y, Maeztu M, Escriche B, Muñoz D, et al. A screening of five Bacillus thuringiensis, Vip3A proteins for their activity against lepidopteran pests. J Invertebr Pathol. 2014; 117(2): 51-5.10.1016/j.jip.2014.01.006Search in Google Scholar PubMed
[11] Gomis-Cebolla J, Iñigo Ruiz de Escudero, Vera-Velasco NM, Hernández-Martínez P, Hernández-Rodríguez CS, Ceballos T, et al. Insecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein. J Invertebr Pathol. 2017; 142:60-7.10.1016/j.jip.2016.10.001Search in Google Scholar PubMed
[12] Cornfield J, Haskell G. The Probit Method. Science, 1950; 111(2872): 42-3.10.1126/science.111.2872.42.bSearch in Google Scholar
[13] Schreiber AB, Haimovich J. Quantitative fluorometric assay for detection and characterization of Fc receptors. Method Enzymol. 1983; 93(1): 147-155.10.1016/S0076-6879(83)93039-2Search in Google Scholar PubMed
[14] Ahsan A, Salman KA, Alam S, Siddiqui AH, Naeem SS, Ahmad A, et al. Alpha-1 antitrypsin, a diagnostic and prognostic marker of vernal keratoconjunctivitis. J clin diagn res. 2014; 8(5): 08-10.10.7860/JCDR/2014/6342.4362Search in Google Scholar PubMed PubMed Central
[15] Kunieda T, Fujiwara T, Amano T, Shioi Y. Molecular cloning and characterization of a senescence-induced tau-class glutathione S-transferase from barley [Hordeum vulgare] leaves. Plant & Cell Physiol. 2005; 46(9): 1540-1548.10.1093/pcp/pci167Search in Google Scholar PubMed
[16] Karumbaiah L, Oppert B, Jurat-Fuentes JL, Adang, M. Analysis of midgut proteinases from Bacillus thuringiensis-susceptible and -resistant Heliothis virescens (Lepidoptera : Noctuidae). Comp Biochem Phys B. 2007; 146(1): 139-46.10.1016/j.cbpb.2006.10.104Search in Google Scholar PubMed
[17] Lambrechts C, Galzy P. Esterase Activities of Brevihacterium sp. R312 and Brevihacterium linens 62. Biosci Biotech Bioch. 1995; 59(8): 1464-71.10.1271/bbb.59.1464Search in Google Scholar
[18] Abdelkefi-Mesrati L, Boukedi H, Dammak-Karray M, Sellami-Boudawara T, Jaoua S, Tounsi S. Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. J Invertebr Pathol. 2011; 106(2): 250-54.10.1016/j.jip.2010.10.002Search in Google Scholar PubMed
[19] Boukedi H , Khedher SB , Abdelkefi-Mesrat L , Van Rie J, Tounsi S. Comparative analysis of the susceptibility/tolerance of Spodoptera littoralis to Vip3Aa, Vip3Ae, Vip3Ad and Vip3Af toxins of Bacillus thuringiensis. J Invertebr Pathol, 2018; 152: 30-4.10.1016/j.jip.2018.01.006Search in Google Scholar PubMed
[20] Chakroun M, Ferré J. In Vivo and In Vitro Binding of Vip3Aa to Spodoptera frugiperda Midgut and Characterization of Binding Sites by 125I Radiolabeling. Appl Environ Microb. 2014; 80(20): 6258-65.10.1128/AEM.01521-14Search in Google Scholar PubMed PubMed Central
[21] Chakroun M, Banyuls N, Walsh T, Downes S, James B, Ferré J. Characterization of the resistance to Vip3Aa in Helicoverpa armigera from Australia and the role of midgut processing and receptor binding. Sci Rep. 2016; 6: 24311.10.1038/srep24311Search in Google Scholar PubMed PubMed Central
[22] Song F, Chen C, Wu S, Shao E, Li M, Xiong G, et al. Transcriptional profiling analysis of Spodoptera litura larvae challenged with Vip3Aa toxin and possible involvement of trypsin in the toxin activation. Sci Rep. 2016; 6: 23861.10.1038/srep23861Search in Google Scholar PubMed PubMed Central
[23] Bel Y, Jakubowska AK, Costa J, Herrero S, Escriche B. Comprehensive analysis of gene expression profiles of the beet armyworm Spodoptera exigua larvae challenged with Bacillus thuringiensis Vip3Aa toxin. Plos One. 2013; 8(12): e81927.10.1371/journal.pone.0081927Search in Google Scholar PubMed PubMed Central
[24] Davey KG, Treherne JE. Studies on Crop Function in the Cockroach (Periplaneta Americana L.) III. Pressure Changes During Feeding and Crop-Emptying. J Exp Biol. 1964; 41(3): 513.10.1242/jeb.41.3.513Search in Google Scholar
[25] Yub CG, Mullins MA, Warrenb GW, Koziel MG, Estruch JJ. The Bacillus thuringiensis vegetative insecticidal protein vip3a lyses midgut epithelium cells of susceptible insects. Appl Environ Microb. 1997; 63(2): 532-36.10.1128/aem.63.2.532-536.1997Search in Google Scholar PubMed PubMed Central
[26] Abdelkefimesrati L, Rouis S, Sellami S, Jaoua S. Prays oleae midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3LB differs from that of Cry1Ac toxin. Mol Biotechnol. 2009; 43(1): 15-19.10.1007/s12033-009-9178-4Search in Google Scholar PubMed
[27] Lee MK, Walters FS, Hart H, Palekar N, Chen JS. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3Aa differs from that of Cry1Ab delta-endotoxin. Appl Environ Microbiol. 2003; 69(8): 4648–57.10.1128/AEM.69.8.4648-4657.2003Search in Google Scholar PubMed PubMed Central
[28] Boukedi H, Tounsi S, Abdelkefi-Mesrati L. Insecticidal activity, putative binding proteins and histopathological effects of Bacillus thuringiensis Vip3 (459) toxin on the lepidopteran pest Ectomyelois ceratoniae. Acta trop. 2018; 182: 60-3.10.1016/j.actatropica.2018.02.006Search in Google Scholar PubMed
[29] Jiang K, Mei SQ, Wang TT, Pan JH, Chen YH, Cai J. Vip3Aa induces apoptosis in cultured Spodoptera frugiperda (Sf9) cells. Toxicon. 2016; 120: 49-56.10.1016/j.toxicon.2016.07.019Search in Google Scholar PubMed
[30] Hernández-Martínez P, Gomis-Cebolla J, Ferré J, Escriche B. Changes in gene expression and apoptotic response in Spodoptera exigua larvae exposed to sublethal concentrations of Vip3 insecticidal proteins. Sci Rep. 2017; 7(1): 1-12.10.1038/s41598-017-16406-1Search in Google Scholar PubMed PubMed Central
[31] Forcada C, Alcicer E, Garceri MD, Martinze R. Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins. Arch Insect Bioche. 2010; 31(3): 257-72.10.1002/(SICI)1520-6327(1996)31:3<257::AID-ARCH2>3.0.CO;2-VSearch in Google Scholar
[32] Forcada C, Alcacer E, Garcera MD, Tato A, Martinze R. Resistance to bacillus thuringiensis Cry1Ac toxin in three strains of heliothis virescens: proteolytic and SEM study of the larval midgut. Arch Insect Bioche. 2010; 42(1): 51-63.10.1002/(SICI)1520-6327(199909)42:1<51::AID-ARCH6>3.0.CO;2-6Search in Google Scholar
[33] Huang F, Leonard BR, Andow DA. Sugarcane borer (Lepidoptera: Crambidae) resistance to transgenic Bacillus thuringiensis maize. J Econ Entomol. 2007; 100(1): 164-171.10.1603/0022-0493(2007)100[164:SBLCRT]2.0.CO;2Search in Google Scholar
[34] Mohan M, Gujar GT. Characterization and comparison of midgut proteases of Bacillus thuringiensis susceptible and resistant diamondback moth (Plutellidae: Lepidoptera). J Invertebr Pathol. 2003; 82(1): 1-11.10.1016/S0022-2011(02)00194-5Search in Google Scholar
[35] Gunning RV, Dang HT, Kemp FC, Nicholson IC, Moores GD. New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Appl Environ Microb. 2005; 71(5): 2558-63.10.1128/AEM.71.5.2558-2563.2005Search in Google Scholar
© 2020 Wenbin Liu et al. published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 International License.
Articles in the same Issue
- Plant Sciences
- Dependence of the heterosis effect on genetic distance, determined using various molecular markers
- Plant Growth Promoting Rhizobacteria (PGPR) Regulated Phyto and Microbial Beneficial Protein Interactions
- Role of strigolactones: Signalling and crosstalk with other phytohormones
- An efficient protocol for regenerating shoots from paper mulberry (Broussonetia papyrifera) leaf explants
- Functional divergence and adaptive selection of KNOX gene family in plants
- In silico identification of Capsicum type III polyketide synthase genes and expression patterns in Capsicum annuum
- In vitro induction and characterisation of tetraploid drumstick tree (Moringa oleifera Lam.)
- CRISPR/Cas9 or prime editing? – It depends on…
- Study on the optimal antagonistic effect of a bacterial complex against Monilinia fructicola in peach
- Natural variation in stress response induced by low CO2 in Arabidopsis thaliana
- The complete mitogenome sequence of the coral lily (Lilium pumilum) and the Lanzhou lily (Lilium davidii) in China
- Ecology and Environmental Sciences
- Use of phosphatase and dehydrogenase activities in the assessment of calcium peroxide and citric acid effects in soil contaminated with petrol
- Analysis of ethanol dehydration using membrane separation processes
- Activity of Vip3Aa1 against Periplaneta americana
- Thermostable cellulase biosynthesis from Paenibacillus alvei and its utilization in lactic acid production by simultaneous saccharification and fermentation
- Spatiotemporal dynamics of terrestrial invertebrate assemblages in the riparian zone of the Wewe river, Ashanti region, Ghana
- Antifungal activity of selected volatile essential oils against Penicillium sp.
- Toxic effect of three imidazole ionic liquids on two terrestrial plants
- Biosurfactant production by a Bacillus megaterium strain
- Distribution and density of Lutraria rhynchaena Jonas, 1844 relate to sediment while reproduction shows multiple peaks per year in Cat Ba-Ha Long Bay, Vietnam
- Biomedical Sciences
- Treatment of Epilepsy Associated with Common Chromosomal Developmental Diseases
- A Mouse Model for Studying Stem Cell Effects on Regeneration of Hair Follicle Outer Root Sheaths
- Morphine modulates hippocampal neurogenesis and contextual memory extinction via miR-34c/Notch1 pathway in male ICR mice
- Composition, Anticholinesterase and Antipedicular Activities of Satureja capitata L. Volatile Oil
- Weight loss may be unrelated to dietary intake in the imiquimod-induced plaque psoriasis mice model
- Construction of recombinant lentiviral vector containing human stem cell leukemia gene and its expression in interstitial cells of cajal
- Knockdown of lncRNA KCNQ1OT1 inhibits glioma progression by regulating miR-338-3p/RRM2
- Protective effect of asiaticoside on radiation-induced proliferation inhibition and DNA damage of fibroblasts and mice death
- Prevalence of dyslipidemia in Tibetan monks from Gansu Province, Northwest China
- Sevoflurane inhibits proliferation, invasion, but enhances apoptosis of lung cancer cells by Wnt/β-catenin signaling via regulating lncRNA PCAT6/ miR-326 axis
- MiR-542-3p suppresses neuroblastoma cell proliferation and invasion by downregulation of KDM1A and ZNF346
- Calcium Phosphate Cement Causes Nucleus Pulposus Cell Degeneration Through the ERK Signaling Pathway
- Human Dental Pulp Stem Cells Exhibit Osteogenic Differentiation Potential
- MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma
- Long non-coding RNA TUG1 knockdown hinders the tumorigenesis of multiple myeloma by regulating the microRNA-34a-5p/NOTCH1 signaling pathway
- Large Brunner’s gland adenoma of the duodenum for almost 10 years
- Neurotrophin-3 accelerates reendothelialization through inducing EPC mobilization and homing
- Hepatoprotective effects of chamazulene against alcohol-induced liver damage by alleviation of oxidative stress in rat models
- FXYD6 overexpression in HBV-related hepatocellular carcinoma with cirrhosis
- Risk factors for elevated serum colorectal cancer markers in patients with type 2 diabetes mellitus
- Effect of hepatic sympathetic nerve removal on energy metabolism in an animal model of cognitive impairment and its relationship to Glut2 expression
- Progress in research on the role of fibrinogen in lung cancer
- Advanced glycation end product levels were correlated with inflammation and carotid atherosclerosis in type 2 diabetes patients
- MiR-223-3p regulates cell viability, migration, invasion, and apoptosis of non-small cell lung cancer cells by targeting RHOB
- Knockdown of DDX46 inhibits trophoblast cell proliferation and migration through the PI3K/Akt/mTOR signaling pathway in preeclampsia
- Buformin suppresses osteosarcoma via targeting AMPK signaling pathway
- Effect of FibroScan test in antiviral therapy for HBV-infected patients with ALT <2 upper limit of normal
- LncRNA SNHG15 regulates osteosarcoma progression in vitro and in vivo via sponging miR-346 and regulating TRAF4 expression
- LINC00202 promotes retinoblastoma progression by regulating cell proliferation, apoptosis, and aerobic glycolysis through miR-204-5p/HMGCR axis
- Coexisting flavonoids and administration route effect on pharmacokinetics of Puerarin in MCAO rats
- GeneXpert Technology for the diagnosis of HIV-associated tuberculosis: Is scale-up worth it?
- Circ_001569 regulates FLOT2 expression to promote the proliferation, migration, invasion and EMT of osteosarcoma cells through sponging miR-185-5p
- Lnc-PICSAR contributes to cisplatin resistance by miR-485-5p/REV3L axis in cutaneous squamous cell carcinoma
- BRCA1 subcellular localization regulated by PI3K signaling pathway in triple-negative breast cancer MDA-MB-231 cells and hormone-sensitive T47D cells
- MYL6B drives the capabilities of proliferation, invasion, and migration in rectal adenocarcinoma through the EMT process
- Inhibition of lncRNA LINC00461/miR-216a/aquaporin 4 pathway suppresses cell proliferation, migration, invasion, and chemoresistance in glioma
- Upregulation of miR-150-5p alleviates LPS-induced inflammatory response and apoptosis of RAW264.7 macrophages by targeting Notch1
- Long non-coding RNA LINC00704 promotes cell proliferation, migration, and invasion in papillary thyroid carcinoma via miR-204-5p/HMGB1 axis
- Neuroanatomy of melanocortin-4 receptor pathway in the mouse brain
- Lipopolysaccharides promote pulmonary fibrosis in silicosis through the aggravation of apoptosis and inflammation in alveolar macrophages
- Influences of advanced glycosylation end products on the inner blood–retinal barrier in a co-culture cell model in vitro
- MiR-4328 inhibits proliferation, metastasis and induces apoptosis in keloid fibroblasts by targeting BCL2 expression
- Aberrant expression of microRNA-132-3p and microRNA-146a-5p in Parkinson’s disease patients
- Long non-coding RNA SNHG3 accelerates progression in glioma by modulating miR-384/HDGF axis
- Long non-coding RNA NEAT1 mediates MPTP/MPP+-induced apoptosis via regulating the miR-124/KLF4 axis in Parkinson’s disease
- PCR-detectable Candida DNA exists a short period in the blood of systemic candidiasis murine model
- CircHIPK3/miR-381-3p axis modulates proliferation, migration, and glycolysis of lung cancer cells by regulating the AKT/mTOR signaling pathway
- Reversine and herbal Xiang–Sha–Liu–Jun–Zi decoction ameliorate thioacetamide-induced hepatic injury by regulating the RelA/NF-κB/caspase signaling pathway
- Therapeutic effects of coronary granulocyte colony-stimulating factor on rats with chronic ischemic heart disease
- The effects of yam gruel on lowering fasted blood glucose in T2DM rats
- Circ_0084043 promotes cell proliferation and glycolysis but blocks cell apoptosis in melanoma via circ_0084043-miR-31-KLF3 axis
- CircSAMD4A contributes to cell doxorubicin resistance in osteosarcoma by regulating the miR-218-5p/KLF8 axis
- Relationship of FTO gene variations with NAFLD risk in Chinese men
- The prognostic and predictive value of platelet parameters in diabetic and nondiabetic patients with sudden sensorineural hearing loss
- LncRNA SNHG15 contributes to doxorubicin resistance of osteosarcoma cells through targeting the miR-381-3p/GFRA1 axis
- miR-339-3p regulated acute pancreatitis induced by caerulein through targeting TNF receptor-associated factor 3 in AR42J cells
- LncRNA RP1-85F18.6 affects osteoblast cells by regulating the cell cycle
- MiR-203-3p inhibits the oxidative stress, inflammatory responses and apoptosis of mice podocytes induced by high glucose through regulating Sema3A expression
- MiR-30c-5p/ROCK2 axis regulates cell proliferation, apoptosis and EMT via the PI3K/AKT signaling pathway in HG-induced HK-2 cells
- CTRP9 protects against MIA-induced inflammation and knee cartilage damage by deactivating the MAPK/NF-κB pathway in rats with osteoarthritis
- Relationship between hemodynamic parameters and portal venous pressure in cirrhosis patients with portal hypertension
- Long noncoding RNA FTX ameliorates hydrogen peroxide-induced cardiomyocyte injury by regulating the miR-150/KLF13 axis
- Ropivacaine inhibits proliferation, migration, and invasion while inducing apoptosis of glioma cells by regulating the SNHG16/miR-424-5p axis
- CD11b is involved in coxsackievirus B3-induced viral myocarditis in mice by inducing Th17 cells
- Decitabine shows anti-acute myeloid leukemia potential via regulating the miR-212-5p/CCNT2 axis
- Testosterone aggravates cerebral vascular injury by reducing plasma HDL levels
- Bioengineering and Biotechnology
- PL/Vancomycin/Nano-hydroxyapatite Sustained-release Material to Treat Infectious Bone Defect
- The thickness of surface grafting layer on bio-materials directly mediates the immuno-reacitivity of macrophages in vitro
- Silver nanoparticles: synthesis, characterisation and biomedical applications
- Food Science
- Bread making potential of Triticum aestivum and Triticum spelta species
- Modeling the effect of heat treatment on fatty acid composition in home-made olive oil preparations
- Effect of addition of dried potato pulp on selected quality characteristics of shortcrust pastry cookies
- Preparation of konjac oligoglucomannans with different molecular weights and their in vitro and in vivo antioxidant activities
- Animal Sciences
- Changes in the fecal microbiome of the Yangtze finless porpoise during a short-term therapeutic treatment
- Agriculture
- Influence of inoculation with Lactobacillus on fermentation, production of 1,2-propanediol and 1-propanol as well as Maize silage aerobic stability
- Application of extrusion-cooking technology in hatchery waste management
- In-field screening for host plant resistance to Delia radicum and Brevicoryne brassicae within selected rapeseed cultivars and new interspecific hybrids
- Studying of the promotion mechanism of Bacillus subtilis QM3 on wheat seed germination based on β-amylase
- Rapid visual detection of FecB gene expression in sheep
- Effects of Bacillus megaterium on growth performance, serum biochemical parameters, antioxidant capacity, and immune function in suckling calves
- Effects of center pivot sprinkler fertigation on the yield of continuously cropped soybean
- Special Issue On New Approach To Obtain Bioactive Compounds And New Metabolites From Agro-Industrial By-Products
- Technological and antioxidant properties of proteins obtained from waste potato juice
- The aspects of microbial biomass use in the utilization of selected waste from the agro-food industry
- Special Issue on Computing and Artificial Techniques for Life Science Applications - Part I
- Automatic detection and segmentation of adenomatous colorectal polyps during colonoscopy using Mask R-CNN
- The impedance analysis of small intestine fusion by pulse source
- Errata
- Erratum to “Diagnostic performance of serum CK-MB, TNF-α and hs-CRP in children with viral myocarditis”
- Erratum to “MYL6B drives the capabilities of proliferation, invasion, and migration in rectal adenocarcinoma through the EMT process”
- Erratum to “Thermostable cellulase biosynthesis from Paenibacillus alvei and its utilization in lactic acid production by simultaneous saccharification and fermentation”
Articles in the same Issue
- Plant Sciences
- Dependence of the heterosis effect on genetic distance, determined using various molecular markers
- Plant Growth Promoting Rhizobacteria (PGPR) Regulated Phyto and Microbial Beneficial Protein Interactions
- Role of strigolactones: Signalling and crosstalk with other phytohormones
- An efficient protocol for regenerating shoots from paper mulberry (Broussonetia papyrifera) leaf explants
- Functional divergence and adaptive selection of KNOX gene family in plants
- In silico identification of Capsicum type III polyketide synthase genes and expression patterns in Capsicum annuum
- In vitro induction and characterisation of tetraploid drumstick tree (Moringa oleifera Lam.)
- CRISPR/Cas9 or prime editing? – It depends on…
- Study on the optimal antagonistic effect of a bacterial complex against Monilinia fructicola in peach
- Natural variation in stress response induced by low CO2 in Arabidopsis thaliana
- The complete mitogenome sequence of the coral lily (Lilium pumilum) and the Lanzhou lily (Lilium davidii) in China
- Ecology and Environmental Sciences
- Use of phosphatase and dehydrogenase activities in the assessment of calcium peroxide and citric acid effects in soil contaminated with petrol
- Analysis of ethanol dehydration using membrane separation processes
- Activity of Vip3Aa1 against Periplaneta americana
- Thermostable cellulase biosynthesis from Paenibacillus alvei and its utilization in lactic acid production by simultaneous saccharification and fermentation
- Spatiotemporal dynamics of terrestrial invertebrate assemblages in the riparian zone of the Wewe river, Ashanti region, Ghana
- Antifungal activity of selected volatile essential oils against Penicillium sp.
- Toxic effect of three imidazole ionic liquids on two terrestrial plants
- Biosurfactant production by a Bacillus megaterium strain
- Distribution and density of Lutraria rhynchaena Jonas, 1844 relate to sediment while reproduction shows multiple peaks per year in Cat Ba-Ha Long Bay, Vietnam
- Biomedical Sciences
- Treatment of Epilepsy Associated with Common Chromosomal Developmental Diseases
- A Mouse Model for Studying Stem Cell Effects on Regeneration of Hair Follicle Outer Root Sheaths
- Morphine modulates hippocampal neurogenesis and contextual memory extinction via miR-34c/Notch1 pathway in male ICR mice
- Composition, Anticholinesterase and Antipedicular Activities of Satureja capitata L. Volatile Oil
- Weight loss may be unrelated to dietary intake in the imiquimod-induced plaque psoriasis mice model
- Construction of recombinant lentiviral vector containing human stem cell leukemia gene and its expression in interstitial cells of cajal
- Knockdown of lncRNA KCNQ1OT1 inhibits glioma progression by regulating miR-338-3p/RRM2
- Protective effect of asiaticoside on radiation-induced proliferation inhibition and DNA damage of fibroblasts and mice death
- Prevalence of dyslipidemia in Tibetan monks from Gansu Province, Northwest China
- Sevoflurane inhibits proliferation, invasion, but enhances apoptosis of lung cancer cells by Wnt/β-catenin signaling via regulating lncRNA PCAT6/ miR-326 axis
- MiR-542-3p suppresses neuroblastoma cell proliferation and invasion by downregulation of KDM1A and ZNF346
- Calcium Phosphate Cement Causes Nucleus Pulposus Cell Degeneration Through the ERK Signaling Pathway
- Human Dental Pulp Stem Cells Exhibit Osteogenic Differentiation Potential
- MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma
- Long non-coding RNA TUG1 knockdown hinders the tumorigenesis of multiple myeloma by regulating the microRNA-34a-5p/NOTCH1 signaling pathway
- Large Brunner’s gland adenoma of the duodenum for almost 10 years
- Neurotrophin-3 accelerates reendothelialization through inducing EPC mobilization and homing
- Hepatoprotective effects of chamazulene against alcohol-induced liver damage by alleviation of oxidative stress in rat models
- FXYD6 overexpression in HBV-related hepatocellular carcinoma with cirrhosis
- Risk factors for elevated serum colorectal cancer markers in patients with type 2 diabetes mellitus
- Effect of hepatic sympathetic nerve removal on energy metabolism in an animal model of cognitive impairment and its relationship to Glut2 expression
- Progress in research on the role of fibrinogen in lung cancer
- Advanced glycation end product levels were correlated with inflammation and carotid atherosclerosis in type 2 diabetes patients
- MiR-223-3p regulates cell viability, migration, invasion, and apoptosis of non-small cell lung cancer cells by targeting RHOB
- Knockdown of DDX46 inhibits trophoblast cell proliferation and migration through the PI3K/Akt/mTOR signaling pathway in preeclampsia
- Buformin suppresses osteosarcoma via targeting AMPK signaling pathway
- Effect of FibroScan test in antiviral therapy for HBV-infected patients with ALT <2 upper limit of normal
- LncRNA SNHG15 regulates osteosarcoma progression in vitro and in vivo via sponging miR-346 and regulating TRAF4 expression
- LINC00202 promotes retinoblastoma progression by regulating cell proliferation, apoptosis, and aerobic glycolysis through miR-204-5p/HMGCR axis
- Coexisting flavonoids and administration route effect on pharmacokinetics of Puerarin in MCAO rats
- GeneXpert Technology for the diagnosis of HIV-associated tuberculosis: Is scale-up worth it?
- Circ_001569 regulates FLOT2 expression to promote the proliferation, migration, invasion and EMT of osteosarcoma cells through sponging miR-185-5p
- Lnc-PICSAR contributes to cisplatin resistance by miR-485-5p/REV3L axis in cutaneous squamous cell carcinoma
- BRCA1 subcellular localization regulated by PI3K signaling pathway in triple-negative breast cancer MDA-MB-231 cells and hormone-sensitive T47D cells
- MYL6B drives the capabilities of proliferation, invasion, and migration in rectal adenocarcinoma through the EMT process
- Inhibition of lncRNA LINC00461/miR-216a/aquaporin 4 pathway suppresses cell proliferation, migration, invasion, and chemoresistance in glioma
- Upregulation of miR-150-5p alleviates LPS-induced inflammatory response and apoptosis of RAW264.7 macrophages by targeting Notch1
- Long non-coding RNA LINC00704 promotes cell proliferation, migration, and invasion in papillary thyroid carcinoma via miR-204-5p/HMGB1 axis
- Neuroanatomy of melanocortin-4 receptor pathway in the mouse brain
- Lipopolysaccharides promote pulmonary fibrosis in silicosis through the aggravation of apoptosis and inflammation in alveolar macrophages
- Influences of advanced glycosylation end products on the inner blood–retinal barrier in a co-culture cell model in vitro
- MiR-4328 inhibits proliferation, metastasis and induces apoptosis in keloid fibroblasts by targeting BCL2 expression
- Aberrant expression of microRNA-132-3p and microRNA-146a-5p in Parkinson’s disease patients
- Long non-coding RNA SNHG3 accelerates progression in glioma by modulating miR-384/HDGF axis
- Long non-coding RNA NEAT1 mediates MPTP/MPP+-induced apoptosis via regulating the miR-124/KLF4 axis in Parkinson’s disease
- PCR-detectable Candida DNA exists a short period in the blood of systemic candidiasis murine model
- CircHIPK3/miR-381-3p axis modulates proliferation, migration, and glycolysis of lung cancer cells by regulating the AKT/mTOR signaling pathway
- Reversine and herbal Xiang–Sha–Liu–Jun–Zi decoction ameliorate thioacetamide-induced hepatic injury by regulating the RelA/NF-κB/caspase signaling pathway
- Therapeutic effects of coronary granulocyte colony-stimulating factor on rats with chronic ischemic heart disease
- The effects of yam gruel on lowering fasted blood glucose in T2DM rats
- Circ_0084043 promotes cell proliferation and glycolysis but blocks cell apoptosis in melanoma via circ_0084043-miR-31-KLF3 axis
- CircSAMD4A contributes to cell doxorubicin resistance in osteosarcoma by regulating the miR-218-5p/KLF8 axis
- Relationship of FTO gene variations with NAFLD risk in Chinese men
- The prognostic and predictive value of platelet parameters in diabetic and nondiabetic patients with sudden sensorineural hearing loss
- LncRNA SNHG15 contributes to doxorubicin resistance of osteosarcoma cells through targeting the miR-381-3p/GFRA1 axis
- miR-339-3p regulated acute pancreatitis induced by caerulein through targeting TNF receptor-associated factor 3 in AR42J cells
- LncRNA RP1-85F18.6 affects osteoblast cells by regulating the cell cycle
- MiR-203-3p inhibits the oxidative stress, inflammatory responses and apoptosis of mice podocytes induced by high glucose through regulating Sema3A expression
- MiR-30c-5p/ROCK2 axis regulates cell proliferation, apoptosis and EMT via the PI3K/AKT signaling pathway in HG-induced HK-2 cells
- CTRP9 protects against MIA-induced inflammation and knee cartilage damage by deactivating the MAPK/NF-κB pathway in rats with osteoarthritis
- Relationship between hemodynamic parameters and portal venous pressure in cirrhosis patients with portal hypertension
- Long noncoding RNA FTX ameliorates hydrogen peroxide-induced cardiomyocyte injury by regulating the miR-150/KLF13 axis
- Ropivacaine inhibits proliferation, migration, and invasion while inducing apoptosis of glioma cells by regulating the SNHG16/miR-424-5p axis
- CD11b is involved in coxsackievirus B3-induced viral myocarditis in mice by inducing Th17 cells
- Decitabine shows anti-acute myeloid leukemia potential via regulating the miR-212-5p/CCNT2 axis
- Testosterone aggravates cerebral vascular injury by reducing plasma HDL levels
- Bioengineering and Biotechnology
- PL/Vancomycin/Nano-hydroxyapatite Sustained-release Material to Treat Infectious Bone Defect
- The thickness of surface grafting layer on bio-materials directly mediates the immuno-reacitivity of macrophages in vitro
- Silver nanoparticles: synthesis, characterisation and biomedical applications
- Food Science
- Bread making potential of Triticum aestivum and Triticum spelta species
- Modeling the effect of heat treatment on fatty acid composition in home-made olive oil preparations
- Effect of addition of dried potato pulp on selected quality characteristics of shortcrust pastry cookies
- Preparation of konjac oligoglucomannans with different molecular weights and their in vitro and in vivo antioxidant activities
- Animal Sciences
- Changes in the fecal microbiome of the Yangtze finless porpoise during a short-term therapeutic treatment
- Agriculture
- Influence of inoculation with Lactobacillus on fermentation, production of 1,2-propanediol and 1-propanol as well as Maize silage aerobic stability
- Application of extrusion-cooking technology in hatchery waste management
- In-field screening for host plant resistance to Delia radicum and Brevicoryne brassicae within selected rapeseed cultivars and new interspecific hybrids
- Studying of the promotion mechanism of Bacillus subtilis QM3 on wheat seed germination based on β-amylase
- Rapid visual detection of FecB gene expression in sheep
- Effects of Bacillus megaterium on growth performance, serum biochemical parameters, antioxidant capacity, and immune function in suckling calves
- Effects of center pivot sprinkler fertigation on the yield of continuously cropped soybean
- Special Issue On New Approach To Obtain Bioactive Compounds And New Metabolites From Agro-Industrial By-Products
- Technological and antioxidant properties of proteins obtained from waste potato juice
- The aspects of microbial biomass use in the utilization of selected waste from the agro-food industry
- Special Issue on Computing and Artificial Techniques for Life Science Applications - Part I
- Automatic detection and segmentation of adenomatous colorectal polyps during colonoscopy using Mask R-CNN
- The impedance analysis of small intestine fusion by pulse source
- Errata
- Erratum to “Diagnostic performance of serum CK-MB, TNF-α and hs-CRP in children with viral myocarditis”
- Erratum to “MYL6B drives the capabilities of proliferation, invasion, and migration in rectal adenocarcinoma through the EMT process”
- Erratum to “Thermostable cellulase biosynthesis from Paenibacillus alvei and its utilization in lactic acid production by simultaneous saccharification and fermentation”