Startseite Crystal structure of 1,1-bis(η5-adamantylcyclopentadienyl)-3-phenyl-2-trimethylsilyl-2,3-dihydroisotitanazole, C42H55NSiTi
Artikel Open Access

Crystal structure of 1,1-bis(η5-adamantylcyclopentadienyl)-3-phenyl-2-trimethylsilyl-2,3-dihydroisotitanazole, C42H55NSiTi

  • Manfred Manßen , Marc Schmidtmann und Rüdiger Beckhaus EMAIL logo
Veröffentlicht/Copyright: 13. Mai 2017

Abstract

C42H55NSiTi, triclinic, P1̅ (no. 2), a = 9.2556(4) Å, b = 12.5048(5) Å, c = 15.7350(7) Å, α = 69.6151(13)°, β = 85.3502(14)°, γ = 83.8861(14)°, V = 1695.51(13) Å3, Z = 2, Rgt(F) = 0.0334, wRref(F2) = 0.0885, T = 100(2) K.

CCDC no.:: 1543470

The asymmetric unit of the title crystal structure is shown in the figure. Hydrogen atoms are omitted for clarity. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Green block
Size:0.36 × 0.24 × 0.16 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:3.2 cm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
2θmax, completeness:70°, >99%
N(hkl)measured, N(hkl)unique:32114, 32114
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 28454
N(param)refined:418
Programs:Bruker programs [1], SHELX [2]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Ti10.35939(2)0.25596(2)0.27314(2)0.00837(3)
Si10.62020(3)0.37181(2)0.33914(2)0.01040(5)
N10.44596(8)0.37739(6)0.30401(5)0.01022(11)
C10.28537(9)0.24738(7)0.12846(5)0.01080(13)
C20.39936(9)0.16056(7)0.15786(6)0.01219(14)
H20.39190.08100.17200.015*
C30.52689(9)0.21123(8)0.16296(6)0.01355(14)
H30.61770.17160.18390.016*
C40.49456(9)0.33129(8)0.13116(6)0.01312(14)
H40.56110.38690.12430.016*
C50.34655(9)0.35377(7)0.11154(6)0.01199(14)
H50.29550.42750.09050.014*
C60.12832(9)0.23142(7)0.11884(6)0.01076(13)
H60.07570.22150.17880.013*
C70.05216(9)0.33657(7)0.04764(6)0.01313(14)
H70.06340.40690.06220.016*
C8−0.11038(10)0.31994(8)0.04948(6)0.01599(15)
H8A−0.15530.31140.11050.019*
H8B−0.16010.38800.00490.019*
C9−0.12868(10)0.21289(8)0.02625(6)0.01504(15)
H9−0.23450.20210.02770.018*
C10−0.05203(10)0.10865(8)0.09668(6)0.01559(15)
H10A−0.06470.03860.08330.019*
H10B−0.09620.09970.15800.019*
C110.11101(9)0.12405(7)0.09462(6)0.01308(14)
H110.16020.05520.14010.016*
C120.11990(10)0.35046(9)−0.04759(6)0.01712(16)
H12A0.22440.3623−0.04970.021*
H12B0.07130.4184−0.09280.021*
C13−0.05990(11)0.22650(10)−0.06878(6)0.01944(18)
H13A−0.10930.2935−0.11450.023*
H13B−0.07190.1576−0.08390.023*
C140.17929(10)0.13840(9)−0.00047(7)0.01726(16)
H14A0.16960.0688−0.01520.021*
H14B0.28420.1487−0.00200.021*
C150.10269(10)0.24305(10)−0.07083(6)0.01853(17)
H150.14750.2523−0.13270.022*
C160.26417(9)0.17175(7)0.43676(5)0.01074(13)
C170.40601(9)0.12254(7)0.42704(6)0.01205(14)
H170.48830.12890.45680.014*
C180.40638(10)0.06196(7)0.36568(6)0.01368(14)
H180.48830.02170.34680.016*
C190.26247(10)0.07250(7)0.33782(6)0.01382(14)
H190.22960.03850.29830.017*
C200.17656(9)0.14250(7)0.37912(6)0.01259(14)
H200.07640.16630.37000.015*
C210.21769(9)0.24104(7)0.49726(6)0.01104(13)
H210.25530.31810.46780.013*
C220.05111(9)0.25946(7)0.51189(6)0.01295(14)
H220.00590.29460.45170.016*
C230.01917(11)0.34082(8)0.56658(7)0.01754(16)
H23A0.06060.41460.53300.021*
H23B−0.08730.35620.57450.021*
C240.08556(10)0.28741(8)0.66007(6)0.01574(15)
H240.06360.34080.69510.019*
C250.25063(10)0.26704(8)0.64621(6)0.01523(15)
H25A0.29530.23300.70590.018*
H25B0.29240.34090.61330.018*
C260.28435(9)0.18613(7)0.59168(6)0.01133(13)
H260.39210.17220.58350.014*
C27−0.01438(10)0.14560(8)0.56502(6)0.01439(15)
H27A−0.12100.15930.57370.017*
H27B0.00450.09250.53040.017*
C280.02163(10)0.17311(8)0.71235(6)0.01608(15)
H28A−0.08480.18610.72220.019*
H28B0.06490.13830.77240.019*
C290.21932(10)0.07186(7)0.64333(6)0.01286(14)
H29A0.24080.01930.60840.015*
H29B0.26400.03570.70280.015*
C300.05427(10)0.09197(8)0.65778(6)0.01349(14)
H300.01300.01730.69190.016*
C310.34483(9)0.47561(7)0.30921(6)0.01141(13)
H310.33930.47390.37340.014*
C320.38784(9)0.59398(7)0.24793(6)0.01142(13)
C330.42535(10)0.61815(8)0.15569(6)0.01477(15)
H330.42830.55910.13040.018*
C340.45840(10)0.72734(8)0.10045(6)0.01726(16)
H340.48550.74220.03810.021*
C350.45181(11)0.81519(8)0.13659(7)0.02050(18)
H350.47350.89010.09890.025*
C360.41346(12)0.79252(8)0.22781(7)0.02068(18)
H360.40830.85210.25260.025*
C370.38233(10)0.68227(8)0.28334(7)0.01584(15)
H370.35710.66730.34590.019*
C380.73137(10)0.23770(8)0.33748(8)0.01997(18)
H38A0.67240.17220.36330.030*
H38B0.81710.22560.37350.030*
H38C0.76260.24540.27480.030*
C390.73053(11)0.49011(9)0.26585(7)0.02071(18)
H39A0.73550.49100.20310.031*
H39B0.82900.47770.28800.031*
H39C0.68480.56360.26800.031*
C400.61472(12)0.37536(11)0.45757(7)0.0241(2)
H40A0.56260.44720.45910.036*
H40B0.71420.37020.47660.036*
H40C0.56440.31060.49890.036*
C410.19439(9)0.46138(7)0.28591(6)0.01302(14)
H410.1172(15)0.5245(12)0.2843(9)0.018(3)*
C420.17073(9)0.37173(7)0.26282(6)0.01207(14)
H420.0735(16)0.3664(13)0.2483(10)0.022(4)*

Source of material

All reactions were carried out under a dry nitrogen atmosphere using Schlenk-technique. Bis(adamantylidenepentafulvene)titanium was prepared by procedures reported previously [3, 4] . Bis(adamantylcyclopentadienyl)titanium-η2(N-benzylidenetrimethylsilylamine) was prepared by reaction of bis(adamantylidenepentafulvene)titanium with N-benzyltrimethylsilylamine as described for N-methylanilines at 60 °C for 3 d [4]. For the target compound a suspension of bis(adamantylcyclopentadienyl)titanium-η2-(N-benzylidenetrimethylsilylamine) (250 mg, 0.385 mmol) in 10 mL n-hexane was stirred under acetylene (1 atm.) for 15 min at room temperature, forming a brown suspension. The brown product was separated, washed with n-hexane and dried in vacuum.

Experimental details

The measured crystal was twinned non-merohedrally. The data were processed accordingly and refined against F2 in the HKLF5 format of the SHELX program [2]. All hydrogen atoms were located in the difference Fourier syntheses, and subsequently fixed to geometric positions using appropiate riding models.

Comment

Titanaaziridines are used in a variety of organic synthesis methods [5, 6] . In this context, the hydroaminoalkylation of alkenes, in which the insertion of the alkene into the Ti—C bond of the titanaaziridine is supposed to be the C—C forming step [7], [8], [9], [10], is likely the most important one. To the best of our knowledge, reactions of titanaaziridines and alkynes in the catalytic hydroaminoalkylation have not been reported until now. However, in stochiometric reactions there are a few examples of 5-membered ring insertion products [4, 11, 12]. Usually, such products are generated from mono and doubly aryl, alkyl- and trimethylsilyl-substituted alkynes. Here, we present the crystal structure of a dihydroisotitanazole, which was synthesized from bis(adamantylcyclopentadienyl)titanium-η2(N-benzylidene-trimethylsilylamine) and acetylene. This is the first structurally characterized dihydroisotitanazole employing the smallest possible substituted alkyne acetylene.

The Ti1—N1 (2.0049(7) Å) and the Ti1—C42 (2.1248(9) Å) bonds are in the expected range of dihydroisotitanazoles [4, 12] . The former acetylene C—C triple bond is now elongated to a typical C—C double bond with 1.3363(12) Å between C41—C42 in the insertion product [13]. The newly formed bond C31—C41 (1.5120(12) Å) is in accordance with a single bond [13]. The 5-membered ring (Ti1-N1-C31-C32-C42) is almost planar. Due to the strain of the ring, the angle N1—Ti1—C42 (81.34(3)°) differs significantly from the angle of an ideal pentagon (108°). Consequently, the titanium center has a distorted tetrahedral coordination.

References

1 Bruker. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA (2012).Suche in Google Scholar

2 Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central

3 Diekmann, M.; Bockstiegel, G.; Lützen, A.; Friedemann, M.; Haase, D.; Saak, W.; Beckhaus, R.: Chiral bis(η5:η1-pentafulvene)titanium complexes. Organometallics 25 (2006) 339–348.10.1021/om050815mSuche in Google Scholar

4 Manßen, M.; Lauterbach, N.; Dörfler, J.; Schmidtmann, M.; Saak, W.; Doye, S.; Beckhaus, R.: Efficient access to titanaaziridines by C—H activation of N-methylanilines at ambient temperatures. Angew. Chem. Int. Ed. 54 (2015) 4383–4384.10.1002/anie.201500796Suche in Google Scholar PubMed

5 See Ref. 4. and references therein.Suche in Google Scholar

6 Loose, F.; Plettenberg, I.; Haase, D.; Saak, W.; Schmidtmann, S.; Schäfer, A.; Müller, T.; Beckhaus, R.: Aromatic imines in the titanocene coordination sphere − titanaaziridine vs 1-aza-2-titanacyclopent-4-ene structures. Organometallics 33 (2014) 6785–6795.10.1021/om500750ySuche in Google Scholar

7 Chong, E.; Garcia, P.; Schafer, L. L.: Hydroaminoalkylation: early-transition-metal-catalyzed α-alkylation of amines. Synthesis 21 (2014) 2884–2896.10.1055/s-0034-1379216Suche in Google Scholar

8 Prochnow, I.; Kubiak, R.; Frey, O. N.; Beckhaus, R.: Tetrabenzyltitanium: an improved catalyst for the activation of sp3 C—H bonds adjacent to nitrogen atoms. ChemCatChem 1 (2009) 162–172.10.1002/cctc.200900092Suche in Google Scholar

9 Prochnow, I.; Zark, P.; Müller, T.; Doye, S.: The mechanism of the titanium-catalyzed hydroaminoalkylation of alkenes. Angew. Chem. Int. Ed. 50 (2011) 6401–6405.10.1002/anie.201101239Suche in Google Scholar PubMed

10 Roesky, P. W.: Catalytic hydroaminoalkylation. Angew. Chem. Int. Ed. 48 (2009) 4892–4894.10.1002/anie.200900735Suche in Google Scholar PubMed

11 See Ref. 10. and references therein.Suche in Google Scholar

12 Loose, F.; Schmidtmann, M.; Saak, W.; Beckhaus, R.: Imines in the titanium coordination sphere: highly reactive titanaa-ziridines and larger titanacycles formed by subsequent C—C coupling reactions. Eur. J. Inorg. Chem. 2015 (2015) 5171–5187.10.1002/ejic.201500805Suche in Google Scholar

13 March, J.: Advanced organic chemistry, 4th ed. Wiley, New York (1992).Suche in Google Scholar

Received: 2016-12-19
Accepted: 2017-4-18
Published Online: 2017-5-13
Published in Print: 2017-7-26

©2017 Manfred Manßen et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Artikel in diesem Heft

  1. Cover and Frontmatter
  2. Crystal structure of poly[diaqua-(μ2-4,4′-bipyridine-κ2N:N′)manganese(II)] bis(4-chlorobenzenesulfonate) – 4,4′-bipyridine – water (1/1/2) C42H40Cl2MnN6O10S2
  3. The crystal structure of 1,2-bis[2-methyl-5-(3-cyanophenyl)-3-thienyl]-3,3,4,4,5,5-hexafluoro-cyclopent-1-ene, C29H16F6N2S2
  4. Crystal structure of the first characterized polymeric copper and sodium complex diaqua-(tris-acetato-κO,O′)(μ2-acetato-κO′′)dinatrium copper(II) monohydrate, C8H18CuNa2O11
  5. The crystal structure of the Schiff base (E)-2,6-diisopropyl-N-(pyridin-3-yl-methylene)aniline, C18H22N2
  6. Crystal structure of methyl 2,7,7-trimethyl-4-(4-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carboxylate, C20H22N2O5
  7. Crystal structure of bis(1,3-bis(diphenylphosphino)propane-κ2P,P′)silver(I) trifluorosulfonate–methanol (1:0.5), [Ag(C27H26P2)]SO3CF3⋅0.5CH3OH
  8. Crystal structure of μ-1,4-bis(diphenylphosphine)butane-2,9-dimethyl-1,10-phenanthroline-κ2N:N′-bis(cyano-κC)dicopper(I)]-water, C58H56Cu2N6O2P2
  9. Crystal structure of N2,N6-bis(1-hydrazinyl-2-methyl-1-oxopropan-2-yl) pyridine-2,6-dicarboxamide, C15H23N7O4
  10. Crystal structure of 1,3-dimethyl-2-phenyl-1H-perimidin-3-ium iodide, C19H17IN2
  11. Crystal structure of diaqua-(2,2′-(butane-1,4-diyl)-bis(5-carboxy-1H-imidazole-4-carboxylato)-κ4O,O′,N,N′)cadmium(II) monohydrate, C14H18O11N4Cd
  12. Crystal structure of ethyl (E)-3-(cyclopropylamino)-2-(2,4-dichloro-5-fluorobenzoyl) acrylate, C15H14Cl2FNO3
  13. Crystal structure of bis-(1-(4-chlorophenyl)-3-phenyl-4-thenoyl-1H-pyrazol-5-ol-κ2O,O′)-(N,N-dimethylformamide)zinc(II), C43H31Cl2N5O5S2Zn
  14. Crystal structure of tetrakis(μ3-2-(N-(2-hydroxyethyl)amino)ethoxo)-tetrachloro-tetra-cobalt(II) methanol solvate, C17H44Cl4Co4N4O9
  15. Crystal structure of 3-amino-1-(4-bromophenyl)-9-methoxy-1H-benzo[f]chromene-2-carbonitrile, C21H15BrN2O2
  16. Crystal structure of 2-amino-4-(4-isopropyl-phenyl)-3-cyano-5-oxo-4H,5H-pyrano[3,2-c]chromene, C22H18N2O3
  17. Crystal structure of 3-amino-8-methoxy-1-(4-methoxy phenyl)-1H-benzo[f]chromene-2-carbonitrile, C22H18N2O3
  18. Crystal structure of monoaqua-[6,6′-((1E,1′E)-(1,2-phenylene bis(azanylylidene))bis(methanylylidene))bis(4-bromo-2-nitrophenolato-κ4N,N′,O,O′)]zinc(II), C20H12Br2N4O7Zn
  19. Crystal structure of 11-(4-(dimethylamino)phenyl)-17-hydroxy-13-methyl-17-(prop-1-yn-1-yl)-1,2,6,7,8,11,12,13,14,15,16,17-dodecahydro-3H-cyclopenta[a]phenanthren-3-one – acetonitril (1/2), C33H41N3O2
  20. Crystal structure of tert-butyl (phenylsulfinyl)carbamate, C11H15NO3S
  21. Crystal structure of catena-poly{diaqua-bis(3-(1H-1,2,4-triazol-1-yl)benzoato-κ2O:N)copper(II)} monohydrate, C18H18CuN6O7
  22. Crystal structure of tetraaqua-bis(3-(4H-1,2,4-triazol-4-yl)benzoato-κN)cobalt(II), C18H20CoN6O8
  23. The crystal structure of 4-bromo-N-cyclopropyl-2,5-difluorobenzenesulfonamide, C9H8BrF2NO2S
  24. Crystal structure of ([3,3′-bipyridine]-6,6′-dicarboxylato-κ2O:O′)-bis(1,2-bis(4-pyridyl)ethane-κ2N:N′)disilver(I) dihydrate, C37H35Ag2N5O6
  25. The crystal structure of (4-(1H-1,2,4-triazol-1-yl)benzoato-κN)-[4-(1H-1,2,4-triazol-1-yl)benzoic acid-κN]silver(I), C18H13AgN6O4
  26. Crystal structure of 3-(4-methoxyphenyl)-1-(4-methylphenyl)prop-2-en-1-one, C17H16O2
  27. Crystal structure of bis(2-((E)-((4-((E)-1-(ethoxyimino)ethyl)phenyl)imino)methyl)-5-methoxyphenolato-κ2O,N)copper(II), C36H38CuN4O6
  28. Crystal structure of poly[1,2-bis(1,2,4-triazol-4-yl)ethane-κ2N:N′]silver(I) bromate monohydrate]silver(I), C6H10AgBrN6O4
  29. The crystal structure of 2,3,5-triphenyl-2,3-dihydro-1H-tetrazol-1-ium 2,3-dioxoindoline-5-sulfonate, C27H19N5O5S
  30. Crystal structure of 3-(2-amino-1,3-selenazol-4-yl)-2H-chromen-2-one – dimethylformamide (1/1), C15H15N3O3Se
  31. Crystal structure of diethyl 3,3′-(diazene-1,2-diyl)(E)-dibenzoate, C18H18N2O4
  32. Crystal structure of cis-bis((1H-benzimidazol-2-yl)methanol-κN,O)-bis(isothiocyanato-κN)nickel(II), C18H16N6NiO2S2
  33. Crystal structure of bis(2-(2′-hydroxy-5′-methoxyphenyl)-1H-benzimidazole)boron – tetrahydrofuran (1/1), C36H37N4O6B
  34. Crystal structure of poly[aqua-bis(nitrato-κ2O,O′)-(μ3-1,3-benzimidazol-3-ium-1,3-diacetato-κ4O,O′:O′′:O′′′)dysprosium(III)], C11H11DyN4O11
  35. Crystal structure of n-butyl-tris(dicyclo-hexylamido)hafnium(IV), C40H75HfN3
  36. Crystal structure of (E)-1-[1-(3-chloro-4-fluoro-phenyl)ethylidene]-2-(2,4-dinitrophenyl)hydrazine, C28H20Cl2F2N8O8
  37. The crystal structure of ethyl 4-((2-hydroxybenzyl)amino)benzoate, a Schiff base, C16H17NO3
  38. Crystal structure of 3-(2-(4-isobutylphenyl)propanoyl)-1-methylimidazolidine-2,4-dione, C17H22N2O3
  39. Crystal structure of poly[(μ3-2-(pyrazin-2-ylthio)acetato-κ3N:O:S)silver(I)], C6H5AgN2O2S
  40. Crystal structure of (E)-1-(3-((E)-((2-hydroxynaphthalen-1-yl)methylene)amino)phenyl)ethanone O-benzyl oxime, C26H22N2O2
  41. Crystal structure of (E)-2,3-dihydroxybenzaldehyde O-(2-((((E)-1-(2,5-dihydroxyphenyl)ethylidene)amino)oxy)ethyl) oxime monohydrate, C17H20N2O7
  42. Crystal structure of 4-(chloromethyl)-3-nitrobenzoic acid, C8H6ClNO4
  43. Crystal stucture of 4-((10H-phenothiazin-10-yl)methyl)-2,6-di-tert-butylphenol, C27H31NOS
  44. The crystal structure of ethyl 1-(4-nitrophenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylate, C13H10F3N3O4
  45. Crystal structure of catena-poly[di-(μ3-oxido-κ3O:O:O)-tetraoxido-(μ2-5′-(pyrazin-2-yl)-1H,2′H-3,3′-bi(1,2,4-triazole)-κ2N:N′)dimolybdenum(VI)], C8H6Mo2N8O6
  46. Crystal structure of (3,6-dioxocyclohexa-1,4-diene-1,4-bis(olato)-κ4O,O′:O′′,O′′′)-bis(tris(2-pyridylmethyl)amine-κ4N,N′,N′′,N′′′))-dizinc(II) bis(hexafluorophosphate(V)), C42H38F12N8O4P2Zn2
  47. Crystal structure of catena-poly[hexakis(μ2-2-acetylphenolato-κ3O:O,O′)trimanganese(II)], C48H42Mn3O12
  48. The crystal structure of 2,2-difluoro-4-(trifluoromethyl)-2,5-dihydro-[1,3,2]dioxaborinino[5,4-c]chromen-3-ium-2-uide, C11H6BF5O3
  49. Crystal structure of methyl (E)-2-(4-(diethylamino)-2-hydroxybenzylidene)hydrazine-1-carboxylate, C13H19N3O3
  50. The crystal structure of tert-butyl 2,6-dihydropyrrolo[3,4-c]pyrazole-5(4H)-carboxylate, C10H15N3O2
  51. Crystal structure of 1,1-bis(η5-adamantylcyclopentadienyl)-3-phenyl-2-trimethylsilyl-2,3-dihydroisotitanazole, C42H55NSiTi
  52. Crystal structure of 2-(4-(2-(4-benzylpiperazin-1-yl)ethyl)benzyl)isoindoline-1,3-dione, C28H29N3O2
  53. Important impurity of Flupirtine – a single crystal study on ethyl (6-amino-5-((ethoxycarbonyl)amino)pyridin-2-yl)(4-fluorobenzyl)carbamate, C18H21FN4O4
  54. Crystal structure of ethyl 3-(4-methoxyphenyl)-1-(2-(4-methoxyphenyl)-2-oxoethyl)-1H-pyrazole-5-carboxylate, C22H22N2O5
  55. Crystal structure of 2,3,9,10-tetramethoxy-5,6-dihydroisoquinolino[2,1-b]isoquinolin-7-ium 5-hydroxy-3-(4-hydroxyphenyl)-4-oxo-4H-chromen-7-olate methanol solvate, C37H35N1O10
  56. The crystal structure of the inner salt of 2-[(aminoiminomethyl)amino]ethylcarbamic acid [systematic name: (2-((diaminomethylene)ammonio)ethyl)carbamate], C4H10N4O2
  57. Crystal structure of (8-hydroxy-5-nitroquinolinium) perchlorate – 8-hydroxy-5-nitroquinoline (1/1), C18H13ClN4O10
  58. The crystal structure of (5-methyl-1,2,4-oxadiazol-3-yl)ferrocene, C13H12FeN2O
  59. Crystal structure of methyl 1-(2-(fluorosulfonyl)ethyl)-2-oxocyclopentanecarboxylate, C9H13FO5S
  60. Crystal structure of the triclinic modification of 1-methyl-4-nitroimidzole, C4H5N3O2
  61. Corrigendum
  62. Crystal structure of 4-bromo-2-(1H-pyrazol-3-yl)phenol, C9H7BrN2O
Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2016-0404/html
Button zum nach oben scrollen