Home The crystal structure of the inner salt of 2-[(aminoiminomethyl)amino]ethylcarbamic acid [systematic name: (2-((diaminomethylene)ammonio)ethyl)carbamate], C4H10N4O2
Article Open Access

The crystal structure of the inner salt of 2-[(aminoiminomethyl)amino]ethylcarbamic acid [systematic name: (2-((diaminomethylene)ammonio)ethyl)carbamate], C4H10N4O2

  • Irena Matulková , Hana Charvátová , Ivana Císařová and Petr Štěpnička EMAIL logo
Published/Copyright: May 13, 2017

Abstract

C4H10N4O2, orthorhombic, P212121 (no. 19), a = 5.4922(3) Å, b = 7.4024(5) Å, c = 17.5083(10) Å, V = 711.81(7) Å3, Z = 4, Rgt(F) = 0.0395, wRref(F2) = 0.0923, T = 150(2) K.

CCDC no.:: 1546076

Table 1

Data collection and handling.

Crystal:Colourless prism
Size:0.13 × 0.12 × 0.07 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:1.1 cm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
2θmax, completeness:52.2°, >99%
N(hkl)measured, N(hkl)unique, Rint:4642, 1413, 0.036
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 1174
N(param)refined:91
Programs:SHELX [1], PLATON [2], Bruker programs [3, 4]

Parts of the title crystal structure are shown in the figure. The symmetry codes are: 1_465: −1+x, 1+y, z; 1_645: 1+x, −1+y, z; 3_455: −1−x, y+1/2, −z+1/2; 3_555: −x, y+1/2, −z+1/2; 4_545: −x+1/2, −1−y, z+1/2; 4_555: −x+1/2, −y, z+1/2. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
O1−0.2559(3)0.59419(18)0.21013(7)0.0238(4)
O2−0.1834(3)0.51509(19)0.08891(7)0.0239(4)
N1−0.1035(3)0.3179(2)0.18372(9)0.0212(4)
H1N−0.08530.31330.23400.025*
N20.3761(3)0.0938(2)0.06428(9)0.0203(4)
H2N0.35810.09680.01550.024*
N30.5681(3)−0.1746(2)0.04235(9)0.0243(5)
H3N0.5416−0.1602−0.01420.029*
H4N0.6305−0.27740.05840.029*
N40.4964(4)−0.0869(2)0.16612(8)0.0223(4)
H5N0.5674−0.18970.18000.027*
H6N0.4130−0.02080.20200.027*
C10.0044(4)0.1880(3)0.13263(11)0.0205(5)
H1A−0.09500.18100.08560.025*
H1B0.00150.06750.15720.025*
C20.2654(4)0.2343(3)0.11112(11)0.0198(5)
H2A0.26750.34990.08270.024*
H2B0.36280.25040.15820.024*
C30.4777(4)−0.0554(3)0.09168(11)0.0167(5)
C4−0.1833(4)0.4846(3)0.16016(11)0.0182(5)

Source of materials

A suspension of silver(I) carbonate (322 mg, 1.17 mmol) in 25 mL of deionized water was added to an aqueous solution of (2-azoniaethyl)guanidinium dichloride (204 mg, 1.17 mmol in 5 mL) [5]. The resultant mixture was stirred for 60 min and then filtered to remove precipitated AgCl. The colorless filtrate was allowed to crystallize by evaporation in the dark and the resultant off-white solid was dried in the air. Yield: 135 mg (79%).

IR spectrum (DRIFTS): νmax 3437 sh, 3400 br m, 3340 sh, 3281 sh, 3144 br m, 3031 br s, 2979 s, 2316 br w, 2272 vw, 2120 vw, 2084 vw, 1678 s, 1629 m, 1578 m, 1475 s, 1416 m, 1385 m, 1350 s, 1301 s, 1237 m, 1188 m, 1164 m, 1152 sh, 1110 m, 1036 br w, 960 br w, 929 br w, 813 m, 784 m, 757 sh, 699 m, 676 mb, 667 br m, 603 m, 556 m, 498 br m cm−1.

Raman spectrum: νmax 3436 w, 2955 m, 2938 m, 2900 m, 1714 w, 1684 w, 1621 w, 1463 m, 1426 br m, 1384 m, 1350 m, 1307 m, 1238 w, 1187 w, 1162 w, 1110 s, 1035 s, 967 m, 934 vs, 661 m, 596 m, 547 m, 370 m, 350 m, 312 m cm−1.

Experimental details

The structure was solved by direct methods using SHELXS-97 [1] and refined by unrestricted full-matrix least-squares based on F2 with SHELXL-97 [1]. Hydrogen atoms residing on the nitrogen atoms were identified on the difference electron density maps and refined freely as riding atoms with Uiso(H) = 1.2 Ueq(N) [1]. Hydrogens at the methylene groups were included in their calculated positions and refined similarly. The structural drawing and all numerical parameters discussed below were obtained with a recent version of the PLATON program [2].

Comment

Guanidine and guanidinium moieties are the constituents of various naturally occurring and artificial biologically active compounds [6, 7] . Owing to their delocalized nature (6π electrons in a conjugated planar system), they have also found applications in material science, particularly in the design of non-linear optical materials [5], [8], [9], [10] and molecular sensors [11], [12], [13]. In continuation of our studies focused on the non-linear optical properties of hybrid organic-inorganic materials, we have recently reported the synthesis and detailed characterization of salts comprising (2-azoniaethyl)guanidinium cation and simple inorganic anions (viz. Cl, NO3 and ClO4), among which the dichloride exerted favorable non-linear optical properties [5].

In order to extend the series of these prospective materials, we attempted to prepare the corresponding carbonate or the free base for use in further syntheses. The reaction between (2-azoniaethyl)guanidinium dichloride and silver(I) carbonate in water and subsequent crystallization afforded colorless crystals of the title compound, an inner salt of 2-[(aminoiminomethyl)amino]ethylcarbamic acid [systematic name: (2-((diaminomethylene)ammonio)ethyl)carbamate], in which the terminal amine group of (2-aminoethyl)guanidine is converted to the respective carbamic acid and the latter deprotonated by the strongly basic guanidine moiety. Very likely, the compound results via aerial carbonation of the intermediate free base liberated from the starting dichloride upon the action of the basic silver salt.

The compound crystallizes with the symmetry of the non-centrosymmetric space group P212121. However, because of an absence of heavy atoms in the structure and the conditions of the measurement, the absolute structure could not be unequivocally determined.

The guanidinium moiety in the structure of the title compound shows similar (identical within the 3σ-level) C3—N distances (C3—N2 1.327(3), C3—N3 1.331(3), and C3—N4 1.328(2) Å) that compare well with the values reported for guanidinium chloride [14] and suggest an extensive delocalization within the guanidinium subunit. Similarly, the N—C3—N angles do not deviate much from 120°, with the maximum departure from the ideal value being observed for the N2—C3—N4 angle (122.24(19)°) which, however, appears to be affected by the substituent attached to the nitrogen atom N2 (cf. N2—C3—N3 = 118.30(17)°, and N3—C3—N4 = 119.45(19)°).

The geometry of the carbamate unit also points to a delocalized nature of the terminal carboxylate moiety (C4—O1 = 1.258(2) Å, C4—O2 = 1.268(2) Å). Together with the C4—N1 bond length, which is longer than both C—O bonds (C4—N1 = 1.373(3) Å), these parameters correspond with the data reported for e.g., N-(2-ammonioethyl)carbamate [15], cyclohexanaminium cyclohexylcarbamate [16], and benzylammonium benzylaminocarboxylate [17]. Presumably because of an electrostatic repulsion of the negatively charged oxygen atoms, the O1—C4—O2 angle is the most opened angle in the Y-shaped carbamate unit (124.7(2)°). Nonetheless, this opening is compensated by a closure of the O—C—N angles (O1—C4—N1 = 118.15(17)°, and O2—C4—N1 = 117.12(18)°) though without any notable distortion from an overall planar arrangement of the carbamate moiety (N.B. the non-hydrogen atoms constituting the guanidinium and carbamate moieties are coplanar within less than 0.01 Å). The ethane-1,2-diyl linker connecting both functional groups adopts an antiperiplanar orientation as indicated by the torsion angle N1—C1—C2—N2 of 175.57(16)°. This leads to a near-to-parallel arrangement of the terminal moieties as evidenced by the dihedral angle of the least-squares planes {C3, N2, N3, N4} and {N1, C4, O1, O2} being 7.07(12)°.

In the crystal, the individual molecules associate into a complicated three-dimensional network via N—H⋯O hydrogen bonds (see the Figure). However, the prevalence of hydrogen bond donors in the structure (NH groups) over the conventional acceptors (carbamate oxygen atoms) results in the formation of multicentered hydrogen-bond interactions (N⋯O = 2.794(2)–2.930(2) Å). It is also noteworthy that all hydrogen bonds are charge-supported, involving the negatively charged carbamate and the cationic guanidinium moieties. While all guanidinium NH groups participate in such hydrogen bonds, the carbamate NH group (N1—H1N) appears to be inappropriately positioned with respect to the neighboring carbamate units and does not take part in intermolecular interactions.

Acknowledgement

Results reported in this paper were obtained with financial support from the Czech Science Foundation (project no. 13-08890S).

References

1 Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

2 Spek, A. L.: Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36 (2003) 7–13.10.1107/S0021889802022112Search in Google Scholar

3 Bruker. SADABS. Bruker AXS Inc., Madison, Wisconsin, USA (2014).Search in Google Scholar

4 Bruker. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA (2013).Search in Google Scholar

5 Matulková, I.; Solařová, H.; Štěpnička, P.; Císařová, I.; Janda, P.; Němec, P.; Němec, I.: (2-Azoniaethyl)guanidinium dichloride – a promising phase-matchable NLO material employing a simple hydrogen bond acceptor in its structure. Opt. Mater. 42 (2015) 39–46.10.1016/j.optmat.2014.11.053Search in Google Scholar

6 Berlinck, R. G. S.; Burtoloso, A. C. B.; Kossuga, M. H.: The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep. 25 (2008) 919–954.10.1039/b507874cSearch in Google Scholar PubMed

7 Saczewski, F.; Balewski, L.: Biological activities of guanidine compounds. Expert Opin. Ther. Patents 19 (2009) 1417–1448.10.1517/13543770903216675Search in Google Scholar PubMed

8 Matulková, I.; Němec, I.; Císařová, I.; Němec, P.; Mička, Z.: Inorganic salts of biguanide − seeking for new materials for second harmonic generation. J. Mol. Struct. 886 (2008) 103–120.10.1016/j.molstruc.2007.11.015Search in Google Scholar

9 Matulková, I.; Němec, I.; Císařová, I.; Němec, P.; Vaněk P.: Organic salts of biguanide – An attempt to crystal engineering of novel materials for second harmonic generation. J. Mol. Struct. 966 (2010) 23–32.10.1016/j.molstruc.2009.11.061Search in Google Scholar

10 Fridrichová, M.; Němec, I.; Matulková, I.; Gyepes, R.; Borodavka. F.; Kroupa, J.; Hlinka, J.; Gregora I.: Vibrational spectra of guanylurea(1+) hydrogen phosphite – Novel remarkable material for nonlinear optics. Vibr. Spectrosc. 63 (2012) 485–491.10.1016/j.vibspec.2012.09.011Search in Google Scholar

11 Blondeau, P.; Segura, M.; Pérez-Fernández, R.; de Mendoza, J.: Molecular recognition of oxoanions based on guanidinium receptors. Chem. Soc. Rev. 36 (2007) 198–210.10.1039/B603089KSearch in Google Scholar

12 Schmuck, C.: How to improve guanidinium cations for oxoanion binding in aqueous solution? The design of artificial peptide receptors. Coord. Chem. Rev. 250 (2006) 3053–3067.10.1016/j.ccr.2006.04.001Search in Google Scholar

13 Houk, R. J. T.; Tobey, S. L.; Anslyn, E. V.: Abiotic guanidinium receptors for anion molecular recognition and sensing. Top. Curr. Chem. 255 (2005) 199–229.10.1007/b101167Search in Google Scholar

14 Haas, D. J.; Harris, D. R.; Mills, H. H.:The crystal structure of guanidinium chloride. Acta Crystallogr. 19 (1965) 676–679.10.1107/S0365110X65004085Search in Google Scholar

15 Garbauskas, M. F.; Goehner, R. P.; Davis, A. M.: The structure of two polymorphs of N-(2-ammonioethyl)carbamate, C3H8N2O2. Acta Crystallogr. C39 (1983) 1684–1686.10.1107/S0108270183009749Search in Google Scholar

16 Mondal, R.; Bhunia, M. K.: The crystal chemistry of 1:1 molecular complexes of carbamate salts formed by slow aerial carbonation of amines. J. Chem. Cryst. 38 (2008) 787–792.10.1007/s10870-008-9391-1Search in Google Scholar

17 Olmstead, M. M.; Franco, J. U.; Pham, D.: Private communication to CCDC (2008) (refcode: HOLDOC).Search in Google Scholar

Received: 2017-1-4
Accepted: 2017-4-26
Published Online: 2017-5-13
Published in Print: 2017-7-26

©2017 Irena Matulková et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Articles in the same Issue

  1. Cover and Frontmatter
  2. Crystal structure of poly[diaqua-(μ2-4,4′-bipyridine-κ2N:N′)manganese(II)] bis(4-chlorobenzenesulfonate) – 4,4′-bipyridine – water (1/1/2) C42H40Cl2MnN6O10S2
  3. The crystal structure of 1,2-bis[2-methyl-5-(3-cyanophenyl)-3-thienyl]-3,3,4,4,5,5-hexafluoro-cyclopent-1-ene, C29H16F6N2S2
  4. Crystal structure of the first characterized polymeric copper and sodium complex diaqua-(tris-acetato-κO,O′)(μ2-acetato-κO′′)dinatrium copper(II) monohydrate, C8H18CuNa2O11
  5. The crystal structure of the Schiff base (E)-2,6-diisopropyl-N-(pyridin-3-yl-methylene)aniline, C18H22N2
  6. Crystal structure of methyl 2,7,7-trimethyl-4-(4-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carboxylate, C20H22N2O5
  7. Crystal structure of bis(1,3-bis(diphenylphosphino)propane-κ2P,P′)silver(I) trifluorosulfonate–methanol (1:0.5), [Ag(C27H26P2)]SO3CF3⋅0.5CH3OH
  8. Crystal structure of μ-1,4-bis(diphenylphosphine)butane-2,9-dimethyl-1,10-phenanthroline-κ2N:N′-bis(cyano-κC)dicopper(I)]-water, C58H56Cu2N6O2P2
  9. Crystal structure of N2,N6-bis(1-hydrazinyl-2-methyl-1-oxopropan-2-yl) pyridine-2,6-dicarboxamide, C15H23N7O4
  10. Crystal structure of 1,3-dimethyl-2-phenyl-1H-perimidin-3-ium iodide, C19H17IN2
  11. Crystal structure of diaqua-(2,2′-(butane-1,4-diyl)-bis(5-carboxy-1H-imidazole-4-carboxylato)-κ4O,O′,N,N′)cadmium(II) monohydrate, C14H18O11N4Cd
  12. Crystal structure of ethyl (E)-3-(cyclopropylamino)-2-(2,4-dichloro-5-fluorobenzoyl) acrylate, C15H14Cl2FNO3
  13. Crystal structure of bis-(1-(4-chlorophenyl)-3-phenyl-4-thenoyl-1H-pyrazol-5-ol-κ2O,O′)-(N,N-dimethylformamide)zinc(II), C43H31Cl2N5O5S2Zn
  14. Crystal structure of tetrakis(μ3-2-(N-(2-hydroxyethyl)amino)ethoxo)-tetrachloro-tetra-cobalt(II) methanol solvate, C17H44Cl4Co4N4O9
  15. Crystal structure of 3-amino-1-(4-bromophenyl)-9-methoxy-1H-benzo[f]chromene-2-carbonitrile, C21H15BrN2O2
  16. Crystal structure of 2-amino-4-(4-isopropyl-phenyl)-3-cyano-5-oxo-4H,5H-pyrano[3,2-c]chromene, C22H18N2O3
  17. Crystal structure of 3-amino-8-methoxy-1-(4-methoxy phenyl)-1H-benzo[f]chromene-2-carbonitrile, C22H18N2O3
  18. Crystal structure of monoaqua-[6,6′-((1E,1′E)-(1,2-phenylene bis(azanylylidene))bis(methanylylidene))bis(4-bromo-2-nitrophenolato-κ4N,N′,O,O′)]zinc(II), C20H12Br2N4O7Zn
  19. Crystal structure of 11-(4-(dimethylamino)phenyl)-17-hydroxy-13-methyl-17-(prop-1-yn-1-yl)-1,2,6,7,8,11,12,13,14,15,16,17-dodecahydro-3H-cyclopenta[a]phenanthren-3-one – acetonitril (1/2), C33H41N3O2
  20. Crystal structure of tert-butyl (phenylsulfinyl)carbamate, C11H15NO3S
  21. Crystal structure of catena-poly{diaqua-bis(3-(1H-1,2,4-triazol-1-yl)benzoato-κ2O:N)copper(II)} monohydrate, C18H18CuN6O7
  22. Crystal structure of tetraaqua-bis(3-(4H-1,2,4-triazol-4-yl)benzoato-κN)cobalt(II), C18H20CoN6O8
  23. The crystal structure of 4-bromo-N-cyclopropyl-2,5-difluorobenzenesulfonamide, C9H8BrF2NO2S
  24. Crystal structure of ([3,3′-bipyridine]-6,6′-dicarboxylato-κ2O:O′)-bis(1,2-bis(4-pyridyl)ethane-κ2N:N′)disilver(I) dihydrate, C37H35Ag2N5O6
  25. The crystal structure of (4-(1H-1,2,4-triazol-1-yl)benzoato-κN)-[4-(1H-1,2,4-triazol-1-yl)benzoic acid-κN]silver(I), C18H13AgN6O4
  26. Crystal structure of 3-(4-methoxyphenyl)-1-(4-methylphenyl)prop-2-en-1-one, C17H16O2
  27. Crystal structure of bis(2-((E)-((4-((E)-1-(ethoxyimino)ethyl)phenyl)imino)methyl)-5-methoxyphenolato-κ2O,N)copper(II), C36H38CuN4O6
  28. Crystal structure of poly[1,2-bis(1,2,4-triazol-4-yl)ethane-κ2N:N′]silver(I) bromate monohydrate]silver(I), C6H10AgBrN6O4
  29. The crystal structure of 2,3,5-triphenyl-2,3-dihydro-1H-tetrazol-1-ium 2,3-dioxoindoline-5-sulfonate, C27H19N5O5S
  30. Crystal structure of 3-(2-amino-1,3-selenazol-4-yl)-2H-chromen-2-one – dimethylformamide (1/1), C15H15N3O3Se
  31. Crystal structure of diethyl 3,3′-(diazene-1,2-diyl)(E)-dibenzoate, C18H18N2O4
  32. Crystal structure of cis-bis((1H-benzimidazol-2-yl)methanol-κN,O)-bis(isothiocyanato-κN)nickel(II), C18H16N6NiO2S2
  33. Crystal structure of bis(2-(2′-hydroxy-5′-methoxyphenyl)-1H-benzimidazole)boron – tetrahydrofuran (1/1), C36H37N4O6B
  34. Crystal structure of poly[aqua-bis(nitrato-κ2O,O′)-(μ3-1,3-benzimidazol-3-ium-1,3-diacetato-κ4O,O′:O′′:O′′′)dysprosium(III)], C11H11DyN4O11
  35. Crystal structure of n-butyl-tris(dicyclo-hexylamido)hafnium(IV), C40H75HfN3
  36. Crystal structure of (E)-1-[1-(3-chloro-4-fluoro-phenyl)ethylidene]-2-(2,4-dinitrophenyl)hydrazine, C28H20Cl2F2N8O8
  37. The crystal structure of ethyl 4-((2-hydroxybenzyl)amino)benzoate, a Schiff base, C16H17NO3
  38. Crystal structure of 3-(2-(4-isobutylphenyl)propanoyl)-1-methylimidazolidine-2,4-dione, C17H22N2O3
  39. Crystal structure of poly[(μ3-2-(pyrazin-2-ylthio)acetato-κ3N:O:S)silver(I)], C6H5AgN2O2S
  40. Crystal structure of (E)-1-(3-((E)-((2-hydroxynaphthalen-1-yl)methylene)amino)phenyl)ethanone O-benzyl oxime, C26H22N2O2
  41. Crystal structure of (E)-2,3-dihydroxybenzaldehyde O-(2-((((E)-1-(2,5-dihydroxyphenyl)ethylidene)amino)oxy)ethyl) oxime monohydrate, C17H20N2O7
  42. Crystal structure of 4-(chloromethyl)-3-nitrobenzoic acid, C8H6ClNO4
  43. Crystal stucture of 4-((10H-phenothiazin-10-yl)methyl)-2,6-di-tert-butylphenol, C27H31NOS
  44. The crystal structure of ethyl 1-(4-nitrophenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylate, C13H10F3N3O4
  45. Crystal structure of catena-poly[di-(μ3-oxido-κ3O:O:O)-tetraoxido-(μ2-5′-(pyrazin-2-yl)-1H,2′H-3,3′-bi(1,2,4-triazole)-κ2N:N′)dimolybdenum(VI)], C8H6Mo2N8O6
  46. Crystal structure of (3,6-dioxocyclohexa-1,4-diene-1,4-bis(olato)-κ4O,O′:O′′,O′′′)-bis(tris(2-pyridylmethyl)amine-κ4N,N′,N′′,N′′′))-dizinc(II) bis(hexafluorophosphate(V)), C42H38F12N8O4P2Zn2
  47. Crystal structure of catena-poly[hexakis(μ2-2-acetylphenolato-κ3O:O,O′)trimanganese(II)], C48H42Mn3O12
  48. The crystal structure of 2,2-difluoro-4-(trifluoromethyl)-2,5-dihydro-[1,3,2]dioxaborinino[5,4-c]chromen-3-ium-2-uide, C11H6BF5O3
  49. Crystal structure of methyl (E)-2-(4-(diethylamino)-2-hydroxybenzylidene)hydrazine-1-carboxylate, C13H19N3O3
  50. The crystal structure of tert-butyl 2,6-dihydropyrrolo[3,4-c]pyrazole-5(4H)-carboxylate, C10H15N3O2
  51. Crystal structure of 1,1-bis(η5-adamantylcyclopentadienyl)-3-phenyl-2-trimethylsilyl-2,3-dihydroisotitanazole, C42H55NSiTi
  52. Crystal structure of 2-(4-(2-(4-benzylpiperazin-1-yl)ethyl)benzyl)isoindoline-1,3-dione, C28H29N3O2
  53. Important impurity of Flupirtine – a single crystal study on ethyl (6-amino-5-((ethoxycarbonyl)amino)pyridin-2-yl)(4-fluorobenzyl)carbamate, C18H21FN4O4
  54. Crystal structure of ethyl 3-(4-methoxyphenyl)-1-(2-(4-methoxyphenyl)-2-oxoethyl)-1H-pyrazole-5-carboxylate, C22H22N2O5
  55. Crystal structure of 2,3,9,10-tetramethoxy-5,6-dihydroisoquinolino[2,1-b]isoquinolin-7-ium 5-hydroxy-3-(4-hydroxyphenyl)-4-oxo-4H-chromen-7-olate methanol solvate, C37H35N1O10
  56. The crystal structure of the inner salt of 2-[(aminoiminomethyl)amino]ethylcarbamic acid [systematic name: (2-((diaminomethylene)ammonio)ethyl)carbamate], C4H10N4O2
  57. Crystal structure of (8-hydroxy-5-nitroquinolinium) perchlorate – 8-hydroxy-5-nitroquinoline (1/1), C18H13ClN4O10
  58. The crystal structure of (5-methyl-1,2,4-oxadiazol-3-yl)ferrocene, C13H12FeN2O
  59. Crystal structure of methyl 1-(2-(fluorosulfonyl)ethyl)-2-oxocyclopentanecarboxylate, C9H13FO5S
  60. Crystal structure of the triclinic modification of 1-methyl-4-nitroimidzole, C4H5N3O2
  61. Corrigendum
  62. Crystal structure of 4-bromo-2-(1H-pyrazol-3-yl)phenol, C9H7BrN2O
Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2017-0003/html
Scroll to top button