Home Physical Sciences Microchannel filter for air purification
Article Open Access

Microchannel filter for air purification

  • Jonathan Rodriguez Andrade , Ernst Kussul EMAIL logo and Tetyana Baydyk
Published/Copyright: June 24, 2020

Abstract

In this study, we propose a new design for a microchannel filter. The closed indoor environments with which we interact daily are sources of diseases for the respiratory system of human beings. Recommendations for the design of microchannel filters for indoor air purification are proposed, implementing low-cost microequipment technology (MET) for the manufacture of the elements that constitute a microfiltration system. For the microchannel filter production, we proposed to use MET, which is a miniaturization technology and can reduce manufacturing costs. The microchannel filter was 3.75 cm in radius with a thickness of 3 mm. It had a triangular profile and a helical trajectory. It was designed, manufactured, and tested for two profile dimensions. The main purpose was to reduce the pressure drop of the air flow through the filter. We described the air flow simulation for the microchannel filter using SolidWorks. A prototype microchannel filter was constructed, which underwent manufacturing tests. It is possible to clean the microchannel using water flow, which allows us to maintain the filtration quality within an optimum range of contaminant removal.

1 Introduction

In large cities, it is necessary to clean the air to avoid health problems. Every year, air pollution has been increasing worldwide. The population increase, the growth of cities, urbanization, industrial development, transportation, and the consumption of energy resources cause pollution. The restoration of the atmosphere in such spaces to its original conditions does not occur naturally.

The air quality directly affects human health because the respiratory system is unable to process the polluting particles that float in the polluted air. Therefore, it is very important to act on this subject. The city’s population, according to the studies carried out worldwide, spends about 80% of their time in enclosed spaces. In these spaces, the concentration of pollutants in the air can be up to 20 times higher than in outdoor spaces. Therefore, it is important to clean the indoor air [1,2,3,4,5].

We propose to develop air filters manufactured with the microequipment technology (MET) [6]. These filters can clean the air in enclosed spaces, providing a safeguard for citizens’ health.

The filters available in the current market are costly; their manufacturing cost makes it practically impossible to implement them in offices, homes, schools, common areas of hospitals, and public transport.

MET can use most of the available materials [6]. The amount of material used to make microcomponents is less than that used by larger machines. The energy for manufacturing is also lower because micromotors consume small amounts of energy, and the necessary torque for their operation is much smaller. We have proposed and previously used MET for the development of the minifilters and microfilters.

Health services recognize that the environment plays an important role in the development of respiratory diseases. The US Environmental Protection Agency (EPA) is in charge of regulating the air quality in closed and open spaces [7,8]. According to the EPA, the levels of pollutants indoor could be 100 times higher than those outdoor. Volatile organic compounds (VOCs) are organic chemicals in the air. In the respiratory system, for example, the pollutants and VOCs to be studied specifically are cigarette smoke, radon, carbon monoxide, nitrogen dioxide, formaldehyde, cleaning agents, animal waste, and dust mites [3]. VOCs are also biologically generated [1]. Many health problems are caused because of poor indoor air quality; usually, these health problems are not recognized without the adequate tools until several years have passed [2,9]. Another interior microenvironment where human beings spend most of their time is car cabin; according to the studies conducted by Zhang et al. in new cars in China [10], the amount of VOCs is higher than that established by the Chinese National Quality Standard of Air in Interiors. According to the studies carried out by Mukund et al. [11], the levels of VOCs in the air inside automobiles can be up to eight times higher than that in the vicinity of the monitored space, representing an important health problem. During certain activities, indoor levels of VOCs may reach 1,000 times that that of the outside air. Respiratory, allergic, or immune effects in infants or children are associated with man-made VOCs and other indoor or outdoor air pollutants [4]. VOCs contribute to the formation of the tropospheric ozone and smog [5,7,8]. Secondhand smoke is a public health problem. In 2006, the term “involuntary smoke” emerged because nonsmokers do not want to breathe tobacco smoke [12]. The smoke tends to remain inside closed spaces for 1.5–2 h.

Exposure to radon is considered the second cause of lung cancer after the consumption of tobacco. Therefore, it is necessary to know the burden of disease due to radon exposure. In Galicia, Spain, a study was carried out on the effect of radon on the development of cancer in the local population [13].

Carbon monoxide poisoning is one of the leading causes of death worldwide. In the United States, several cases of death from carbon monoxide poisoning are reported, particularly in adverse situations, such as after a hurricane or flood, when electric energy generators based on hydrocarbons are used in interior spaces without adequate precautionary measures. This is because a ventilation system is required to evacuate the emissions of combustion to ensure good quality air inside the house [14].

Nitrogen dioxide (NO2) is one of the air pollutants produced during combustion where nitrogen is oxidized. In exterior areas, the main sources of NO2 are the emissions from automobiles. At home, all devices that work with fuels based on hydrocarbons such as heaters, ovens, and stoves produce NO2.

Formaldehyde is an air pollutant commonly found in buildings that use wood, especially for the resins used for their bonding. It is also found in plastics, textiles, carpets, furniture, pesticides, paints, glues, and cleaning products. To perform daily cleaning, chemical products are commonly used; however, many of them contain harmful substances that impair air quality.

Molds that are developed easily on trees and leaves on the outside of homes can be taken to closed environments inside homes, schools, or business centers with relative ease, where it represents a danger to the health of the lungs. Approximately, 100 molds have been identified as potentially harmful to human health, and only a few are commonly found in indoor environments [15]. Mold can affect the respiratory tract. A study reveals that about 21% of asthma cases are due to excessive exposure to mold.

New tools, printers, and computer equipment started filling offices, and the number of staff inside offices also increased dramatically along with the hours of work. It is believed that these changes resulted in a higher concentration of air pollutants inside buildings [16]. The concentration of pollutants in buildings depends mainly on the circulation of air. To achieve displacement of the air, ventilation systems are used. The cost and the noise produced by ventilation systems are the two negative aspects of the implementation of this solution. To solve the problem of the energy used, the implementation of renewable energy, passive filters, and maintenance is proposed [17]. Passive filters such as the proposed microfilters can control the levels of contaminants in closed spaces, proving to be a benefit for the health of large city inhabitants. Therefore, it is important to emphasize the relevance of this topic for the society because our health and the health of future generations are being considered. It is important to analyze the environments where people spend more time, such as offices, schools, and homes. Furthermore, it is important to consider the different factors such as ventilation, air conditioning systems, the renewal of the air, cleaning products used, pet excrements, the design of the building, and external contaminants [9].

This article is structured as follows: Section 2 describes the methods of air purification for interiors. Section 3 presents the design of the microchannel filter and its manufacturing process. Section 4 presents the theoretical analysis of pressure drop in the filter. Section 5 summarizes results and discussion. Section 6 describes the MET. Section 7 presents new proposals. Section 8 concludes this article.

2 Air purification of interior

Air pollutants in enclosed spaces are generated from both exterior and interior sources. Inside, they are generated by smoking, burning wood in fireplaces, stoves, water heaters, enamels, aerosols, and pet animal wastes. Outside, they are generated by the emissions caused by the traffic of internal combustion engines of vehicles, industrial waste in communities near factories, natural disasters such as floods and fires, etc. [18]. Most air filtration processes are based on sorption, which is the retention of one substance by another when in contact. The different sorption filtration mechanisms are described in this article.

Sorption filtration removes contaminating gases from indoor air using solid absorbers. It is the most commonly used technology. Most commercial products are based on this technology. The effectiveness of cleaners is based on adsorption technology, which depends on the properties and the amount of sorbents, the packing density of the sorbent layer, the speed and air flow through the sorbent media, the properties of the VOCs, and the conditions of the environment such as humidity and temperature. Depending on the requirements of application, adsorbents such as activated carbon, zeolite, and alumina activated with various packing densities can be used as filtration media. Sorption filters are found in most commercial automobiles to purify air in the passenger cabin. The service life of these filters is determined by the adsorption capacity of the filter element. New sorption technologies involve a desorption stage to clean the filter element and to increase the life of the filtration system [19].

Ultraviolet photocatalytic oxidation sorption removes gaseous pollutants by chemical reactions on the catalytic surface of a semiconductor under UV irradiation. The resulting hydroxyl radicals are a highly reactive species that can oxidize VOCs adsorbed to the surface of catalysts [20].

Currently, the most widely used photocatalyst for purification is TiO2. Depending on the type and the level of concentration of the treated pollutants, the generation of harmful intermediate products and derivatives should be considered [20,21].

Air ionizers create charged air molecules under the application of a power source. The recent developments of an air ionization process control with devices that use dielectric barrier discharge to generate nonthermal plasmas have resulted in applications to clean indoor environments [22]. VOCs are eliminated by a complex series of oxidation reactions with CO2 and water products. The efficiency in the destruction of VOCs depends on the ion density, the treatment time, and the chemical structure of the VOCs [23]. The most widely used method for the generation of ions in the air is by thermal plasma reactors [24]. Ozone is a powerful oxidant. Theoretically, it can react with several VOCs found indoors. VOCs that react with ozone fast enough can produce other pollutants, aldehydes, and organic aerosols [25].

Botanical cleaning of air removes pollutants from the air in indoor environments through plants and their soils through biological processes. It is the newest technology among those presented in this work. It is novel and is currently not available in the North American market. The results obtained show that botanical cleaning can significantly reduce formaldehydes and VOCs under controlled conditions [26,27,28]. The botanical air purifier works through on–off cycles because it requires a lapse of biodegradation to continue working [29]. Therefore, the characterization of the system determines the characteristics of the operation cycle.

3 Microchannel filter manufacturing

Microchannel filters can be manufactured with the laser cutting technology or using MET for large-scale production [6,30,31,32]. We describe MET in Section 6.

A laser cutting technique is shown in Figure 1 [33].

Figure 1 
               Laser cutting technique [33].
Figure 1

Laser cutting technique [33].

For the manufacture of the microchannel filter support, X-660 laser cutting machine from Universal Laser Systems was used. The specifications indicate that for a depth of 0.25, it is possible to work at 1,000 ppi at a speed of 0.1 s per step [33].

To make the cuts, it is necessary to work with files with DWX or DWF extension of AutoCAD. Most cutting equipment work with these types of files.

There is an interesting approach for manufacturing parts with the 3D-printing process [34]. Recycling metallic powders used in the additive manufacturing process is essential for reducing the process cost, manufacturing time, energy consumption, and metallic waste.

3.1 Design of microchannel support base

The microchannel filter works through the principle of sorption. The air (fluid in gas phase) or water (fluid in liquid phase) passes through the filter. Therefore, we developed a two-phase filter. Sorption is carried out by water. Later, the solid particles are separated by decantation. VOCs suspended in the air can be accumulated and used as a raw material to make fuels.

The general characteristics of the microchannel filter are described in this article (Figure 2).

Figure 2 
                  Two variants of acrylic microchannel support base (mm): (a) with five holes; (b) with nine holes.
Figure 2

Two variants of acrylic microchannel support base (mm): (a) with five holes; (b) with nine holes.

The manufacturing material is the acrylic glass that allows the observation of air and water flow with the naked eye.

We used standard screws of an eighth inch and a sixteenth to form the microchannel between the screw and the walls of the device (Figure 3).

Figure 3 
                  Microchannel filter assembly: (a) initial base; (b) the first screw installation.
Figure 3

Microchannel filter assembly: (a) initial base; (b) the first screw installation.

The control volume through which fluids and particles pass through is obtained from the empty space between the screw and the support (Figure 4). The microchannel is obtained as the counterpart of the elements that comprise it, as shown in Figure 5 (cross section of the microchannel).

Figure 4 
                  Commercial screw M4 used for the microchannel structure: (a) the screw; (b) the microchannel structure.
Figure 4

Commercial screw M4 used for the microchannel structure: (a) the screw; (b) the microchannel structure.

Figure 5 
                  Cross-sectional cut of the microchannel.
Figure 5

Cross-sectional cut of the microchannel.

The cross section of the microchannel is 0.16 mm2, with a perimeter of 1.84 mm. The length of the sides is 0.61, 0.62, and 0.62 mm. These two sides are formed by the screw cord and by the acrylic support. Two thirds of the surface of the microchannel is made of steel and one third is made of acrylic. The commercial stainless steel presents good permeability [35]. However, acrylic has greater water absorption (approximately 0.3%) [36]. The instruments for flow measurement made with steel and acrylic have a water absorption percentage of 0.35%.

An isometric cross-sectional view allows us to better understand the design of the microchannel, where it can be seen that the contact surface is maximized because of the pitch of the M4 roll cord (0.8) [37].

To calculate the effective area of the filter, we used 0.16 mm2 multiplied by five, and in this case, 0.8 mm2 (Figure 6).

Figure 6 
                  Cross section of the microchannel.
Figure 6

Cross section of the microchannel.

3.2 Microchannel filter-based cell

To construct microchannel filter arrangements with adaptive geometry, the basic design of the fundamental unit of the filter is isolated. This is obtained by optimizing the materials, and a support material and a standard screw are required, as shown in Figure 7.

Figure 7 
                  Microchannel filter cell.
Figure 7

Microchannel filter cell.

3.3 Microchannel filter matrix

The microchannel cells are arranged to construct a filter in geometries necessary to cover the air intake area in closed-air intake systems (Figure 8).

Figure 8 
                  Microchannel filter matrix.
Figure 8

Microchannel filter matrix.

The microfilter design depends on the type of particles to be separated from the air, the maximum tolerable pressure drop in the microchannel flow, the filter life, the cost of filter manufacturing, the amount of energy and the material used for its fabrication, operating conditions, and resistance to corrosion [36].

3.4 Microchannel filter prototype

The following proposal was developed after evaluating each one of the aforementioned characteristics. In Figure 9, we present the microfilter prototype and describe it in the following sections.

Figure 9 
                  Microchannel filter.
Figure 9

Microchannel filter.

The prototype was fabricated with material that can be easily acquired commercially. Therefore, its manufacturing cost in upscaling can be reduced.

The support or the filter base was fabricated from a crystal acrylic cell (colorless) on which the structure of the microchannel was subsequently placed. In this case, during filter functional tests, the operation can be observed with the naked eye. The fluid crossing the canal can be observed because of the acrylic material, which has duly verified specification sheets and is available in the local market. Its use is growing because of its cost-to-benefit ratio, low manufacturing cost, and excellent physical properties.

Plexiglas acrylic sheets are widely marketed in Mexico and are properly characterized. Its physical and mechanical specifications have been documented. This brand of acrylic was selected for manufacturing the first generation of the prototype. The properties of the material may vary due to thickness.

The properties of a sheet with a thickness of 0.236 inch (0.59944 cm) [36] of commercial acrylic brand Plexiglas are summarized in Table 1.

Table 1

Plexiglas properties (%)

Property Method Plexiglas G Plexiglas MC
Water absorption D570
Weight lost in drying 0.1 0.1
Weight gained in immersion 0.2 0.3
Lost water soluble 0.0 0.0
Water absorption 0.2 0.3
Change of dimensions in immersion 0.0 0.0
Water absorption (weight gained) after immersion D229 D570
1 day 0.2
2 days 0.3
7 days 0.4
28 days 0.8
56 days 1.1
84 days 1.3

It is necessary to consider the water absorption of acrylic because it can be observed from Table 1 that the prolonged exposure to an aqueous medium changes the percentage of water absorbed by the material. It is necessary to consider this because the absorption properties affect the performance of the filter during its life.

Taking the aforementioned factors into consideration, it was decided to use 0.236 inch plexiglass. The main advantages of this material were its mechanical properties, the wide available documentation, the standardization of its manufacturing processes, and the quality control.

The laser engraving technology presents an important area in microchannel manufacturing because it can significantly reduce the manufacturing time of the filter. Current equipment can fabricate channels up to 50 µm [33,36] and can use various materials from glass to polycarbonate. It is possible to make channels with complex geometries in three dimensions with clean cuts. The roughness resulting from the cut is much lower than that obtained by other manufacturing processes. Therefore, for the prototype working scale proposed at this project stage, the precision of the equipment is enough.

Integrating laser technology into MET equipment could lead to a whole new area of opportunities for the manufacture of sorption filters by computer numerical control (CNC) methods.

At the mesoscale, a precision of 0.1 mm is relatively necessary. At the microscale, a tolerance close to 0.1 µm is required to achieve good results.

To determine the tolerance of this component, it is necessary to establish the assembly points with the different components of the device. The support has an acrylic tube on the outside, in the internal part the support has the five holes of ¼ inch (0.635 cm).

3.5 Tolerance analysis between the support and the acrylic tube

In the assembly, the base dimension of the acrylic tube must be considered as the base dimension overall. The placement of the support inside the tube will depend on the precision with which the acrylic tube is manufactured. For fine adjustment, an epoxy adhesive is used. The thinness of the adhesive film compensates for the dimensional difference between the tube and the support. The acrylic tube of 2 inch outside diameter has a tolerance of ±0.015 inch. The support is manufactured considering the positive tolerance of the inside diameter of the tube, and in this case, 1¾ + 0.015 inch [38].

3.6 Tolerance analysis of the structural support base

The base tolerance is provided by the specifications of the ¼ inch screw, which indicates the following characteristics [37].

The structure of the filter channel is formed by taking advantage of the screw cord of a ¼ inch screw, with the limitation of working only with screws under manufacturing standards.

A series of configurations of the screws are fabricated for a wide variety of applications, such as the screw head and the type of thread. For the application to a microchannel structure, the captive screw is of particular interest because this screw type is without a head, which allows the passage of air without obstruction (Figure 10) [37].

Figure 10 
                  Socket set screw [37].
Figure 10

Socket set screw [37].

The type of the rope and the material of the screw are considered for the selection of the screw characteristics to be used and the thickness of the support.

Because the support has a thickness of 6 mm, the commercial screw length closest to this value was selected.

Regular thread was selected to work with the lowest possible pressure drop. Because a fine thread has a greater number of turns per inch, as presented in Table 2, where the first column indicates the product key; the second describes the diameter, the number of turns of string per inch, and the length of the screw; the third describes the price, and finally, the last column indicates the quantity of pieces per package (Table 2).

Table 2

Commercial screw characteristics and prices

Code Description Price E
XAOS06006 1/4–20 × 1/4 $2.08 100
XAOS06009 1/4–20 × 3/8 $2.55 100
XAOS06013 1/4–20 × 1/2 $3.32 100
XAOS06016 1/4–20 × 5/8 $4.63 50
XAOS06019 1/4–20 × 3/4 $5.10 50
XAOS06025 1/4–20 × 1″ $8.04 50
XAOS06038 1/4–20 × 1.1/2 $11.16 50
XAOS06051 1/4–20 × 2″ $11.73 50

The screws have an error of ±0.01%. Starting from this margin of error, we determine the tolerance of the holes that will contain each of the screws. If we add 0.01% to the dimension of the screw, we can obtain the maximum value of the diameter of the hole, i.e., 0.254 + 0.00254 inch. The sum of this is 0.25654 inch. For the minimum value, we will have to subtract 0.00254 inch from 0.254 inch, and the result is 0.25146 inch. The dimension that ensures the assembly is the minimum. Therefore, the hole must be of 0.25146 inch with a tolerance of 1%. The adjustment of the screw is carried out by means of sanding of the material.

For the assembly when using the established tolerances, three cases are presented, which are as follows:

First case: The screw does not easily enter the hole and is adjusted by sanding.

Second case: The screw just enters, and it is not necessary to perform an additional procedure.

Third case: The screw does not enter, and the force assembly is performed, where a certain amount of material is removed from the screw as it moves through the hole. Figure 11 shows the assembly of the microchannel filter elements.

Figure 11 
                  Microchannel filter assembly: (a) the view of filter base; (b) the filter design; (c) profile of filter; (d) filter prototype.
Figure 11

Microchannel filter assembly: (a) the view of filter base; (b) the filter design; (c) profile of filter; (d) filter prototype.

The microchannel filter assembly serves to verify the manufacturing tolerance of each of the parts that make up the filter (Figure 12).

Figure 12 
                  Perpendicularity between microchannels and feeders.
Figure 12

Perpendicularity between microchannels and feeders.

Assembly by adhesion is carried out after the adjustment between the screws and the support. A homogeneous epoxy glue film is applied to form a solid connection between the acrylic support and the carbon steel from which the screws are made (Figure 13).

Figure 13 
                  Assembly by adhesion.
Figure 13

Assembly by adhesion.

Then, the pipe is inserted into the filter inlet and outlet for the two working fluids, air and water, so that the interaction takes place. It was decided to place the fluid inlets perpendicularly with respect to the horizontal microchannels.

The front view shows the alignment between feeders and microchannels, as shown in Figure 14.

Figure 14 
                  View from above (a) and front view (b) of the microchannel filter.
Figure 14

View from above (a) and front view (b) of the microchannel filter.

Two types of assembly tests were performed:

Air test: For the air test, a compressor of 250 ps pressure and 3 hp of power was used. The system is fed with a constant air flow. Measurements are performed at the inlet and outlet. The seal between the elements, acrylic tube, and microchannel filter are verified.

Water test: For water testing, a water pumping system with a minimum flow rate is used to evaluate the seal between the microchannel filter and the acrylic tube.

In this test, the leakage of the working fluid is analyzed. Water in the joints between the screws and the support is analyzed.

The sealing process between the filter and the acrylic pipe requires special attention because commercial sealants work at regular pressure well below those required for filters of these characteristics.

The pressure drop of the microchannel filter is very large due to the low porosity of the filter. Therefore, it is necessary to perform micromachining at smaller scales.

It is necessary to make filters with fully controlled specifications such as the diameter and the length of the channel and to test them with specialized instruments in the range of operation of the microscale to understand the behavior of the air flow at the microscale.

Increasing the porosity of the microchannel filter is essential so that this device does not represent a significant pressure drop within an air conditioning system.

In the design of microchannel filters, it is necessary to pay special attention to the mechanism of particle separation. This depends on the operating range of the filter. The filter works within the pressure range of the air supply equipment. The viability of the filter depends on this value because it will take more or less energy to move air through the filter.

3.7 Microchannel filter characterization system design

It is necessary to characterize the microchannel filter to determine the behavior of the filter absorption control variables. Therefore, a bank of characterization of microchannel filters is proposed with the following arrangement (Figure 15).

Figure 15 
                  Microchannel filter test bench [38].
Figure 15

Microchannel filter test bench [38].

With the test bench, the microchannel filter can be dynamically analyzed, thus determining the operating range of the filter [38,39]. The manufacturing materials, the pressure drops, the amount of energy required moving the air inside the filter, the air purification efficiency, and other important features in this type of equipment will be evaluated.

It is possible to scale the microfilter up to 1/16 inch without complications because M4 screws are commercially manufactured. However, for smaller scales, it is necessary to manufacture screws of smaller dimensions. Hence, it is proposed to work with MET technology developed by E. Kussul and coauthors [6,30,31,32,40]. To reach 10 µm of the cross-sectional area in the microchannel, it is necessary to separate 10 µm particles and air.

4 Theoretical analysis of pressure drop

The pressure drop depends on the cross section and the geometrical form of the microchannel (Figure 16). The higher the cross section, the lower the pressure drop. When the cross section is high, the pressure drop is low, and the load due to the aerodynamic flow of the air that the microchannel can support is also small.

Figure 16 
               Design of filtration chamber.
Figure 16

Design of filtration chamber.

Filter simulation was realized with SolidWorks. So far, the results of the simulations performed using SolidWorks have yielded the following results (Figure 17).

Figure 17 
               Filter simulation with SolidWorks.
Figure 17

Filter simulation with SolidWorks.

As shown, there is only flow in the last holes of the filter. Therefore, it will be very important to obtain an appropriate distribution to occupy the whole filter geometry.

It is possible to observe the pressure drop in the filter (Figure 18). It will be important to have an appropriate compression source to obtain the pressure losses at the most favorable points to satisfy our objective of filtering the air.

Figure 18 
               Pressure drop in filter simulation with SolidWorks.
Figure 18

Pressure drop in filter simulation with SolidWorks.

To determine the maximum pressure drop, the flow is increased as much as possible, and the pressure difference between the inlet and outlet of the microfilter is measured. It is possible to reduce the pressure drop by reducing the dimensions of the microchannels through MET [6,30,31,32,40].

5 Results and discussion

Two types of assembly tests were carried out. The first test with air required a compressor for 110 psi of pressure and 3 hp of power. The results are presented in Table 3.

Table 3

Air test results

Flow (CFM) Fall of pressure (psi)
0 0
0.5 0.4
1 0.7
1.5 0.9
2 0.9
2.5 0.9
3 1.2
3.5 1.5
4 1.8
4.5 2.2
5 2.6
5.5 3
6 3.4
6.5 3.9
7 4.3
7.5 4.8
8 5.2
8.5 5.7
9 6.1
9.5 6.6
10 7
10.5 7.5
11 8

The graph of the pressure drop is shown in Figure 19. It can be seen that the higher flow pressure drop tends to 8 psi. The tests were performed at 20°C ambient temperature and humidity of 35%. To measure the flow, we use an anemometer of Amprobe model TMA-21HW and a pair of cover gauges. To obtain the flow, Mikel’s model CA-3HP compressor was used.

Figure 19 
               Pressure drop.
Figure 19

Pressure drop.

For the water test, a commercial water pumping system was used. With this test, joint leakage of the working fluid was analyzed. It was concluded that the filter has no joint leakage between the screws and the support.

6 MET

We propose using MET [6,30,31,32,40]. In Figure 20, we present the main principle of MET.

Figure 20 
               MET equipment generations [30]: (a) a scheme of several generations; (b) a decrease in size of every next generation.
Figure 20

MET equipment generations [30]: (a) a scheme of several generations; (b) a decrease in size of every next generation.

The MET was developed by scientists from Ukraine and Mexico [30]. Every next generation we do with previous generation, and its size is approximately two times less in comparison with the previous one. In Figure 21, we present different projections of the microCNC.

Figure 21 
               MicroCNC: (a) side view from the right; (b) lateral face; (c) side view at the left.
Figure 21

MicroCNC: (a) side view from the right; (b) lateral face; (c) side view at the left.

To control the position of the actuators, we used micrometers with a gear box. The prototype is presented in Figure 22.

Figure 22 
               Micromotor with gear box.
Figure 22

Micromotor with gear box.

In Figure 23, we present the equipment of the first generation [40].

Figure 23 
               The microequipment of the first generation: (a) micromachine tool; (b) micromanipulator.
Figure 23

The microequipment of the first generation: (a) micromachine tool; (b) micromanipulator.

Using this microequipment, we produced different types of microcomponents (Figure 24). Figure 24c shows microrings of the microfilter that were produced for air cleaning.

Figure 24 
               The microcomponents produced with MET: (a), (b) microscrews; (c) microrings for microfilters and (d) pin with diameter of 50 µm.
Figure 24

The microcomponents produced with MET: (a), (b) microscrews; (c) microrings for microfilters and (d) pin with diameter of 50 µm.

For the automatization of microequipment, we developed different algorithms using computer vision and neural networks [40,41,42,43,44,45,46,47,48,49]. We give many references to these investigations. Readers who are interested can refer them, but those studies are not the theme of this article.

One of the first applications of the MET technology was development of microchannel recuperators for Ericsson heat engines [50,51]. Now we want to describe the new prototype of the microchannel filter.

7 Conclusion

The pressure drop of the microchannel filter is very large because of the low filter opening factor. Therefore, it is necessary to perform micromachining at smaller scales.

It is necessary to make filters with fully controlled specifications such as the diameter and the length of the channel. To test them, we need specialized instruments in the range of the microequipment operation to understand the behavior of the micrometric air flow.

We analyze the current situation as well as the commercial trends of the equipment available in the current market from those available in the domestic sphere to the hospital. The main dangers to which human beings are exposed in enclosed spaces are described to justify the development of microfilters.

The specific contributions of this study are presented here.

The interior environments as sources of diseases for the respiratory system of human beings were described. The main pollutants in closed indoor environments with which we interact daily were identified and described, and the effects of each type of pollutant on humans were described.

A reference framework was proposed for the development of microfilters for air purification in indoor spaces by considering the type of environment and the pollutants, as well as the vulnerability of the users.

Recommendations for the design of the microchannel filters for indoor air purification are proposed, implementing low-cost MET for the manufacture of the elements that constitute a microfiltration system.

The basic design of a microfiltration cell for air purification is proposed based on the technology called microchannel binary air–water flow.

The methodology developed in our group for the design and manufacture of microdevices was applied.

A prototype microchannel filter was constructed, which underwent manufacturing tests, liquid sealing tests, gas sealing tests, and water flow tests.

An evaluation of advantages and disadvantages of the microfiltration system was carried out with respect to the solutions proposed at the commercial level, where the main advantages of this device compared to current technologies were the manufacturing cost, the operating capacity, and the principle of operation by binary flow. This is because it is possible to clean the microchannel by means of water flow, which allows us to maintain the filtration quality within an optimum range of contaminant removal.

Acknowledgments

This work was partly supported by the project UNAM-DGAPA-IT102320.

References

[1] Goldstein AH, Galbally IE. Known and unexplored organic constituents in the Earth’s atmosphere. Environ Sci Technol. 2007;41(5):1514–1521.10.1021/es072476pSearch in Google Scholar

[2] Lee SC, Chang M. Indoor air quality investigations at five classrooms. Indoor Air. 1999;9(2):134–138. 10.1111/j.1600-0668.1999.t01-2-00008.x.Search in Google Scholar

[3] Volatile Organic Compounds’ Impact on Indoor Air Quality. EPA. https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality, 2016-09-07.Search in Google Scholar

[4] Mendell MJ. Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: a review. Indoor Air. 2007;17(4):259–277.10.1111/j.1600-0668.2007.00478.xSearch in Google Scholar

[5] What is Smog?, Canadian Council of Ministers of the Environment, CCME.ca Archived September 28, 2011, at the Wayback Machine.Search in Google Scholar

[6] Kussul E, Rachkovskij D, Baidyk T, Talayev S. Micromechanical engineering: a basis for the low-cost manufacturing of mechanical micro devices using microequipment. J Micromech Microeng. 1996;6:410–425.10.1088/0960-1317/6/4/008Search in Google Scholar

[7] EPA, OAR, US, Basic information about Ozone, USA, US EPA. Retrieved 2018-01-23.Search in Google Scholar

[8] Volatile Organic Compounds (VOCs) in Your Home, Minnesota Department of Health. Health.state.mn.us. Retrieved 2018-01-23.Search in Google Scholar

[9] Sundell J. On the history of indoor air quality and health. Indoor Air Suppl. 2004;14(7):51–58.10.1111/j.1600-0668.2004.00273.xSearch in Google Scholar

[10] Zhang GS, Li TT, Luo M, Liu JF, Liu ZR, Bai YH. Air pollution in the microenvironment of parked new cars. Build Environ. 2008;43(3):315–319.10.1016/j.buildenv.2006.03.019Search in Google Scholar

[11] Mukund R, Kelly TJ, Spicer CW. Source attribution of ambient air toxic and other VOCs in Columbus, Ohio. Atmos Environ. 1996;30(20):3457–3470.10.1016/1352-2310(95)00487-4Search in Google Scholar

[12] Carmona R. The 2006 report of the surgeon general. The health consequences of involuntary exposure to tobacco smoke. Am J Prev Med. 2007;32:542–543.10.1016/j.amepre.2007.02.026Search in Google Scholar PubMed

[13] Perez-Rios M, Barros-Dios J, Montes-Martinez A, Ruano-Ravina A. Attributable mortality to radon exposure in Galicia, Spain. Is it necessary to act in the face of this health problem? BMC Public Health. 2010;10(1):256.10.1186/1471-2458-10-256Search in Google Scholar PubMed PubMed Central

[14] CDC (Center for Disease Control and Prevention USA). Carbon monoxide poisoning after hurricane Katrina–Alabama, Louisiana, and Mississippi, August-September 2005. MMWR Morb Mortal Wkly Rep. 2005;54(39):996–998.Search in Google Scholar

[15] Bush RK, Portnoy JM, Saxon A, Terr AI, Wood RA. The medical effects of mold exposure. J Allergy Clin Immunol. 2006;117(2):326–333.10.1016/j.jaci.2005.12.001Search in Google Scholar PubMed

[16] Wolkoff P. PhD thesis. 1995.Search in Google Scholar

[17] Sherman M, Levin H. Renewables in ventilation and indoor air quality. Berkley, CA, USA: Ernst Orlando Lawrence Berkley National Laboratory, Preprint; 1996; p. 16.Search in Google Scholar

[18] Barn P. Residential air cleaner use to improve indoor air quality and health: a review of the evidence. British Columbia, Canada: National Collaborating Centre for Environmental Health, Vancouver; October, 2010. p. 1–7.Search in Google Scholar

[19] Destaillats H, Fisk WJ. Investigation of IAQ-Relevant Surface Chemistry and Emissions on HVAC Filter Materials. Berkley, CA, USA: Lawrence Berkeley National Laboratory, Report; 2010; p. 32.10.2172/983018Search in Google Scholar

[20] Mo J, Zhang Y, Xu Q, Lamson JJ, Zhao R. Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ. 2009;43(14):2229–2246.10.1016/j.atmosenv.2009.01.034Search in Google Scholar

[21] Zhang Y, Yang R, Zhao R. A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. Atmos Environ. 2003;37(24):3395–3399.10.1016/S1352-2310(03)00357-1Search in Google Scholar

[22] Daniels SL. On the ionization of air for removal of noxious effluvia’ (air ionization of indoor environments for control of volatile and particulate contaminants with nonthermal plasmas generated by dielectric-barrier discharge). IEEE Trans Plasma Sci. 2002;30(4):1471–1481.10.1109/TPS.2002.804211Search in Google Scholar

[23] Wenhao C, Zhang JS. Effectiveness of portable room air cleaners for control of volatile organic compounds in indoor air. NY, USA: CIB1586, Syracuse University; 2004. p. 1–10, http://www.irbnet.de/daten/iconda/CIB1586.pdf.Search in Google Scholar

[24] Kim KH, Szulejko JE, Kumar P, Kwon EE, Adelodun AA, Reddy PAK. Air ionization as a control technology for off-gas emissions of volatile organic compounds. Environ Pollut. 2017;225:729–743.10.1016/j.envpol.2017.03.026Search in Google Scholar PubMed

[25] Amado-Piña D, et al. Synergic effect of ozonation and electrochemical methods on oxidation and toxicity reduction: phenol degradation. Fuel. 2017;198:82–90.10.1016/j.fuel.2016.10.117Search in Google Scholar

[26] Wang Z. Dynamic botanical filtration system for indoor air purification. Dissertation. NY, USA: Syracuse University; 2011. p. 203.Search in Google Scholar

[27] Wang Z, Pei J, Zhang JS. Modeling and simulation of an activated carbon-based botanical air filtration system for improving indoor air quality. Build Environ. 2012;54:109–115.10.1016/j.buildenv.2012.02.011Search in Google Scholar

[28] Soreanu G, Dixon M, Darlington A. Botanical biofiltration of indoor gaseous pollutants – a mini-review. Chem Eng J. 2013;229:585–594.10.1016/j.cej.2013.06.074Search in Google Scholar

[29] Wang Z, Zhang JS. Characterization and performance evaluation of a full-scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality. Build Environ. 2011;46(3):758–768.10.1016/j.buildenv.2010.10.008Search in Google Scholar

[30] Kussul E, Baidyk T, Ruiz-Huerta L, Caballero A, Velasco G, Kasatkina L. Development of micromachine tool prototypes for microfactories. J Micromech Microeng. 2002;12:795–813.10.1088/0960-1317/12/6/311Search in Google Scholar

[31] Kussul E, Baidyk T, Ruiz-Huerta L, Caballero-Ruiz A, Velasco G, Makeyev O. Techniques in the development of micromachine tool prototypes and their applications in microfactories. In: Leondes Cornelius T, editor. MEMS/NEMS handbook: techniques and applications. Springer; vol. 3, chapter 1, 2006. p. 1–61.10.1007/0-387-25786-1_17Search in Google Scholar

[32] Kussul E, Baidyk T, Wunsch D. Neural Networks and Micro Mechanics. Heidelberg, Germany: Springer; 2010. p. 222.10.1007/978-3-642-02535-8Search in Google Scholar

[33] Manual “X-660/X2-660 SuperSpeed-660” Laser Engraving and Cutting Systems, August 2005, p. 84. Universal Laser Systems, Inc.Search in Google Scholar

[34] Gorji NE, Saxena P, Corfield M, et al. A new method for assessing the recyclability of powders within Powder Bed Fusion process. Mater Charact. March 2020;161:110167.10.1016/j.matchar.2020.110167Search in Google Scholar

[35] Global Metals, Stainless steel – 316/316l. 1991, retrieved from www.globalmetals.auSearch in Google Scholar

[36] Acrylic, Perspex ® CC (Continuous Cast Acrylic) Technical Data SheetTechnical Components, Technical Datasheet.Search in Google Scholar

[37] Dimensions ANSI/ISO Metric Hex Cap Screws Torque Values Metric Class 12. 9 Socket Head Cap Screws Metric Class 8 Finished Hex Nuts Metric Class 10. 9 Button Head Socket Cap Screws Metric Class 5 Wing Nuts Cold Forged Metric Class 10. 9 Flat Head Sock, p. 452–456.Search in Google Scholar

[38] Yang X, Yang JM, Tai YC, Ho CM. Micromachined membrane particle filters. Sens Actuators A. 1999;73(1–2):184–191.10.1109/MEMSYS.1998.659743Search in Google Scholar

[39] Van Rijn CJM, Elwenspoek MC. Microfiltration membrane sieve with silicon micromachining for industrial and biomedical applications. Micro Electro Mech Syst. 1995;83–87. 10.1109/MEMSYS.1995.472549 Search in Google Scholar

[40] Baidyk T, Kussul E, Makeyev O, Velasco G. Pattern recognition for micro workpieces manufacturing. 2009. p. 61–74, special issue of CyS: Innovative Applications of Artificial Intelligence (IAAI), Ibero-American Journal of Computing, vol. 13, no. 1.Search in Google Scholar

[41] Makeyev O, Sazonov E, Baidyk T, Martin A. Limited receptive area neural classifier for texture recognition of mechanically treated metal surfaces. Neurocomputing. March 2008;71(7–9):1413–1421.10.1016/j.neucom.2007.05.004Search in Google Scholar

[42] Kussul E, Baidyk T, Wunsch D, Makeyev O, Martín A. Permutation coding technique for image recognition systems. IEEE Trans Neural Netw. Nov. 2006;17/6:1566–1579.10.1007/978-3-642-02535-8_4Search in Google Scholar

[43] Baidyk T, Kussul E, Makeyev O, Caballero A, Ruiz L, Carrera G, et al. Flat image recognition in the process of microdevice assembly. Pattern Recogn Lett. 2004;25(1):107–118.10.1016/j.patrec.2003.09.005Search in Google Scholar

[44] Baidyk T, Kussul E, Makeyev O. Texture recognition with random subspace neural classifier. WSEAS Trans Circ Sysyt. April 2005;4(4):319–325.Search in Google Scholar

[45] Kussul E, Makeyev O, Baidyk T, Martín-Gonzalez A, Toledo-Ramirez G. Some applications of computer vision systems in micromechanics. In: Yoshida SR, editor. Computer vision. Nova Science Publishers, Inc; 2011. p. 1–39.Search in Google Scholar

[46] Baidyk T, Kussul E, Makeyev O. Computer vision system for manufacturing of micro workpieces. In: Tony A, Richard E, Miltos P, ed. Proceedings of AI-2008, the Twenty-eighth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence. United Kingdom: Springer-Verlag London Limited; 2009. p. 19–32.10.1007/978-1-84882-215-3_2Search in Google Scholar

[47] Baidyk T, Kussul E, Makeyev O. Image recognition system for microdevice assembly. In: Hamza MH, editor. Applied Informatics. IASTED/ACTA Press; 2003. p. 243–8.Search in Google Scholar

[48] Baidyk T, Kussul E, Makeyev O. General purpose image recognition systems based on neural classifiers. In: Kang GB, editor. Progress in neurocomputing research. NOVA Publishers; chapter 3, 2008. p. 83–114.Search in Google Scholar

[49] Kussul E, Baidyk T, Lara-Rosano F, Makeyev O, Martín A, Wunsch D. Micromechanics as a testbed for artificial intelligence methods evaluation, in IFIP International Federation for Information Processing, Volume 218, Professional Practice in Artificial Intelligence. In: Debenham J. editor. Boston: Springer; 2006. p. 275–84.10.1007/978-0-387-34749-3_29Search in Google Scholar

[50] Kussul E, Makeyev O, Baidyk T, Saniger Blesa J, Bruce N. Ericsson heat engine with microchannel recuperator for solar concentrator with flat mirrors. Int J Energy. 2012;6(4):165–177.Search in Google Scholar

[51] Kussul E, Makeyev O, Baidyk T, Olvera O. Design of Ericsson heat engine with micro channel recuperator. ISRN Renewable Energy. 2012;2012:8, Article ID 613642.10.5402/2012/613642Search in Google Scholar

Received: 2020-02-13
Revised: 2020-05-03
Accepted: 2020-05-04
Published Online: 2020-06-24

© 2020 J. Rodriguez Andrade et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Regular Articles
  2. Model of electric charge distribution in the trap of a close-contact TENG system
  3. Dynamics of Online Collective Attention as Hawkes Self-exciting Process
  4. Enhanced Entanglement in Hybrid Cavity Mediated by a Two-way Coupled Quantum Dot
  5. The nonlinear integro-differential Ito dynamical equation via three modified mathematical methods and its analytical solutions
  6. Diagnostic model of low visibility events based on C4.5 algorithm
  7. Electronic temperature characteristics of laser-induced Fe plasma in fruits
  8. Comparative study of heat transfer enhancement on liquid-vapor separation plate condenser
  9. Characterization of the effects of a plasma injector driven by AC dielectric barrier discharge on ethylene-air diffusion flame structure
  10. Impact of double-diffusive convection and motile gyrotactic microorganisms on magnetohydrodynamics bioconvection tangent hyperbolic nanofluid
  11. Dependence of the crossover zone on the regularization method in the two-flavor Nambu–Jona-Lasinio model
  12. Novel numerical analysis for nonlinear advection–reaction–diffusion systems
  13. Heuristic decision of planned shop visit products based on similar reasoning method: From the perspective of organizational quality-specific immune
  14. Two-dimensional flow field distribution characteristics of flocking drainage pipes in tunnel
  15. Dynamic triaxial constitutive model for rock subjected to initial stress
  16. Automatic target recognition method for multitemporal remote sensing image
  17. Gaussons: optical solitons with log-law nonlinearity by Laplace–Adomian decomposition method
  18. Adaptive magnetic suspension anti-rolling device based on frequency modulation
  19. Dynamic response characteristics of 93W alloy with a spherical structure
  20. The heuristic model of energy propagation in free space, based on the detection of a current induced in a conductor inside a continuously covered conducting enclosure by an external radio frequency source
  21. Microchannel filter for air purification
  22. An explicit representation for the axisymmetric solutions of the free Maxwell equations
  23. Floquet analysis of linear dynamic RLC circuits
  24. Subpixel matching method for remote sensing image of ground features based on geographic information
  25. K-band luminosity–density relation at fixed parameters or for different galaxy families
  26. Effect of forward expansion angle on film cooling characteristics of shaped holes
  27. Analysis of the overvoltage cooperative control strategy for the small hydropower distribution network
  28. Stable walking of biped robot based on center of mass trajectory control
  29. Modeling and simulation of dynamic recrystallization behavior for Q890 steel plate based on plane strain compression tests
  30. Edge effect of multi-degree-of-freedom oscillatory actuator driven by vector control
  31. The effect of guide vane type on performance of multistage energy recovery hydraulic turbine (MERHT)
  32. Development of a generic framework for lumped parameter modeling
  33. Optimal control for generating excited state expansion in ring potential
  34. The phase inversion mechanism of the pH-sensitive reversible invert emulsion from w/o to o/w
  35. 3D bending simulation and mechanical properties of the OLED bending area
  36. Resonance overvoltage control algorithms in long cable frequency conversion drive based on discrete mathematics
  37. The measure of irregularities of nanosheets
  38. The predicted load balancing algorithm based on the dynamic exponential smoothing
  39. Influence of different seismic motion input modes on the performance of isolated structures with different seismic measures
  40. A comparative study of cohesive zone models for predicting delamination fracture behaviors of arterial wall
  41. Analysis on dynamic feature of cross arm light weighting for photovoltaic panel cleaning device in power station based on power correlation
  42. Some probability effects in the classical context
  43. Thermosoluted Marangoni convective flow towards a permeable Riga surface
  44. Simultaneous measurement of ionizing radiation and heart rate using a smartphone camera
  45. On the relations between some well-known methods and the projective Riccati equations
  46. Application of energy dissipation and damping structure in the reinforcement of shear wall in concrete engineering
  47. On-line detection algorithm of ore grade change in grinding grading system
  48. Testing algorithm for heat transfer performance of nanofluid-filled heat pipe based on neural network
  49. New optical solitons of conformable resonant nonlinear Schrödinger’s equation
  50. Numerical investigations of a new singular second-order nonlinear coupled functional Lane–Emden model
  51. Circularly symmetric algorithm for UWB RF signal receiving channel based on noise cancellation
  52. CH4 dissociation on the Pd/Cu(111) surface alloy: A DFT study
  53. On some novel exact solutions to the time fractional (2 + 1) dimensional Konopelchenko–Dubrovsky system arising in physical science
  54. An optimal system of group-invariant solutions and conserved quantities of a nonlinear fifth-order integrable equation
  55. Mining reasonable distance of horizontal concave slope based on variable scale chaotic algorithms
  56. Mathematical models for information classification and recognition of multi-target optical remote sensing images
  57. Hopkinson rod test results and constitutive description of TRIP780 steel resistance spot welding material
  58. Computational exploration for radiative flow of Sutterby nanofluid with variable temperature-dependent thermal conductivity and diffusion coefficient
  59. Analytical solution of one-dimensional Pennes’ bioheat equation
  60. MHD squeezed Darcy–Forchheimer nanofluid flow between two h–distance apart horizontal plates
  61. Analysis of irregularity measures of zigzag, rhombic, and honeycomb benzenoid systems
  62. A clustering algorithm based on nonuniform partition for WSNs
  63. An extension of Gronwall inequality in the theory of bodies with voids
  64. Rheological properties of oil–water Pickering emulsion stabilized by Fe3O4 solid nanoparticles
  65. Review Article
  66. Sine Topp-Leone-G family of distributions: Theory and applications
  67. Review of research, development and application of photovoltaic/thermal water systems
  68. Special Issue on Fundamental Physics of Thermal Transports and Energy Conversions
  69. Numerical analysis of sulfur dioxide absorption in water droplets
  70. Special Issue on Transport phenomena and thermal analysis in micro/nano-scale structure surfaces - Part I
  71. Random pore structure and REV scale flow analysis of engine particulate filter based on LBM
  72. Prediction of capillary suction in porous media based on micro-CT technology and B–C model
  73. Energy equilibrium analysis in the effervescent atomization
  74. Experimental investigation on steam/nitrogen condensation characteristics inside horizontal enhanced condensation channels
  75. Experimental analysis and ANN prediction on performances of finned oval-tube heat exchanger under different air inlet angles with limited experimental data
  76. Investigation on thermal-hydraulic performance prediction of a new parallel-flow shell and tube heat exchanger with different surrogate models
  77. Comparative study of the thermal performance of four different parallel flow shell and tube heat exchangers with different performance indicators
  78. Optimization of SCR inflow uniformity based on CFD simulation
  79. Kinetics and thermodynamics of SO2 adsorption on metal-loaded multiwalled carbon nanotubes
  80. Effect of the inner-surface baffles on the tangential acoustic mode in the cylindrical combustor
  81. Special Issue on Future challenges of advanced computational modeling on nonlinear physical phenomena - Part I
  82. Conserved vectors with conformable derivative for certain systems of partial differential equations with physical applications
  83. Some new extensions for fractional integral operator having exponential in the kernel and their applications in physical systems
  84. Exact optical solitons of the perturbed nonlinear Schrödinger–Hirota equation with Kerr law nonlinearity in nonlinear fiber optics
  85. Analytical mathematical schemes: Circular rod grounded via transverse Poisson’s effect and extensive wave propagation on the surface of water
  86. Closed-form wave structures of the space-time fractional Hirota–Satsuma coupled KdV equation with nonlinear physical phenomena
  87. Some misinterpretations and lack of understanding in differential operators with no singular kernels
  88. Stable solutions to the nonlinear RLC transmission line equation and the Sinh–Poisson equation arising in mathematical physics
  89. Calculation of focal values for first-order non-autonomous equation with algebraic and trigonometric coefficients
  90. Influence of interfacial electrokinetic on MHD radiative nanofluid flow in a permeable microchannel with Brownian motion and thermophoresis effects
  91. Standard routine techniques of modeling of tick-borne encephalitis
  92. Fractional residual power series method for the analytical and approximate studies of fractional physical phenomena
  93. Exact solutions of space–time fractional KdV–MKdV equation and Konopelchenko–Dubrovsky equation
  94. Approximate analytical fractional view of convection–diffusion equations
  95. Heat and mass transport investigation in radiative and chemically reacting fluid over a differentially heated surface and internal heating
  96. On solitary wave solutions of a peptide group system with higher order saturable nonlinearity
  97. Extension of optimal homotopy asymptotic method with use of Daftardar–Jeffery polynomials to Hirota–Satsuma coupled system of Korteweg–de Vries equations
  98. Unsteady nano-bioconvective channel flow with effect of nth order chemical reaction
  99. On the flow of MHD generalized maxwell fluid via porous rectangular duct
  100. Study on the applications of two analytical methods for the construction of traveling wave solutions of the modified equal width equation
  101. Numerical solution of two-term time-fractional PDE models arising in mathematical physics using local meshless method
  102. A powerful numerical technique for treating twelfth-order boundary value problems
  103. Fundamental solutions for the long–short-wave interaction system
  104. Role of fractal-fractional operators in modeling of rubella epidemic with optimized orders
  105. Exact solutions of the Laplace fractional boundary value problems via natural decomposition method
  106. Special Issue on 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering
  107. Joint use of eddy current imaging and fuzzy similarities to assess the integrity of steel plates
  108. Uncertainty quantification in the design of wireless power transfer systems
  109. Influence of unequal stator tooth width on the performance of outer-rotor permanent magnet machines
  110. New elements within finite element modeling of magnetostriction phenomenon in BLDC motor
  111. Evaluation of localized heat transfer coefficient for induction heating apparatus by thermal fluid analysis based on the HSMAC method
  112. Experimental set up for magnetomechanical measurements with a closed flux path sample
  113. Influence of the earth connections of the PWM drive on the voltage constraints endured by the motor insulation
  114. High temperature machine: Characterization of materials for the electrical insulation
  115. Architecture choices for high-temperature synchronous machines
  116. Analytical study of air-gap surface force – application to electrical machines
  117. High-power density induction machines with increased windings temperature
  118. Influence of modern magnetic and insulation materials on dimensions and losses of large induction machines
  119. New emotional model environment for navigation in a virtual reality
  120. Performance comparison of axial-flux switched reluctance machines with non-oriented and grain-oriented electrical steel rotors
  121. Erratum
  122. Erratum to “Conserved vectors with conformable derivative for certain systems of partial differential equations with physical applications”
Downloaded on 26.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/phys-2020-0153/html
Scroll to top button