Home Physical Sciences RbTm3S5: the first rubidium lanthanoid(III) sulfide with CsEr3Se5-type crystal structure
Article Open Access

RbTm3S5: the first rubidium lanthanoid(III) sulfide with CsEr3Se5-type crystal structure

  • Katja Engel and Thomas Schleid ORCID logo EMAIL logo
Published/Copyright: October 23, 2025

Abstract

RbTm3S5, orthorhombic, Pnma (no. 62), a = 20.7225(16) Å, b = 3.9231(3) Å, c = 11.6958(9) Å, V = 950.83(13) Å3, Z = 4, Rgt(F) = 0.0263, wRref(F2) = 0.0666, T = 293 K.

CCDC no.: 2419457

The molecular structure is shown in the figure. Table 1 contains the crystallographic data. The list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Rod, orange
Size: 0.09 × 0.06 × 0.05 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 33.85 mm−1
Diffractometer, scan mode: STOE STADIVARI, rotation mode ω-scans
θmax, completeness: 30.3°, >99 %
N(hkl)measured, N(hkl)unique, Rint: 9698, 1563, 0.032
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 1512
N(param)refined: 56
Programs: Stoe & Cie, 1 SHELX, 2 , 3 DIAMOND 4

1 Source of materials

RbTm3S5 was synthesized from a molten polysulfide flux containing Tm, Rb2S3, As2S3 and S in a molar ratio of 1:1:1:6. The reactants were filled in a sealed glassy ampoule and heated up to 823 K within 20 h. After 96 h the mixture cooled down to 523 K with −2 K h−1, held at this temperature for another 120 h and finally cooled down with −2 K h−1 to 373 K, before the furnace was turned off. Rb2S3 was synthesized in liquid ammonia out of a stoichiometric 2:3-mixture of Rb and S. All chemicals and products were handled in an argon-filled glove box. Single crystals in the shape of orange-colored rods were selected manually and transferred into glass capillaries.

2 Experimental details

Suitable single crystals of RbTm3S5 were selected for X-ray diffraction experiments on a STOE Stadi–Vari diffractometer (Stoe & Cie GmbH, Darmstadt, Germany) using monochomatized MoKα radiation (λ = 0.71073 Å). The crystal-structure solution could be obtained with SHELXS-2019/2 using Direct Methods, whereas the refinement was carried out with SHELXL-2019/2 by applying least-squares calculations on F2. 2 , 3 The lowest and highest residual electron density almost coincide in terms of magnitude (2.4 and 2.5 e Å−3), the quality of the structure solution is therefore not influenced by the calculated residual electron density of −2.5 e Å−3 at Tm3.

3 Comment

In the systems of lanthanoid sulfides containing alkali metals mainly three different compositions have been reported so far ALnS2, 5 , 6 ALn7S11 7 and A3Ln7S12 8 (A = Li – Cs, Ln = lanthanoid). Compared to the related selenides and tellurides it is noticeable that the composition ALn3Ch5 for Ch = S seems to be unknown, whereas the first representatives with Ch = Se and Te like CsHo3Te5 already exist for quite a while. 9 In this context, next to CsSc3S5 10 the new compound RbTm3S5 presented here is the first ternary lanthanoid(III) sulfide with this composition, adopting the CsEr3Se5-type crystal structure. 11 , 12

The structure of the title compound is built up from edge-connected [TmS6]9− octahedra with typical distances (d(Tm–S) = 2.58–2.81 Å) as known from thulium sulfides like D-type Tm2S3 (d(Tm–S) = 2.60–2.92 Å 13 ) and empty channels along [010]. The size of these channels is defined by 5×4 octahedral units arranged in a herringbone-like pattern (see the figure). Tm1 and Tm2 each form infinite chains along [010], where one octahedron links its two neighbors via opposite edges. By connecting those chains, the sites of the empty channels are created. The channel corners are built from Tm3-centered sulfur octahedra, which are again edge-connected to each other in a way, that each [(Tm3)S6]9− octahedron has four direct neighbors. This results in infinite chains along [010], which connect the chains of Tm1- and Tm2-centered sulfur polyhedra to erect a three-dimensional network 3D-{[Tm3S5]} with channels in [010] direction, where the Rb+ cations find place in a sevenfold coordination environment of sulfur atoms, forming a capped trigonal prism (d(Rb–S) = 3.37–3.61 Å) with distances comparable to those in Rb2S5 (d(Rb–S) = 3.30–3.76 Å 14 ), for example.


Corresponding author: Thomas Schleid, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70659 Stuttgart, Germany, E-mail:

Acknowledgments

This research was presented at the 33rd Annual Meeting of the German Crystallographic Society (DGK 2025) in Hannover and funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number INST 41/1082-1 FUGG. We thank the state of Baden–Württemberg for its financial support, as well as Dr. Falk Lissner for the single-crystal X-ray diffraction measurement.

References

1. X-Area: The Stoe Single-Crystal Diffraction Software Package; Stoe & Cie GmbH: Darmstadt, Germany.Search in Google Scholar

2. Sheldrick, G. M. A Short History of Shelx. Acta Crystallogr. 2008, A64, 112–122. https://doi.org/10.1107/S0108767307043930.Search in Google Scholar PubMed

3. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central

4. Brandenburg, K. Diamond; Crystal Impact GbR: Bonn, Germany.Search in Google Scholar

5. Ballestracci, R.; Bertaut, E. F. Étude Cristallographique de Sulfures de Terres Rares et de Sodium. Bull. Soc. Fr. Mineral. Cristallogr. 1964, 87, 512–517. https://doi.org/10.3406/bulmi.1964.5770.Search in Google Scholar

6. Bronger, W.; Brüggemann, W.; von der Ahe, M.; Schmitz, D. Zur Synthese und Struktur Ternärer Chalcogenide der Seltenen Erden ALnX2 mit A = Alkalimetall und X = Schwefel, Selen oder Tellur. J. Alloys Compd. 1993, 200, 205–210. https://doi.org/10.1016/0925–8388(93)90495–9.10.1016/0925-8388(93)90495-9Search in Google Scholar

7. Lin, H.; Li, L.-H.; Chen, L. Diverse Closed Cavities in Condensed Rare Earth Metal-Chalcogenide Matrixes: CsLu7Q11 and (ClCs6)RE21Q34 (RE = Dy, Ho; Q = S, Se, Te). Inorg. Chem. 2012, 51, 4588–4596. https://doi.org/10.1021/ic202494w.Search in Google Scholar PubMed

8. Lissner, F.; Hartenbach, I.; Schleid, Th. K3Er7S12 und Rb3Er7S12: Zwei Ternäre Erbium(III)-Sulfide mit Kanalstruktur. Z. Anorg. Allg. Chem. 2002, 628, 1552. https://doi.org/10.1002/1521-3749(200207)628:7<1552:AID-ZAAC1552>3.0.CO;2-B.10.1002/1521-3749(200207)628:7<1552::AID-ZAAC1552>3.0.CO;2-BSearch in Google Scholar

9. Yao, J.; Deng, B.; Ellis, D. E.; Ibers, J. A. Syntheses and Structures of CsHo3Te5 and Cs3Tm11Te18 and the Electronic Structure of CsHo3Te5. J. Solid State Chem. 2005, 178, 41–46. https://doi.org/10.1016/j.jssc.2004.10.015.Search in Google Scholar

10. Buyer, C.; Zimmermann, D. D.; Schleid, Th. CsSc3S5. The First Ternary Sulfide with CsEr3Se5-type Structure. Z. Kristallogr. 2018, S38, 100.Search in Google Scholar

11. Kim, S.-J.; Park, S.-J.; Yun, H.; Do, J. Syntheses and Crystal Structures of New Ternary Selenides: Rb3Yb7Se12 and CsEr3Se5. Inorg. Chem. 1996, 35, 5283–5289. https://doi.org/10.1021/ic960227o.Search in Google Scholar

12. Folchnandt, M.; Schleid, Th. Neue Ternäre Selenide Dreiwertiger Lanthanoide mit Cäsium: CsNd5Se8, Cs3Gd7Se12, CeEr3Se5. Z. Kristallogr. 1997, S12, 125.Search in Google Scholar

13. Konczyk, J.; Demchenko, P.; Bodak, O.; Demchenko, G.; Marciniak, B.; Prochwicz, W.; Muratova, L. Crystal Structure of δ-Tm2S3. Chem. Met. Alloys 2008, 1, 38–42. https://doi.org/10.30970/cma1.0021.Search in Google Scholar

14. Böttcher, P. Synthesis and Crystal Structure of the Dirubidiumpentachalcogenides Rb2S5 and Rb2Se5. Z. Kristallogr. – Cryst. Mater. 1979, 150, 65–74. https://doi.org/10.1524/zkri.1979.150.14.65.Search in Google Scholar

Received: 2025-08-11
Accepted: 2025-10-04
Published Online: 2025-10-23
Published in Print: 2025-12-17

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of (1Z, 2Z)-3-phenyl-2-propenal 2-(4-bromo-2-fluorophenyl)hydrazone, C15H12BrFN2
  4. Refinement of crystal structure of 2-(2,3-dihydro-3-oxo-1 H -inden-1-ylidene)-1 H -indene-1,3(2 H )-dione C18H10O3
  5. The crystal structure of 3-(1-fluoro-2-(naphthalen-2-yl)-2-oxoethyl)-2-methoxy-3,4-dihydroisoquinolin-1(2H)-one, C22H18FNO3
  6. Crystal structure of the dinuclear copper(II) complex bis(μ2-2,2′ -{[1,3-phenylenebis-(methylene)]bis(oxy)}dibenzoaot-κ4O,O′:O′′,O′′′)-bis(dimethylformamide-κ1O)dicopper(II), C50H44Cu2N2O14
  7. Crystal structure of poly[triaqua-(μ9-biphenyl-3,3′,5,5′-tetracarboxylic-κ8 O,O:O,O′: O,O″:O,O‴)samarium(III)sodium(I)], C16H12NaSmO11
  8. The crystal structure of 5-benzyl-1-(4-fluorobenzyl)-4-((4-fluorobenzyl)oxy)-1,5-dihydro-2H-pyrrol-2-one, C25H21F2NO2
  9. The crystal structure of diammonium 2,5-dihydroxyterephthalate, C8H12N2O6
  10. Crystal structure of (E)-4-(4-(1H-1,2,4-triazol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[b]oxepin-5(2H)-one, C21H19N3O4
  11. Crystal structure of poly[oktakis(μ2-oxido-κ2O:O)-tetrakis(oxido-κ1O)-bis(μ2-1,1′-[1,4-phenylenebis(methylene)]di(1H-imidazole-κ2N:N′))-tetravanadium(V)-dizinc(II)] monohydrate, C28H30Zn2N8O13V4
  12. Crystal structure of acotiamide hydrochloride dimethylacetamide solvate (1/1), C25H40ClN5O6S
  13. Crystal structure of catena-poly[monoaqua (u2-(3-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic-k4O:O′:O″:N)zinc(II))] monohydrate, C15H11NO10Zn
  14. Crystal structure of dichlorido{2,6-bis(3,5-diisopropyl-N-pyrazolyl)pyridine}zinc(II), C23H33Cl2N5Zn
  15. Crystal structure of nitrato-κ2O,O′-[hydridotris(3,5-diethylpyrazol-1-yl)borato-κ3N,N′,N″]copper(II), C21H34BCuN7O3
  16. Crystal structure of 2,7-bis(3,5-diethyl-1H-pyrazol-4-yl)-benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone, C28H26N6O4
  17. Crystal structure of 2-(4-chlorophenyl)benzothiazole, C13H8ClNS
  18. Synthesis and crystal structure (3R,4′S)-4′-(3,5-dibromophenyl)-1′-methyl-2H-dispiro [benzofuran-3,3′-pyrrolidine-2′,2″-indene]-1″,2,3″-trione, C26H17Br2NO4
  19. Crystal structure of bis(((3a,7a-dihydro-1H-benzo[d][1,2,3]triazol-1-yl)methyl) triphenylphosphonium) tetrachloridomanganate(II), C50H42Cl4MnN6P2
  20. The crystal structure of 4,9-bis(4-chlorophenyl)-1,6-bis(2-cyanobenzyl)-2,4a,5,6,7,7a-hexahydro-1H-2,7,5-(epiprop[2]ene[1,1,3]triyl)pyrrolo[3,4-b]pyridine-3,10-dicarbonitrile, C40H26Cl2N6
  21. The crystal structure of poly((μ2-3-(3-nitro-4-carboxylphenyl)benzoate-κ3O, O′:O″)-μ2-1,4-bis(1-imidazolyl)benzene-κ2N:N′-cadmium(II)), C26H17N5O6Cd
  22. The crystal structure of 6-hydroxy-5H-pyrrolo[3,4-b]pyridine-5,7(6H)-dione monohydrate, C7H6N2O4
  23. Crystal structure of 4-((cyclohexylsulfonyl)methyl)-1,2,3,4-tetrahydrobenzo [4,5]imidazo[1,2-a]pyridine, C18H24N2O2S
  24. Crystal structure of 4,7-diphenyl-1,10-phenanthroline-κ2N,N′)-bis(2,4-di(fluorine)-1-phenylpyridine-κ2C,N)-iridium(III) hexafluorophosphate–dichloromethane (1/1), C47H30Cl2F10IrN4P
  25. Crystal structure of (4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)boronic acid, C19H15BN2O2
  26. The crystal structure of (E)-(2-((pyridin-2-ylmethylene)amino)phenyl)arsonic acid, C12H11AsN2O3
  27. The crystal structure of N(benzyl(phenyl)carbomothioyl)benzamide, C21H18N2OS
  28. The crystal structure of bis(2-picolinium) hexachlorostannate dichloromethane monosolvate, C13H18Cl8N2Sn
  29. Crystal structure of poly[tetraaqua-bis(μ4-3–1-(carboxylatomethyl)-1H-1,2,4-triazole-3-carboxylato)-κ4O:O′,O″,N)zinc(II)], C5H7N3O6Zn
  30. The crystal structure of the co-crystal isonicotinamide – 2-(nitrophenyl)methanol (1/1), C6H6N2O·C7H7NO3
  31. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2-fluorobenzoate hydrate, C23H25F2N3O6
  32. Crystal structure of [diaqua-{1H-benzo[d]imidazol-3-ium-5,6-dicarboxylato-κ2O,O′}magnesium(II)] C18H14MgN4O10
  33. Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl) (2-iodo-5-methoxyphenyl)methanone, C20H20INO5
  34. The crystal structure of 3,7,11-trimethylbenzo[5,6][1,4]thiazino[2,3,4-kl]phenothiazine 5,5,9,9-tetraoxide, C21H17NO4S2
  35. Crystal structure of tris(piperazine-1,4-diium)bis(2-hydroxy-1,2,3-propane-tricarboxylate) pentahydrate, C24H56N6O19
  36. Crystal structure of 2-chloro-5-((5-isopropyl-2-methylphenoxy)methyl)pyridine, C16H18ClNO
  37. Crystal structure of (E)-4-(4-(1H-pyrrol-1-yl)benzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[(b)]oxepin-5(2H)-one, C23H21NO4
  38. Crystal structure of (E)-N′-(3,4-dichlorobenzylidene)-3,4,5-trimethoxybenzohydrazide, C17H16Cl2N2O4
  39. The crystal structure of 2-(2-hydroxyphenyl)-3-(pyridin-2-yl)-2,3- dihydroquinazolin-4(1H)-one, C19H15N3O2
  40. Crystal structure of 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-8-methylchroman-4-one, C17H16O5
  41. Crystal structure of bis[(3,4-dimethoxybenzyl)triphenylphosphonium]di-μ2-bromido-dibromidodicopper(I)
  42. Crystal structure of bis [(1,3-dioxolan-2-ylmethyl)triphenylphosphonium] tetrabromidodicopper(I), C22H22Br2CuO2P
  43. Crystal structure of [1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid], C12H8N2O5
  44. The crystal structure of one-dimensional cooridnation polymer bis(thiocyanato)-bis((1E,2E)-1,2-bis(1-(pyridin-3-yl)ethylidene)-hydrazine κ2N:N)iron(II), (C30H28N10S2Fe)n
  45. Crystal structure of ((4-acetamidophenyl)sulfonyl)-l-alanine, C11H14N2O5S
  46. Crystal structure of [(1-naphthalen-1-yl-methyl)triphenylphosphonium] dichloridocopper(I), [C29H24P]+[CuCl2]
  47. RbTm3S5: the first rubidium lanthanoid(III) sulfide with CsEr3Se5-type crystal structure
  48. Crystal structure of 2,2′-((ethane-1,2-diylbis(methylammoniumdiyl))bis(methylene))bis(pyridin-1-ium) diiodido-tris(μ2-iodido-κ2I:I)dicopper(II) chloride dihydrate, C16H30Cu2I6N4O2
  49. The crystal structure of 4-(trifluoromethyl)pyridine-2-carboxylic acid, C7H4F3NO2
  50. The crystal structure of (E)-2-ethoxy-1-methoxy-4-(2-(methylsulfonyl)vinyl)benzene, C12H16O4S
  51. Crystal structure of potassium 1H,1H,2H,2H-perfluorooctanesulfonate, C8H4O3F13SK
  52. Crystal structure of 4-(4-(quinolin-8-yloxy)-1,2,5-thiadiazol-3-yl)morpholine, C15H14O2N4S
  53. The crystal structure of 1,4-bis(bromomethyl)-2,5-dimethylbenzene, C10H12Br2
  54. The crystal structure of imidazo[4,5-e][1,3]diazepine-4,6,8-triamine methanol solvate, C7H11N7O
  55. The crystal structure of chlorido-bis(1,10-phenantroline-κ2N,N′)-(2-formylphenoxyacetato-κ2O,O) lead(II), C33H23N4O4ClPb
  56. Crystal structure of pyridinium tetrakis(1,1,1-trifluoro-2,4-pentadionato-κ2O,O′)yttrium(III) C20F12H16YO8C5H6N
Downloaded on 10.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0353/html?lang=en
Scroll to top button