Home Crystal structure of 3,5,7-tris(morpholinomethyl)tropolone·0.67 hydrate, C22H33N3O5·0.67H2O
Article Open Access

Crystal structure of 3,5,7-tris(morpholinomethyl)tropolone·0.67 hydrate, C22H33N3O5·0.67H2O

  • Marietjie Schutte-Smith EMAIL logo , Paul Severin Eselem Bungu , Gideon Steyl and Andreas Roodt
Published/Copyright: May 31, 2016

Abstract

C22H33N3O5·0.67H2O, monoclinic, P21/c, a = 11.9915(6) Å, b = 18.9934(10) Å, c = 10.5332(5) Å, β = 112.155(2)°, V = 2221.91(19) Å3, Z = 4, Rgt(F) = 0.0417, wRref(F2) = 0.1139, T = 100(2) K.

CCDC no.:: 894479

The asymmetric unit of the title structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Yellow, plate Size 0.44 × 0.31 × 0.08 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.9 cm−1
Diffractometer, scan mode:Bruker APEX II, φ and ω
2θmax, completeness:55.4°, >99%
N(hkl)measured, N(hkl)unique, Rint:47649, 5344, 0.045
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 4142
N(param)refined:292
Programs:Bruker programs [35], SHELX [36], WinGX [37], publCIF [38], PLATON [39]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
O10.39736(8)0.11061(5)0.21802(9)0.0216(2)
O20.28806(8)0.22558(5)0.11278(9)0.0226(2)
O30−0.02112(8)0.31672(6)−0.35103(10)0.0286(2)
O700.86587(9)−0.08961(5)0.22705(10)0.0280(2)
O500.73553(10)0.06074(6)−0.36038(11)0.0348(3)
N500.71576(10)0.14669(6)−0.14634(11)0.0192(2)
N300.23099(9)0.31518(6)−0.18441(11)0.0164(2)
N700.71684(9)0.02655(6)0.23533(10)0.0179(2)
C40.50472(11)0.24913(7)−0.05380(12)0.0177(3)
H40.50250.2825−0.11940.021*
C510.69056(11)0.21264(7)−0.08938(13)0.0192(3)
H51A0.65970.2471−0.16230.023*
H51B0.7650.2309−0.02220.023*
C30.41070(11)0.25544(7)−0.00536(12)0.0165(3)
C10.44476(11)0.14465(7)0.14896(12)0.0169(3)
C50.59955(11)0.20249(7)−0.02175(12)0.0170(3)
C320.15966(12)0.38163(7)−0.21589(14)0.0227(3)
H32A0.21050.4206−0.22010.027*
H32B0.12990.3914−0.14390.027*
C350.15039(11)0.25409(7)−0.19074(13)0.0201(3)
H35B0.12020.2579−0.11760.024*
H35A0.19580.2106−0.17790.024*
C750.77975(13)−0.01676(8)0.35678(14)0.0247(3)
H75A0.7275−0.05450.36280.03*
H75B0.80080.01180.43880.03*
C70.55900(11)0.12085(7)0.14749(12)0.0171(3)
C20.38015(11)0.21045(7)0.08333(12)0.0172(3)
C530.63868(14)0.05226(8)−0.31342(17)0.0316(3)
H53B0.66060.017−0.24160.038*
H53A0.56780.0357−0.38850.038*
C60.62381(11)0.14724(7)0.07443(13)0.0181(3)
H60.69680.12450.09170.022*
C310.33490(11)0.32147(7)−0.04899(12)0.0176(3)
H31B0.30380.33340.0210.021*
H31A0.38610.36−0.05440.021*
C340.04610(12)0.25248(8)−0.32732(14)0.0239(3)
H34B0.07620.2454−0.39990.029*
H34A−0.00630.2133−0.32920.029*
C520.60946(12)0.12047(8)−0.25896(14)0.0250(3)
H52A0.58290.1552−0.33190.03*
H52B0.54460.1128−0.22670.03*
C740.89261(13)−0.04732(8)0.34678(15)0.0282(3)
H74B0.9459−0.00930.34480.034*
H74A0.9341−0.07570.42740.034*
C730.80074(12)−0.04976(7)0.10683(14)0.0243(3)
H73B0.78−0.07990.02690.029*
H73A0.8514−0.01210.09690.029*
C550.81192(12)0.15699(8)−0.19832(15)0.0250(3)
H55B0.88390.174−0.12520.03*
H55A0.78740.1919−0.27080.03*
C330.05461(13)0.37450(8)−0.35204(15)0.0285(3)
H33A0.00780.4176−0.37130.034*
H33B0.0850.3676−0.42440.034*
C710.60834(12)0.05853(7)0.24306(13)0.0197(3)
H71A0.62630.07390.33650.024*
H71B0.54620.02280.22190.024*
C720.68697(12)−0.01874(7)0.11388(14)0.0218(3)
H72A0.64520.00860.03180.026*
H72B0.6339−0.05640.11850.026*
C540.83852(14)0.08795(9)−0.25301(17)0.0340(4)
H54B0.90260.095−0.28680.041*
H54A0.86630.0539−0.1790.041*
O11a0.90093(14)0.13948(9)0.36490(16)0.0327(4)
H11Ba0.848(2)0.1085(13)0.324(3)0.056(9)*
H11Aa0.914(3)0.1613(14)0.301(3)0.057(9)*
H300.2614(15)0.3083(10)−0.2560(19)0.041(5)*

aOccupancy: 0.667

Source of material

A mixture of tropolone (0.46 g, 3.73 mmol) and morpholine (1.18 mL, 13.54 mmol) was treated with 40% aqueous formaldehyde (0.80 mL, 9.61 mmol). After stirring at 60°C for 7 min, a reddish liquid was formed. A yellow precipitate was obtained overnight at ambient temperature. The crude product was crystallized from a ethyl acetate and hexane mixture (1:1), to form 3,5,7-tri(morpholinomethyl) tropolone as yellow crystals, (1.45 g, 3.47 mmol, 92.85% yield). MS: m/z 420.3; 1H NMR (300 MHz, CD2Cl2) δ 7.87,(s, 2H), 3.76–3.72 (m, 8H), 3. 71 (s, 4H), 3.70–3.66 (m, 4H), 3.51 (s, 2H), 2.54 (dd, J = 5.4, 3.9 Hz, 8H), 2.50–2.43 (m, 4H) ppm; 13C NMR (300 Mhz, CD2Cl2) δ 168.35, 138.91, 135.70, 132.86, 67.10, 66.94, 59.46, 53,73, 53.35, 52.76.

Experimental details

Aromatic and methylene hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) with C—H distances of 0.93 Å and 0.97 Å respectively. The hydrogen atoms of the water molecule were located from the electron density map.

Discussion

Tropolone, a hydroxide derivative of tropone, is a functional moiety found in a large number of natural products such as colchicine used for the treatment of gout [1, 2]. Tropolone and its derivatives have been reported as antimicrobial agents. It also possess antiviral, antitumor, antioxidant and enzyme inhibiting properties [37]. The title compound exhibit antiviral activities [7], while the isopropyl derivatives of tropolone (β-thujaplicin and γ-thujaplicin) were reported to have antifungal and antibacterial properties [6]. Thus these derivatives are used in the preservation of wood [8, 9].

The title compound consists of a tropolone core with three methyl morpholine moieties bound to it at C3, C5 and C7 of the backbone, with additional water (0.67 occupancy) completing the asymmetric unit, as shown in the figure. Earlier in the 1970′s, Shimanouchi et al. reported the molecular structure of tropolone [10, 11]. When comparing this structure to that of tropolone, some slight deviations were observed within the tropolone core. The C1—O1 and C2—O2 bond distances of the title compound of 1.257(2) Å and 1.285(2) Å compare well to that reported for the tropolone structure with C1—O1 and C2—O2 calculated as 1.2603(5) Å and 1.3333(7) Å respectively. The C1—C2 bond distance of the structure reported here and the structure of tropolone are determined as 1.496(2) Å and 1.4542(5) Å respectively and also compare well. All the bond distances and angles are in agreement to similar structures in literature [12, 13]. 3,5,7-tris(morpholinomethyl)tropolone was coordinated to the rhodium(I) showing bond angles and bond distances in the metal complex similar to the uncoordinated molecule [14]. Although, the C—O distances of the coordinated ligand is slightly longer at 1.31 Å (1.257 Å and 1.287 Å for the uncoordinated molecule) and the C1—C2 distance is slightly shorter at 1.44 Å (1.496 Å for the uncoordinated molecule), but still within the normal range. Schutte et al. synthesized the rhenium(I) tricarbonyl complexes with the tropolone and 3,5,7-tribromotropolone ligands coordinated to the metal centre [1518]. Overall the C1—O1/C2—O2 and the C1—C2 bond distances in these structures vary from 1.276(3) Å to 1.307(8) Å and from 1.462(6) Å to 1.477(8) Å respectively. It is clear that even when these ligand systems are coordinated to a metal centre the bond distances don't vary significantly. In the title compound, the tropolone ring (defined by the atoms C1—C2—C3—C4—C5—C6—C7) is almost planar with the maximum deviation observed for C1 with a distance of −0.0710(9) Å from the plane. The torsion angle O1—C1—C2—O2 of 3.8(2)° indicate the slight twisting of the oxygen atoms with respect to the tropolone plane. The torsion angle in the rhodium(I) structure reported by Hill et al. has a smaller torsion angle of 1.8°, illustrating the effect of the coordination of the metal cenre. Moreover, there exist extensive inter- and intramolecular hydrogen interactions in this molecule. Seven C—H⋯O (two intramolecular, five intermolecular), two N—H⋯O (intermolecular), one C—H⋯N (intramolecular), one O—H⋯N (intramolecular) and one O—H⋯O (intermolecular) hydrogen interactions are observed. These hydrogen interactions seems to enhance the solid state ordering of the structure with the molecules packing in alternating layers when viewed along the ab-plane. These tropolone type ligand systems and other O,O′, N,O and N,N′ bidentate ligand systems form part of an ongoing study [1934].

Acknowledgements:

Financial assistance from the University of the Free State is gratefully acknowledged. We also express our gratitude towards SASOL, PETLabs Pharmaceuticals, the South African National Research Foundation (SA-NRF/THRIP), Inkaba YeAfrica and the University of the Free State Strategic Academic Initiative (Advanced Biomolecular Systems) for financial support of this project. This work is based on the research supported in part by the National Research Foundation of South Africa (Grant specific unique reference number (UID) 84913). The Grantholder acknowledges that opinions, findings and conclusions or recommendations expressed in any publication generated by the NRF supported research are that of the authors, and that the NRF accepts no liability whatsoever in this regard.

References

1. Dewar, M. J. S.: Tropolone. Nature 166 (1950) 790–791.10.1038/166790a0Search in Google Scholar

2. Doering, W. E.; Knox, L. H. J.: Tropolone. J. Am. Chem. Soc. 73 (1951) 828–838.10.1021/ja01146a101Search in Google Scholar

3. Birkenshaw, J. H.: Chemistry of Fungi. Ann. Rev. Biochem. 22 (1953) 371–398.10.1146/annurev.bi.22.070153.002103Search in Google Scholar

4. Davison, J.; Al Fahad, A.; Cai, M.; Song, Z.; Yehia, S. Y.; Lazarus, C. M.; Bailey, A. M.; Simpson, T. J.; Cox, R. J.: Genetic, molecular, and biochemical basis of fungal tropolone biosynthesis. Proc. Natl. Acad. Sci. USA 109 (2012) 7642–7647.10.1073/pnas.1201469109Search in Google Scholar

5. Jacobsen, F. E.; Lewis, J. A.; Heroux, K. J.; Cohen, S. M.: Characterization and evaluation of pyrone and tropolone chelators for use in metalloprotein inhibitors. Inorg. Chim. Acta 360 (2007) 264–272.10.1016/j.ica.2006.07.044Search in Google Scholar

6. Inamori, Y.; Tsujibo, H.; Ohishi, H.; Ishii, F.; Mizugaki, M.; Aso, H.; Ishida, N.: Cytotoxic effect of hinokitiol and tropolone on the growth of mammalian cells and on blastogenesis of mouse splenic T cells. Biol. Pharm. Bull. 16 (1993) 521–523.10.1248/bpb.16.521Search in Google Scholar

7. Boguszewska-Chachulska, A. M.; Krawczyk, M.; Najda, A.; Kopanska, K.; Stankiewicz-Drogon, A.; Zagórski-Ostoja, W.; Bretner, M.: Searching for a new anti-HCV therapy: Synthesis and properties of tropolone derivatives. Biochem. and Biophys. Res. Comm. 341 (2006) 641–647.10.1016/j.bbrc.2006.01.015Search in Google Scholar

8. Anderson, T. R.; Slotkin, T. A.: Maturation of the adrenal medulla–IV. Effects of morphine. Biochem. Pharmacol. 24 (1975) 1469–1474.10.1016/0006-2952(75)90020-9Search in Google Scholar

9. Makar, A. B.; McMartin, K. E.; Palese, M.; Tephly, T. R.: Formate assay in body fluids: application in methanol poisoning. Biochem. Med. 13 (1975) 117–126.10.1016/0006-2944(75)90147-7Search in Google Scholar

10. Shimanouchi, H.; Sasada, Y.: An X-ray structure analysis of tropolone. Tetrahedron Lett. 11 (1970) 2421–2424.10.1016/S0040-4039(01)98245-0Search in Google Scholar

11. Shimanouchi, H.; Sasada, Y.: The crystal and molecular structure of tropolone. Acta Crystallogr. B29 (1973) 81–90.10.1107/S0567740873002013Search in Google Scholar

12. Steyl, G.; Roodt, A.: Molecular and crystallographic study of tropolone type derivatives by ab initio Hartree-Fock calculations. South Afri. J. Chem. 59 (2006) 21–27.Search in Google Scholar

13. Lyczko, K.; Lyczko, M.: 2-Hydroxy-7-nitrocyclohepta-2,4,6-trien-1-one. Acta Crystallogr. E69 (2013) o536–o536.10.1107/S1600536813006594Search in Google Scholar PubMed PubMed Central

14. Hill, T. N.; Steyl, G.: Dicarbonyl[2-hydroxy-3,5,7-tris(morpholinomethyl)cyclohepta-2,4,6-trienonato(1-)-κ2O1,O2]rhodium(I). Acta Crystallogr. E64 (2008) m1580–m1581.10.1107/S160053680803780XSearch in Google Scholar PubMed PubMed Central

15. Schutte, M.; Visser, H. G.; Roodt, A.: Coordinated aqua vs methanol substitution kinetics in fac-Re(I) tricarbonyl tropolonato complexes. Inorg. Chem. 51 (2012) 11996–12006.10.1021/ic301891uSearch in Google Scholar PubMed

16. Schutte, M.; Visser, H. G.; Steyl, G.: Tetraethylammonium-bromidotricarbonyl[3,5,7-tribromotropolonato(1-)-κ2O,O′]rhenate(I). Acta. Crystallogr. 63 (2007) m3195–m3196.10.1107/S1600536807053457Search in Google Scholar

17. Schutte, M.; Visser, H. G.; Roodt, A.: Aquatricarbonyl-(3,5,7-tribromotropolonato)rhenium(I) methanol solvate. Acta Crystallogr. E64 (2008) m1610–m1611.10.1107/S1600536808038737Search in Google Scholar PubMed PubMed Central

18. Schutte, M.; Visser, H. G.; Roodt, A.: Tetraethylammonium-bromidotricarbonyl(tropolonato)rhenate (I). Acta Crystallogr. 66 (2010) m859–m860.10.1107/S1600536810024505Search in Google Scholar PubMed PubMed Central

19. Manicum, A.-L.; Schutte-Smith, M.; Kemp, G.; Visser, H. G.: Illustration of the electronic influence of coordinated β-diketone type ligands: a kinetic and structural study. Polyhedron 85 (2015) 190–195.10.1016/j.poly.2014.08.005Search in Google Scholar

20. Manicum, A.-L.; Visser, H. G.; Engelbrecht, I.; Roodt, A.: Crystal structure of fac-(acetylacetonato-κ2O,O′)tricarbonyl(cyclohexyldiphenylphosphine-κP) rhenium(I), C26H28O5PRe. Z. Kristallogr. NCS 230 (2015) 150–152.10.1515/ncrs-2014-9013Search in Google Scholar

21. Schutte, M.; Kemp, G.; Visser, H. G.; Roodt, A.: Tuning the reactivity in classic low-spin d6 rhenium(I) tricarbonyl radiopharmaceutical synthon by selective bidentate ligand variation (L,L′-Bid; L,L′ = N,N′, N,O and O,O′ donor atom sets) in fac-[Re(CO)3(L,L′-Bid)(MeOH)]n complexes. Inorg. Chem. 50 (2011) 12486–12498.10.1021/ic2013792Search in Google Scholar PubMed

22. Brink, A.; Roodt, A.; Steyl, G.; Visser, H. G.: Steric vs electronic anomaly observed from iodomethane oxidative addition to tertiary phosphine modified Rhodium(I) acetylacetonato complexes following progressive phenyl replacement by cyclohexyl [PR(3) = PPh(3), PPh(2)Cy, PPhCy(2) and PCy(3)]. Dalton Trans. 39 (2010) 5572–5578.10.1039/b922083fSearch in Google Scholar

23. Roodt, A.; Basson S. S.; Leipoldt, J. G.: Studies on the substitution reactions of dioxotetracyanometalate systems with bidentate ligands: kinetics of the reaction between aquaoxotetracyanotungstate(IV) and 2-pyridinecarboxylate ions. Polyhedron 13 (1994) 599–607.10.1016/S0277-5387(00)84737-3Search in Google Scholar

24. Van Aswegen, K. G.; Leipoldt, J. G.; Potgieter, I. M.; Lamprecht, G. J.; Roodt, A.; van Zyl, G. J.: The crystal structure of the acetone adduct of trans-methyliodo-8 hydroxyquinolinatocarbonyltriphenylphosphinerhodium( III). Trans. Metal Chem. 16 (1991) 369–371.10.1007/BF01024085Search in Google Scholar

25. Kemp, G.; Roodt, A.; Purcell, W.; Koch, K. R.: Unprecedented N,S,O co-ordination of the doubly deprotonated anion of N-benzoyl-N′-phenylthiourea (H2L2) bridging two rhodium(I) centres: crystal structure of the acetone solvate of [(PPh3)2(CO)Rh(μ-L2N′:κO,S)Rh(PPh3)(CO)]. Dalton Trans. (1997) 4481–4484.10.1039/a705887jSearch in Google Scholar

26. Sacht, C.; Datt, M. S.; Otto, S.; Roodt, A.: Synthesis, characterisation and coordination chemistry of novel chiral N,N-dialkyl-N′-menthyloxycarbonylthioureas. Crystal and molecular structures of N,N-diethyl-N′-(-)-(3R)-menthyloxycarbonylthiourea and cis-(S,S)-[Pt(L)Cl(DMSO)] [where HL = N-(+)-(3R)-menthyloxycarbonyl-N′-morpholinothiourea or N-benzoyl-N′,N′-diethylthiourea]. Dalton Trans. (2000) 4579–4586.10.1039/b007589mSearch in Google Scholar

27. Erasmus, J. J. C.; Lamprecht, G. J.; Swarts, J. C.; Roodt, A.; Oskarsson, A.: (E)-1,3-Diferrocenyl-2-buten-1-one-Water (4/1). Acta Crystallogr. 52 (1996) 3000–3002.10.1107/S0108270196004258Search in Google Scholar

28. Viljoen, J. A.; Visser, H. G.; Roodt, A.; Steyn, M.: Di-μ-hydroxido-bis[tris(1,1,1,5,5,5- hexafluoroacetylacetonato-κ2O,O′)-hafnium(IV)] acetone solvate. Acta Crystallogr. E65 (2009) m1367–m1368.10.1107/S1600536809041658Search in Google Scholar PubMed PubMed Central

29. Molokoane, P. P.; Schutte, M.; Steyl, G.: 2-Ethyl-3-hydroxy-1-isopropyl-4-pyridone. Acta Crystallogr. E68 (2012) o3235–o3236.10.1107/S1600536812044091Search in Google Scholar PubMed PubMed Central

30. Schutte-Smith, M.; Visser, H. G.: The versatility of pyridine-2,5-dicarboxylic acid in the synthesis of fac-M(CO)3 complexes (M = Re, 99mTc): Reactivity towards substitution reactions and derivatization after coordination to a metal. Polyhedron 89 (2015) 122–128.10.1016/j.poly.2015.01.007Search in Google Scholar

31. Schutte-Smith, M.; Muller, T. J.; Visser, H. G.; Roodt, A.: Distorted octahedral environments in tricarbonylrhenium(I) complexes of 5-[2-(2,4,6-trimethylphenyl)diazen-1-yl]quinolin-8-olate and 5,7-bis[2-(2-methylphenyl)diazen-1-yl]quinolin-8-olate. Acta Crystallogr. C69 (2013) 1467–1471.10.1107/S0108270113027947Search in Google Scholar PubMed

32. Twala, T. N.; Schutte-Smith, M.; Roodt, A.; Visser, H. G.: Activation of the manganese(I) tricarbonyl core by selective variation of bidentate ligands (L,L′-Bid = N,N′ and N,O donor atom sets) in fac-[Mn(CO)3(L,L′-Bid)(CH3OH)]n complexes. Dalton Trans. 44 (2015) 3278–3288.10.1039/C4DT03524KSearch in Google Scholar

33. van der Westhuizen, H. J.; Meijboom, R.; Schutte, M.; Roodt, A.: Mechanism for the formation of substituted manganese(V) cyanidonitrido complexes: Crystallographic and kinetic study of the substitution reactions of trans-[MnN(H2O)(CN)4]2− with monodentate pyridine and bidentate pyridine-carbocylate ligands. Inorg. Chem. 49 (2010) 9599–9608.10.1021/ic101274qSearch in Google Scholar PubMed

34. Schutte, M.; Visser, H. G.; Roodt, A.; Braband, H.: N-Benzylisatin. Acta Crystallogr. E68 o777.10.1107/S1600536812006575Search in Google Scholar PubMed PubMed Central

35. Bruker. APEX2, SAINT and SADABS. Brucker AXS Inc., Madison, Wisconsin, USA, 2012.Search in Google Scholar

36. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

37. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.10.1107/S0021889812029111Search in Google Scholar

38. Westrip, S. P.: publCIF: software for editing, validating and formatting crystallographic information files. J. Appl. Crystallogr. 43 (2010) 920–925.10.1107/S0021889810022120Search in Google Scholar

39. Spek, A. L.: Structure validation in chemical crystallography. Acta Crystallogr. D65 (2009) 148–155.10.1107/S090744490804362XSearch in Google Scholar PubMed PubMed Central

Received: 2016-3-18
Accepted: 2016-5-10
Published Online: 2016-5-31
Published in Print: 2016-9-1

©2016 Marietjie Schutte-Smith et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Articles in the same Issue

  1. Frontmatter
  2. Crystal structure of poly[aqua(μ2-2,5-bis(4-pyridyl)-1,3,4-oxadiazole-κ2N,N)(μ2-1,3-phenylenediacetato-κ3O,O′:O′′)cobalt(II)], C22H18CoN4O6
  3. Crystal structure of 2-amino-7,7-dimethyl-5-oxo-4-(3-phenoxy-phenyl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile
  4. Crystal structure of (E)-4,4′-(diazene-1,2-diyl)bis(1-nitro-1H-1,2,4-triazol-5(4H)-one)—acetonitrile (1:1), C6H5N11O6
  5. Crystal structure of potassium (E)-5-oxo-4-((5-oxo-1H-1,2,4-triazol-4(5H)-yl)diazenyl)-4,5-dihydro-1,2,4-triazol-1-ide – (E)-4,4-diazene-1,2-diylbis(2,4-dihydro-3H-1,2,4-triazol-3-one) – methanol (1/1/1), C9H11N16KO5
  6. Crystal structure of (N,N′-bis(2-(((2,6-diisopropylphenyl)imino)methyl)phenyl)benzene-1,2-diamido-κ4O,O′,O′′,O′′′)oxidovanadium(IV), C44H48N4OV
  7. Crystal structure of 5,5-bis(4-iodophenyl)-5H-cyclopenta[2,1-b:3,4-b′]dipyridine, C23H14I2N2
  8. Crystal structure of aquadichloridobis(1-((2-methyl-1H-imidazol-1-yl)methyl)-1H-benotriazole-κN)mercury(II), C22H24Cl2HgN10O
  9. Crystal structure of 2-[4-(1H-imidazol-1-yl)phenyl]-1H-benzimidazol-3-ium [2-(carboxymethyl)phenyl]acetate monohydrate, C26H24N4O5
  10. Crystal structure of 4,4′-bipiperidinium dichloride 0.12 hydrate, C10H22N2Cl2 · 0.12 H2O
  11. Crystal structure of catena-poly[tetraaqua(μ2-4,4′(E)-ethene-1,2-diyldipyridine-κ2N:N′)nickel(II)] bis(6-methyl-2-oxo-1,2-dihydro-pyridine-4-carboxylate) pentahydrate, C26H42N4O15Ni
  12. Crystal structure of ethyl-5-amino-1-(2,4-dinitrophenyl)-1H-pyrazole-4-carboxylate, C12H11N5O6
  13. Crystal structure of dicarbonyl(pyridin-2-olate-1-oxido-κ2O,O′)rhodium(I), C7H4NO4Rh
  14. Crystal structure of 1-(adamantan-1-yl)-3-(4-chlorophenyl)thiourea, C17H21ClN2S
  15. Crystal structure of 2-((2-chloropyridin-3-ylamino)methylene)malononitrile, C9H5ClN4
  16. Crystal structure of tetraaquabis(μ2-4-chlorobenzoato-κ2O:O,O′)bis(4-chlorobenzoato-κO)bis(1,10-phenanthroline-κ2N,N′)distrontium(II), C52H40Cl4N4O12Sr2
  17. Crystal structure of 3-hydroxy-3-phenyl-1,3-dihydro-2H-indol-2-one, C14H11NO2
  18. Crystal structures of bis(1,10-phenanthrolin-1-ium) aquapentakis(nitrato-κ2O,O′)neodym(III) monohydrate, C24H22N9NdO17
  19. Crystal structure of 2-ethyl-1-tert-butyl 3-oxo-2-[phenyl(tert-butoxycarbonylamino)methyl]-1,2-pyrrolidinedicarboxylate, C24H34N2O7
  20. Crystal structure of poly[diaquabis(μ4-benzene-1,3,5-tricarboxylato-κO1O2O3O4O5O6)-bis(μ2-4,4′-benzene-1,3-diylbis(4H-1,2,4-triazole-κ2N:N′)tricadmium(II)] tetrahydrate, C38H34Cd3N12O18
  21. Crystal structure of trans-dichlorido[1,3-bis(9-methyl-9H-fluoren-9-yl) benzimidazol-2-ylidene](pyridine)palladium(II) – a compound with anagostic CH–Pd interactions, C40H31Cl2N3Pd
  22. Crystal structure of catena-poly[(μ3-5-(4-(tetrazol-1-id-5-yl)phenoxy)benzene-1,3-dicarboxyato-κ3O:O′:N)(4-(3-(pyridin-4-yl)propyl)pyridinium-κN)zinc(II)], C28H22ZnN6O5
  23. Crystal structure of 3,6-di-2-pyridinyl-4-pyridazine carbonitrile, C15H9N5
  24. Crystal structure of 5,5,9,13-tetramethyltetracyclo[10·2·1·01,10·04,9]pentadecane-3,7,14-triol, C20H34O4
  25. Crystal structure of 2-amino-7-methyl-5-oxo-4-phenyl-4H,5H-pyrano[4,3-b]pyran-3-carbonitrile, C16H12N2O3
  26. Crystal structure of the poly[(1,10-phenanthroline-κ2N,N′)(μ3-carboxylatophenoxyacetato-κ4O,O′:O′′;O′′′)lead(II)] monohydrate, C21H16N2O6Pb
  27. Crystal structure of the poly[(μ4-biphenyl-4,4′-dicarboxylato-κ4O:O′:O′′:O′′′) bis(μ3-8-(11-(oxysulfonyl)-4-silbenyl)-2-(oxysulfonyl)stilbene-κ4O:O′:O′′,O′′′) bis(1,10-phenanthroline-k2N,N′) dipraseodymium(III)], C94H64N4O16Pr2S4
  28. Crystal structure of 3-iodo-5-methoxy-7-(methoxymethoxy)-4-(3-methoxyphenoxy)-2H-chromen-2-one, C19H17IO7
  29. Crystal structure of poly[(5-carboxy-2,6-dimethylpyridinium-3-carboxylato-κO)tris(μ2-2,6-dimethylpyridinium-3,5-dicarboxylato-κ3O,O′:O′′)erbium(III)], C36H33ErN4O16
  30. This molecule targets at type 2 diabetes - a single crystal study on (2R,3S,5R)-2-(2,5-difluorophenyl)-5-[2-(methylsulfonyl)-2,6-dihydropyrrolo[3,4-c]pyrazol-5(4H)-yl] tetrahydro-2H-pyran-3-amine (Omarigliptin), C17H20F2N4O3S
  31. Crystal structure of poly[(μ2-2,2′-benzene-1,2-diyldiacetato-κ2O:O′), (μ2-1-(4-(1H-imidazol-1-yl)benzyl)-1H-1,2,4-triazole-κ2N:N′)zinc(II)], C22H19N5O4Zn
  32. Crystal structure of tetraaqua(μ2-3-(3,5-dicarboxyphenoxy)benzene-1,2-dicarboxylato-κ2O:O′)manganese(II) dihydrate, C16H20O15Mn
  33. Crystal structure of 4,4′-sulfonyldipyridine, C10H8N2O2S
  34. Crystal structure of 4-[(E)-(2-chloro-6-fluorobenzylidene)amino]-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one, C18H15ClFN3O
  35. Crystal structure of carbonyl(2-oxopyridin-1(2H)-olato-κ2O, O′)(triphenylphosphine-κP)rhodium(I), C24H19NO3PRh
  36. Crystal structure of diaquabis(2-(3-bromophenyl)-5-carboxy-1H-imidazol-4-carboxylato-κ2O,N) cobalt(II) trihydrate, C22H22Br2CoN4O13
  37. Crystal structure of 4-(pyridin-4-ylmethylsulfonyl)pyridine, C11H10N2O2S
  38. Crystal structure of poly[(μ4-1-methyl-1H-tetrazole-5-thiolato-κ3S:S:N:N′)copper(I)], C2H3CuN4S
  39. Crystal structure of poly[diaquabis(μ2-4,4′-sulfinyldipyridine-κ2N,N′)zinc(II)] diperchlorate dihydrate, C20H24N4O14S2Cl2Zn
  40. Crystal structure of (1-((1-benzylpyrrolidin-2-yl-κN)methyl)-3-isopropyl-1H-imidazol-2(3H)-ylidene–κC)dibromidopalladium(II), C18H25Br2N3Pd
  41. Crystal structure of pentacalcium tetranitridovanadate(V) mononitride based on a powder diffraction study, Ca5[VN4]N
  42. Crystal structure of ((1-((1-benzylpyrrolidin-2-yl)methyl)-3-ethyl-1H-imidazol-2(3H)-ylidene)-κ2C,N)dichloridopalladium(II), C17H23Cl2N3Pd
  43. Crystal structure of 9-allyl-4,5-dichloro-12-cyano-9,10-dihydro-9,10-ethanoanthracen-12-yl acetate, C22H17Cl2NO2
  44. Crystal structure of 4-bromo-2-(8-(3-ethoxy-2-hydroxyphenyl)-3,6-dioxa-2,7-diazaocta-1,7-dien-1-yl)phenol, C18H19BrN2O5
  45. Crystal structure of 3-tert-butyl-3-hydroxy-1,3-dihydro-2H-pyrrolo[3,2-c]pyridin-2-one, C11H14N2O2
  46. Crystal structure of diaquabis(3-(3,5-dibromophenyl)-5-(pyridin-2-yl)-1,2,4-triazol-4-ido-κ2N,N′)nickel(II) mono hydrate, C26H20Br4N8NiO3
  47. Crystal structure of 5-(adamantan-1-yl)-3-[(2-trifluoromethylanilino)methyl]-2,3-dihydro-1,3,4-oxadiazole-2-thione, C20H22F3N3OS
  48. Crystal structure of 2-ethyl-1-tert-butyl-2-((4-fluorophenyl)(tert-butoxycarbonylamino)methyl)-3-oxo-pyrrolidine-1,2-dicarboxylate, C24H33FN2O7
  49. Crystal structure of bis(μ2-2-fluorobenzoato-κ2O:O:O′) bis(μ2-2-fluorobenzoato-κ2O:O′)dinitrato-κ2O,O′ bis(1,10-phenathroline-κ2N,N′)diterbium(III), C52H32F4N6O14Tb2
  50. Crystal structure of tetrabutylammonium 4-aminobenzenesulfonate 2/3 hydrate, C22H42N2O3S · 2/3 H2O
  51. Crystal structure of tetraethylammonium 4-aminobenzenesulfonate, C14H26N2O3S
  52. Crystal structure of bis(guanidinium) 3,3′-oxybis(6-carboxybenzoate), C18H20N6O9
  53. Crystal structure of N′-(4-methoxybenzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide, C18H16N4O2
  54. Crystal structure of N′-(4-nitrobenzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide, C17H13N5O3
  55. Crystal structure of 5-((4-bromophenyl)(2-hydroxy-6-oxocyclohex-1-en-1-yl)methyl)-6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, C19H19BrN2O5
  56. Crystal structure of 3-(((cyclohexyl(phenyl)methylidene)amino)oxy)-2-hydroxy-N-(propan-2-yl)propan-1-aminium chloride, C19H31ClN2O2
  57. Crystal structure of 6-hydroxy-5-((2-hydroxy-6-oxocyclohex-1-en-1-yl)(phenyl)methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, C19H20N2O5
  58. Crystal structure of 2-(4-(4-bromophenyl)thiazol-2-yl)isoindoline-1,3-dione, C17H9BrN2O2S
  59. Crystal structure of 2-(4-methylbenzoyl)pyrene, C24H16O
  60. Crystal structure of N-(5-bromo-4-(p-tolyl)thiazol-2-yl)-4-chlorobutanamide, C14H14BrClN2OS
  61. Crystal structure of 4,5-diphenylthiazol-2-amine, C15H12N2S
  62. Crystal structure of poly[bis(μ2-4-(3-(pyridin-3-yl)-1H-1,2,4-triazol-5-yl)benzoato-κ3N:O,O′)-lead(II)], C28H18O4N8Pb
  63. Crystal structure of (Z)-4-(4-oxopent-2-en-2-ylamino)benzenesulfonamide, C11H14N2O3S
  64. Crystal structure of poly[(μ2-2-methyl-1-(4-(2-methyl-2H-benzo[d] imidazol-1(7aH)-yl)butyl)-1H-benzo[d]imidazole-κ2N:N′)bis(μ3-5-tert-butylbenzene-1,3-dicarboxylato-κ4O:O,O′:O′′,O′′′)dicadmium(II)] tetrahydrate, C44H54Cd2N4O12
  65. Crystal structure of catena-poly-[aqua(μ2-4,4′-bipyridine-κ2N:N′)bis(3′,5,5′-tricarboxybiphenyl-2-carboxylato-κ2O,O′)cadmium(II)], C42H28N2O17Cd
  66. Crystal structure of (2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pentan-3-ol, C15H20ClN3O
  67. Crystal structure of N′-(4-(dimethylamino)benzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide, C19H19N5O
  68. Crystal structure of 3-(benzofuran-2-yl)-5-(4-fluorophenyl)-4,5-dihydro-1Hpyrazole-1-carbothioamide, C18H14FN3OS
  69. Crystal structure of ent-1β-acetoxy-7α,14α-di-hydroxy-7β,20-epoxykaur-16-en-15-one, C22H30O6
  70. Crystal structure of 1α,7β-dihydroxy-11β-acetoxy-ent-7β,20-epoxykaur-16-en-15-one, C22H30O6
  71. Crystal structure of 7β,14β,15β-trihydroxy-1α-acetoxy-7α,20-epoxy-ent-kaurane, C22H32O6
  72. Crystal structure of ent-1β,7α,11α-trihydroxy-7β,20-epoxykaur-16-en-15-one, C20H28O5
  73. Crystal structure of poly-[tetraaquabis(μ8-benzene-1,2,4,5-tetracarboxylato-1κ3O4:O6:O8:2κ4O2:O2:O5:O5:3κ4O1:O3:O5:O7)(di-μ3-hydroxido)-pentazinc(II)] decahydrate, C20H34O32Zn5
  74. Crystal structure of 1-(4-methylthiazol-2-yl)-3-propylthiourea, C8H13N3S2
  75. Crystal structure of 2-((dimethylamino)methylene)-5,5-Dimethylcyclohexane-1,3-dione, C11H17NO2
  76. Crystal structure of poly[1,4-bis(2-methylbenzimidazol)butane-κ2N:N′)bis(4,4′-oxybis(benzoato-κ4O,O′:O′′,O′′′)dicadmium] monohydrate, C48H38Cd2N4O10
  77. Crystal structure of 2-(3-(benzofuran-2-yl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-(4-chlorophenyl)thiazole, C26H17ClFN3OS
  78. Crystal structure of bis(μ3-isophthalato-κ3O:O′:O′′)(μ2-1,4-\ bis((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)benzene-κ2N:N′)dizinc(II), C22H19N2O4Zn
  79. Crystal structure of poly[bis(adipate-κ4O,O′:O′′, O′′′)(1,4-bis(2-methyl-1H-benzo[d]imidazol-1-yl)benzene-κ2N:N′)dizinc(II), C36H38N4O8Zn2
  80. Crystal structure of N-(2-(2-oxoindolin-4-yl)ethyl)-N-propylpropan-1-aminium tetraphenylborate, C40H45BN2O
  81. Crystal structure of 1-(2,3-dihydro-4-methyl-3-phenyl-2-thioxothiazol-5-yl)-1-ethanone, C12H11NOS2
  82. Crystal structure of 3-(adamantan-1-yl)-1-[(4-benzylpiperazin-1-yl)methyl]-4-[(E)-(2,6-difluorobenzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione, C31H36F2N6S
  83. Crystal structure of 6-(4-chlorophenyl)-3-(thiophen-2-yl)-[1,2,4]triazolo[3,4-b][1,3,4]-thiadiazole, C13H7ClN4S2
  84. Crystal structure of bis(ethanaminium) poly[bis(hexaselenido-κ2Se1,Se6)palladate(II)], C4H16N2PdSe12
  85. Crystal structure of 2-(3-(benzofuran-2-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-4-phenylthiazole, C26H19N3OS
  86. Crystal structure of poly-[bis(μ3-5-hydroxyisophtalato-κ3O:O′:O′′)(μ2-1,4-bis(2-ethylbenzimidazol-1-ylmethyl)benzene-κ2N:N′)dizinc(II)], C40H30N4O5Zn2
  87. Crystal structure of poly-[(μ-1,4-bis(2-ethylbenzimidazol-1-ylmethyl)benzene-κ2N:N′)-bis(μ4-2,2′-(1,3-phenylene)diacetate-κ4O:O′:O′′:O′′′)dizinc(II)], C44H38N4O8Zn2
  88. Crystal structure of 5,17-bis-cyano-25,26,27,28-tetrapropyloxy-calix[4]arene, C42H46N2O4
  89. Crystal structure of poly-[μ-1,4-bis(2-ethylbenzimidazol-1-ylmethyl)benzene-κ2N:N′)-bis(μ3-5-hydroxyisophthalate(2–)-κ3O,O′:O′′)dicadmium(II)] monohydrate, C64H54N8O11Cd2
  90. Crystal structure of poly-[μ-1,4-bis(2-ethylbenzimidazol-1-ylmethyl)benzene-κ2N:N′)-bis(μ4-4,4′-sulfonyldibenzoato-κ4O:O′:O′′:O′′′)dicadmium(II)] monohydrate, C52H42N4O14Cd2
  91. Crystal structure of poly-[bis(μ4-adipato-κ4O:O′:O′′:O′′′)(μ2-1,4-bis((2-ethyl-1H-benzo[d]imidazol-1-yl)methyl)benzene-κ2N:N′)dizinc(II)], C38H42N4O8Zn2
  92. Crystal structure of (2-(2-chlorophenyl)-5-methyl-1,3-dioxan-5-yl)methanol, C12H15ClO3
  93. Crystal structure of 2-(4-Bromophenyl)-5-ethyl-1,3-dioxane-5-carboxylic acid, C13H15BrO4
  94. Crystal structure of (2-(4-bromophenyl)-5-ethyl-1,3-dioxan-5-yl)methanol, C13H17BrO3
  95. Crystal structure of 3-((1,3,5,7-tetraoxo-6-(pyridin-3-ylmethyl)-3,3a,4,4a,5,6,7,7a,8,8a-decahydro-4,8-ethenopyrrolo[3,4-f]isoindol-2(1H)-yl)methyl)pyridin-1-ium-κN-trichloridocobalt(II) hemihydrate, C24H22Cl3CoN4O4.5
  96. Crystal structure of 4-chloro-4′,6′-dichloro-2,2′-[propane-1,3-diyldioxybis(nitrilomethylidyne)]-diphenol, C17H14Cl3N2O4
  97. Crystal structure of 2-amino-4-(3-trifluoromethylphenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C17H13F3N2O2
  98. Crystal structure of bis(benzoato-κO)bis(4,4′-((1H-1,2,4-triazol-1-yl)methylene)dibenzonitrile-κN)zinc(II), C48H32N10O4Zn
  99. Crystal structure of 3-methyl-2H-chromen-2-one, C10H8O2
  100. Crystal structure of catena-poly-[aqua-(2-carboxy-5-(3-carboxy-5-carboxylatophenoxy)benzoato-κO)(μ2-4,4′-di(1H-imidazol-1-yl)-1,1′-biphenyl-κ2N:N′)cobalt(II)], C34H24N4O10Co
  101. Crystal structure of 4,4′-di(1H-imidazol-1-yl)-1,1′-biphenyl, C36H28N8
  102. Crystal structure of 1-(3-chloropropyl)piperidin-1-ium tetraphenylborate, C32H37BClN
  103. Crystal structure of dimethyl 5-(benzylamino)isophthalate, C17H17NO4
  104. Crystal structure of dimethyl 5-(dibenzylamino)isophthalate, C24H23NO4
  105. Crystal structure of N-(adamantan-1-yl)-4-phenylpiperazine-1-carbothioamide, C21H29N3S
  106. Crystal structure of (2,2′(cyclohexane-1,2-diylbis(nitrilo(E)methylylidene))diphenolato-κ4O,O′,N,N′)dimethanolmanganese(III) bromide, C22H28BrMnN2O4
  107. Crystal structure of 3,5,7-tris(morpholinomethyl)tropolone·0.67 hydrate, C22H33N3O5·0.67H2O
  108. Crystal structure of biphenyl-2,3′,5,5′-tetracarboxylic acid – 4,4′-biphenyl-4,4′-diyldipyridine (3/2), C49H34N3O8
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2016-0083/html
Scroll to top button