Startseite Modelling of magnetostriction of transformer magnetic core for vibration analysis
Artikel Open Access

Modelling of magnetostriction of transformer magnetic core for vibration analysis

  • Janis Marks EMAIL logo und Sandra Vitolina
Veröffentlicht/Copyright: 29. Dezember 2017

Abstract

Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.

1 Introduction

The mechanical condition of windings and magnetic core of power transformers can be determined by using vibration diagnostics. This process is performed for loaded transformer or in a no-load operating mode by placing vibration accelerometers on the surface of power transformer tank [1].

In Latvian power system, there are three different variants of performing mechanical diagnostics of large power transformers: in no-load operation mode, at 50% and at 100% of full rated power. The sensors do not save harmonic analysis; they obtain and save the total values of vibrations. If within the received data, there are vibration values that exceed the provided limits: displacement – 100 μm, velocity – 20 mm/s, acceleration – 10 m/s2 more detailed analysis is required.

With this diagnosis methodology, it is possible to obtain robust information about the power transformer and discover, if a relatively large mechanical defect has occurred. However, there are no following actions and procedures advised in the case of increased vibration values.

Therefore, there is a necessity for a different diagnostic approach of large power transformer mechanical fault detection to improve result accuracy and reliability. The aim of this paper is to develop a simulation model for transformers with high vibration level to determine if magnetostriction process is the cause for such vibrations. Authors have presented the results of this simulation model at international symposium [2].

2 Magnetostriction in Magnetic Core

Magnetostriction is a property of ferromagnetic materials that changes their geometric dimensions when exposed to magnetic field [3]. It is because these ferromagnetic materials are composed of small magnetic domains that have their unique magnetic orientation, placement and size.

Generally, magnetic orientation is random throughout the ferromagnetic material, when there is no magnetic field passing through. Figure 1 a) shows this situation. The color coding corresponds to a correlation with an upward direction.

Figure 1 a) ferromagnetic material magnetic domain individual orientation with no external magnetic field; b) magnetostriction process in ferromagnetic material domains; c) resulting outcome of magnetostriction process in ferromagnetic material domains
Figure 1

a) ferromagnetic material magnetic domain individual orientation with no external magnetic field; b) magnetostriction process in ferromagnetic material domains; c) resulting outcome of magnetostriction process in ferromagnetic material domains

However, when an external magnetic field passes through, the magnetic domains react to it and partially rearrange their sizes [4]. With this process, the domains with matching magnetic orientation with the external magnetic field grow larger by changing the materials magnetic orientation on their individual surfaces. Thus, the magnetic domains, with individual magnetic orientation pointing against the external magnetic field become smaller [4]. This process is visualised in Figure 1 b), where areas color coded in grey, represent the fractions of the non-aligning magnetic domains with the external magnetic field that will change their individual magnetic orientation and separate from their original magnetic domains. Afterwards, these grey regions will join their more aligned neighbouring magnetic domains.

The result of this process is visualised in Figure 1 c). The magnetic domains have changed their original shape. Due to this, the shape of the entire ferromagnetic body has changed as well.

In the case of large power transformers, magnetic core is made of sheet steel, which creates a complex three-dimensional system consisting of a ferromagnetic material since the largest part of magnetic flux concentrates there [5]. This causes elastic deformations and vibrations of the magnetic core that have a sinusoidal form since the externally caused magnetic field is also sinusoidal. This process over a period can cause delamination since the elastic deformations are continuous throughout the operating period of power transformer. Furthermore, the vibration amplitudes may increase since this process can slowly reduce the mechanical resistance of the transformer magnetic core.

3 Magnetostriction Model Description

In order to determine these elastic deformations, it is necessary to know characteristics of the magnetic field inside magnetic core and magnetostriction curve of it. In this paper, magnetostriction curve is used as a function L = f(B) that expresses the elastic deformation, depending on magnetic induction [6]. This magnetostriction curve differs for each material since the magnetic domains in multiple ferromagnetic materials can have varying sizes and can resist to external magnetic field differently.

Since the model uses two software programs, it has two distinct subsections:

  • The first consists of a three-dimensional model created in COMSOL software to calculate magnetic induction values within the magnetic core, windings and the surrounding area;

  • The second is also a three-dimensional model created in Matlab software for the calculation of elastic deformations.

The first subsection in COMSOL begins with the creation of model geometry and the assignment of a material to every created domain. Windings are made of copper, magnetic core from steel but the surrounding area from transformer oil. Each material used in the model has defined physical characteristics and parameters. Afterwards, it is necessary to generate a finite element mesh. Then the program calculates the values of magnetic induction in all the coordinates of finite element mesh intersections within a given time intervals in a provided duration of time. A built-in calculation system carries out the computations, which contains Maxwell equations [7].

Afterwards, the model exports obtained results to MS Excel in the form of a table and then imports in Matlab where RMS values of magnetic induction are calculated. The program creates a three-dimensional matrix that represents the geometrical structure of transformer model. Within it, it is assumed that every element is 1 cm3. The model uses approximation to obtain the RMS values of magnetic induction where they are unknown. A modified three-dimensional nearest neighbour problem (NNP) algorithm carries out this approximation [8].

These results from Matlab subsection allow determining whether magnetostriction is the cause of these vibration epicentres.

The input parameters of the proposed magnetostriction model have the following aspects:

  • The geometric dimensions of transformer tank, windings and magnetic core;

  • The materials for different parts and their physical characteristics;

  • Frequency of the voltage, primary voltage, secondary voltage, primary winding rated current, secondary winding rated current and the transformation coefficient;

  • No-load operation mode;

  • Magnetostriction curve function L = f(B) of magnetic core material.

The simulation model has the following restrictions:

  • The magnetic core consists of 10 steel sheets. Each of them is 60 mm thick;

  • The bracings of magnetic core are not considered;

  • The terminals of primary and secondary windings are not considered;

  • Interwinding insulation is not considered;

  • The model functions as an enclosed magnetic system – magnetic field does not exist outside of it.

The result of this magnetostriction model is a visualisation of calculated elastic deformation values within the magnetic core of the transformer.

4 Research on Magnetic Core Anisotropy of Proposed Model

The created three-dimensional model in COMSOL software consists of domains for the magnetic core that are isotropic. Therefore, it is necessary to verify, whether anisotropy would have relative influence on the results of the magnetostriction model since it is present in magnetic cores of actual large power transformers [9].

As verification, two types of magnetic core anisotropy are used. Figures 2 and 3 show their layout.

Figure 2 First case of magnetic core anisotropy
Figure 2

First case of magnetic core anisotropy

Figure 3 Second case of magnetic core anisotropy
Figure 3

Second case of magnetic core anisotropy

The arrows display the direction in magnetic core rods and yokes with lesser magnetic permeability. The first case of magnetic core anisotropy has a characteristic that the anisotropy direction aligns with the direction of the transformer magnetic field. The intersections of the different domains are located at the corners between rods and yokes of transformer magnetic core.

The difference in resulting magnetic field for this layout of anisotropy shows Δ = 0.7119% absolute change. The model obtains this result by comparing the values of magnetic induction in all positions within the Matlab subsection three-dimensional model matrix. Equation (1) shows this calculation,

Δ=i=1nabsBbase.nBani.nBbase.n100%n(1)

where Bbase – RMS value of magnetic induction with isotropic magnetic core;

Bani – RMS value of magnetic induction with anisotropic magnetic core;

n – total amount of positions in the Matlab subsection of the model.

However, for the second case of magnetic anisotropy, the difference of magnetic field was Δ = 11.90%. This is because the intersections of domains with different directions of anisotropy shifted from the corners of magnetic core towards the rods and had 90° cut angle between rod and yoke domains (see Figure 3).

Therefore, for this anisotropy type of magnetic core, the magnetic field is more concentrated near the inner corners where rods and the yoke connect and there is a winding around the rod. Figure 4 shows this result, where both the a) FEM mesh and b) instantaneous values of magnetic induction are visualised.

Figure 4 a) segment of created FEM mesh in COMSOL software; b) resulting instantaneous values of magnetic induction in magnetic core
Figure 4

a) segment of created FEM mesh in COMSOL software; b) resulting instantaneous values of magnetic induction in magnetic core

Increased instantaneous values of magnetic induction are visualised in red tones (see Figure 4 b)). These positions are the closest segments of the magnetic core to the windings due to the geometry of the magnetic core. Furthermore, the rapidly changing direction of the anisotropy of magnetic permeability contributes to this result since the magnetic field has least resistance in the region.

When taken in consideration that the program calculates this difference by using absolute values, the total magnetic field experiences these differences as a change in placement of the highest magnetic induction values not an overall increase or decrease. Therefore, the conclusion is that isotropic magnetic core is suitable for this magnetostriction model.

5 Case Study

As case study, the authors chose 5-legged large power transformer [10] with primary voltage – 13.8 kV, secondary voltage – 137 kV, primary and secondary rated power – 200 MVA for this paper. For this large power transformer vibration measurement results on tank surface are available in the study [11]. Continued research after a year showed that the values of vibration velocity exceed the given limit of 20 mm/s 2.5 times. However, the values of vibration displacement and acceleration did not exceed limits that indicate necessity for in depth analysis.

This magnetostriction model uses a method proposed by author in [12] for visualization and approximation of vibration results for areas of transformer tank surface where vibration sensors were not installed (see Figure 5). If this visualisation displays vibration amplitudes that exceed the given limits, the model begins the simulation since otherwise there is no necessity to calculate possible mechanical faults.

Figure 5 Result for visualisation of vibration diagnostics data on the transformer tank surface, μm
Figure 5

Result for visualisation of vibration diagnostics data on the transformer tank surface, μm

Such approximation allows determining the possible vibration epicentre regions and their intensity. However, it is not possible to distinguish between vibrations caused by the magnetic core and vibrations caused by transformer windings since the output of the visualisation is the result of a surface not a three-dimensional model. Therefore, there is a necessity for further diagnostics of the magnetic core, which the magnetostriction model carries out.

The first subsection of the magnetostriction model for case study has the following results. Overall, from the calculations, magnetic core has 12779 positions, primary and secondary windings have 4167 positions and transformer oil has 14181 positions, where the instantaneous values of magnetic induction were calculated using COMSOL software. Figure 6 shows a cross-section of instantaneous values of magnetic induction from these results.

Figure 6 Instantaneous magnetic induction, T, values in COMSOL
Figure 6

Instantaneous magnetic induction, T, values in COMSOL

Afterwards, the model uses the obtained values of magnetic induction to calculate the values of elastic deformation by using magnetostriction curve. Figure 7 shows the visualisation of data as the final output of the model.

Figure 7 Calculated results of elastic deformation in magnetic core generated by the effect of magnetostriction in Matlab
Figure 7

Calculated results of elastic deformation in magnetic core generated by the effect of magnetostriction in Matlab

6 Conclusions

The created magnetostriction model of transformer magnetic core yields results for the numerical values and location of elastic deformations. Based on the obtained results it can be concluded that the most intensive elastic deformations caused by magnetostriction effect for particular transformer analysed within case study are located in the middle of phase B rod. Yet, area with the highest vibration values measured on the tank surface of this transformer is located on the outer limb of phase A.

Therefore, by comparing the results of visualisation and magnetostriction model, the conclusion is that in this particular case the cause magnetostriction in magnetic core did not cause high level of vibrations in the transformer. Furthermore, it is necessary to consider the possibility of other mechanical faults such as insufficient mechanical bracing of some parts of magnetic core.

The authors plan to implement this magnetostriction model as a separate section of a more extensive diagnostics methodology of power transformers with the modelling of the electrodynamic force influence on the transformer windings.

References

[1] Shengchang J., Lingyu Z., Yanming L., Study on transformer tank vibrationcharacteristics in the field and its application, Przegląd Elektrotechniczny,2011, 87, 0033-2097.Suche in Google Scholar

[2] Marks J., Vitolina S., Magnetostriction model of large power transformermagnetic core, Proceedings of 2017 18th International Symposium onElectromagnetic Fields in Mechatronics, Electrical and Electronic Engineering(ISEF 2017) Book of Abstracts (14-16 September 2017, Lodz, Poland), IEEE, 2017,978-1-5386-1661-1.10.1109/ISEF.2017.8090673Suche in Google Scholar

[3] Schoenekess H., Ricken W., Becker W., Influences of Magnetostriction andMagnetisation State on Strain and Force Measurement with Eddy-Current SensorsApplied to Steel Reinforced Concrete, Proceedings of International Symposium onNon-Destructive Testing in Civil Engineering NDT-CE (16-19 September 2003, Berlin, Germany), DGZfP, 2003, 3-931381-49-8.Suche in Google Scholar

[4] Asano S., Fujieda S., Hashi S., Ishiyama K., Fukuda T., Suzuki S., MagneticDomain Structure and Magnetostriction of Fe-Ga Single Crystal Grown by theCzochralski Method, IEEE Magnetics Letters, 2016, 8, 1949-3088.10.1109/LMAG.2016.2619332Suche in Google Scholar

[5] Shilyashki G., Pfützner H., Hamberger P., Aigner M., Hofbauer F., MatkovicI., et al., The Impact of Off-Plane Flux on Losses and Magnetostriction ofTransformer Core Steel, IEEE Transactions on Magnetics, 2014, 50, 1941-0069.10.1109/TMAG.2014.2324017Suche in Google Scholar

[6] Zhu L., Yang Q., Yan R., Yang Q., Numerical Analysis of Vibration due toMagnetostriction of Three Phase Transformer Core, Proceedings of 2012 SixthInternational Conference on Electromagnetic Field Problems and Applications(19-21 June 2012, Dalian, China), IEEE, 2012, 978-1-4673-1335-3.10.1109/ICEF.2012.6310376Suche in Google Scholar

[7] Comsol Inc., COMSOL Multiphysics Users Guide, no. CM020002, 2012.Suche in Google Scholar

[8] Kalantari I., McDonald G., A Data Structure and an Algorithm for the NearestPoint, IEEE Transactions on Software Engineering, 1983, SE-9, 1939-3520.10.1109/TSE.1983.235263Suche in Google Scholar

[9] Liu M., Hubert O., Mininger X., Bouillault F., Bernard L., Waeckerl T., Reduction of Power Transformer Core Noise Generation due to MagnetostrictionInduced Deformations using Fully Coupled Finite Element Modeling OptimizationProcedures, IEEE Transactions on Magnetics, 2017, 53, 1941-0069.10.1109/TMAG.2017.2687409Suche in Google Scholar

[10] Chiesa N., Lotfi A., Hoidalen H.K., Mork B., Rui O., Ohnstad T., Five-legtransformer model for GIC studies, Proceedings of International Conference onPower Systems Transients (18-20 July 2013, Vancouver, Canada), 2013.Suche in Google Scholar

[11] Zizins-Malisevs S., Poiss G., Power Transformer Mechanical Condition Assessmentwith a Vibration-based Diagnostic Method, Proceedings of 56th InternationalScientific Conference on Power and Electrical Engineering of Riga TechnicalUniversity (14 October 2015, Riga, Latvia), IEEE, 2015, 978-1-4673-9752-0.10.1109/RTUCON.2015.7343160Suche in Google Scholar

[12] Marks J., Study of power transformer mechanical faults detection by usingvibrodiagnostics, Proceedings of 13th International Conference of youngscientists on Energy issues CYSENI (27-27 May 2016, Kaunas, Lithuania), 2016,1822-7554.Suche in Google Scholar

Received: 2017-11-2
Accepted: 2017-11-12
Published Online: 2017-12-29

© 2017 J. Marks and S. Vitolina

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Artikel in diesem Heft

  1. Regular Articles
  2. Analysis of a New Fractional Model for Damped Bergers’ Equation
  3. Regular Articles
  4. Optimal homotopy perturbation method for nonlinear differential equations governing MHD Jeffery-Hamel flow with heat transfer problem
  5. Regular Articles
  6. Semi- analytic numerical method for solution of time-space fractional heat and wave type equations with variable coefficients
  7. Regular Articles
  8. Investigation of a curve using Frenet frame in the lightlike cone
  9. Regular Articles
  10. Construction of complex networks from time series based on the cross correlation interval
  11. Regular Articles
  12. Nonlinear Schrödinger approach to European option pricing
  13. Regular Articles
  14. A modified cubic B-spline differential quadrature method for three-dimensional non-linear diffusion equations
  15. Regular Articles
  16. A new miniaturized negative-index meta-atom for tri-band applications
  17. Regular Articles
  18. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel
  19. Regular Articles
  20. Distributed containment control of heterogeneous fractional-order multi-agent systems with communication delays
  21. Regular Articles
  22. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir
  23. Regular Articles
  24. Quantum mechanics with geometric constraints of Friedmann type
  25. Regular Articles
  26. Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System
  27. Regular Articles
  28. Application of the optimal homotopy asymptotic method to nonlinear Bingham fluid dampers
  29. Regular Articles
  30. Analysis of Drude model using fractional derivatives without singular kernels
  31. Regular Articles
  32. An unsteady MHD Maxwell nanofluid flow with convective boundary conditions using spectral local linearization method
  33. Regular Articles
  34. New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method
  35. Regular Articles
  36. Quantum mechanical calculation of electron spin
  37. Regular Articles
  38. CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine)
  39. Regular Articles
  40. Chain on a cone
  41. Regular Articles
  42. Multi-task feature learning by using trace norm regularization
  43. Regular Articles
  44. Superluminal tunneling of a relativistic half-integer spin particle through a potential barrier
  45. Regular Articles
  46. Neutrosophic triplet normed space
  47. Regular Articles
  48. Lie algebraic discussion for affinity based information diffusion in social networks
  49. Regular Articles
  50. Radiation dose and cancer risk estimates in helical CT for pulmonary tuberculosis infections
  51. Regular Articles
  52. A comparison study of steady-state vibrations with single fractional-order and distributed-order derivatives
  53. Regular Articles
  54. Some new remarks on MHD Jeffery-Hamel fluid flow problem
  55. Regular Articles
  56. Numerical investigation of magnetohydrodynamic slip flow of power-law nanofluid with temperature dependent viscosity and thermal conductivity over a permeable surface
  57. Regular Articles
  58. Charge conservation in a gravitational field in the scalar ether theory
  59. Regular Articles
  60. Measurement problem and local hidden variables with entangled photons
  61. Regular Articles
  62. Compression of hyper-spectral images using an accelerated nonnegative tensor decomposition
  63. Regular Articles
  64. Fabrication and application of coaxial polyvinyl alcohol/chitosan nanofiber membranes
  65. Regular Articles
  66. Calculating degree-based topological indices of dominating David derived networks
  67. Regular Articles
  68. The structure and conductivity of polyelectrolyte based on MEH-PPV and potassium iodide (KI) for dye-sensitized solar cells
  69. Regular Articles
  70. Chiral symmetry restoration and the critical end point in QCD
  71. Regular Articles
  72. Numerical solution for fractional Bratu’s initial value problem
  73. Regular Articles
  74. Structure and optical properties of TiO2 thin films deposited by ALD method
  75. Regular Articles
  76. Quadruple multi-wavelength conversion for access network scalability based on cross-phase modulation in an SOA-MZI
  77. Regular Articles
  78. Application of ANNs approach for wave-like and heat-like equations
  79. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  80. Study on node importance evaluation of the high-speed passenger traffic complex network based on the Structural Hole Theory
  81. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  82. A mathematical/physics model to measure the role of information and communication technology in some economies: the Chinese case
  83. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  84. Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps
  85. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  86. On the libration collinear points in the restricted three – body problem
  87. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  88. Research on Critical Nodes Algorithm in Social Complex Networks
  89. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  90. A simulation based research on chance constrained programming in robust facility location problem
  91. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  92. A mathematical/physics carbon emission reduction strategy for building supply chain network based on carbon tax policy
  93. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  94. Mathematical analysis of the impact mechanism of information platform on agro-product supply chain and agro-product competitiveness
  95. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  96. A real negative selection algorithm with evolutionary preference for anomaly detection
  97. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  98. A privacy-preserving parallel and homomorphic encryption scheme
  99. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  100. Random walk-based similarity measure method for patterns in complex object
  101. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  102. A Mathematical Study of Accessibility and Cohesion Degree in a High-Speed Rail Station Connected to an Urban Bus Transport Network
  103. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  104. Design and Simulation of the Integrated Navigation System based on Extended Kalman Filter
  105. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  106. Oil exploration oriented multi-sensor image fusion algorithm
  107. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  108. Analysis of Product Distribution Strategy in Digital Publishing Industry Based on Game-Theory
  109. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  110. Expanded Study on the accumulation effect of tourism under the constraint of structure
  111. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  112. Unstructured P2P Network Load Balance Strategy Based on Multilevel Partitioning of Hypergraph
  113. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  114. Research on the method of information system risk state estimation based on clustering particle filter
  115. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  116. Demand forecasting and information platform in tourism
  117. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  118. Physical-chemical properties studying of molecular structures via topological index calculating
  119. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  120. Local kernel nonparametric discriminant analysis for adaptive extraction of complex structures
  121. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  122. City traffic flow breakdown prediction based on fuzzy rough set
  123. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  124. Conservation laws for a strongly damped wave equation
  125. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  126. Blending type approximation by Stancu-Kantorovich operators based on Pólya-Eggenberger distribution
  127. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  128. Computing the Ediz eccentric connectivity index of discrete dynamic structures
  129. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  130. A discrete epidemic model for bovine Babesiosis disease and tick populations
  131. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  132. Study on maintaining formations during satellite formation flying based on SDRE and LQR
  133. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  134. Relationship between solitary pulmonary nodule lung cancer and CT image features based on gradual clustering
  135. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  136. A novel fast target tracking method for UAV aerial image
  137. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  138. Fuzzy comprehensive evaluation model of interuniversity collaborative learning based on network
  139. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  140. Conservation laws, classical symmetries and exact solutions of the generalized KdV-Burgers-Kuramoto equation
  141. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  142. After notes on self-similarity exponent for fractal structures
  143. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  144. Excitation probability and effective temperature in the stationary regime of conductivity for Coulomb Glasses
  145. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  146. Comparisons of feature extraction algorithm based on unmanned aerial vehicle image
  147. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  148. Research on identification method of heavy vehicle rollover based on hidden Markov model
  149. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  150. Classifying BCI signals from novice users with extreme learning machine
  151. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  152. Topics on data transmission problem in software definition network
  153. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  154. Statistical inferences with jointly type-II censored samples from two Pareto distributions
  155. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  156. Estimation for coefficient of variation of an extension of the exponential distribution under type-II censoring scheme
  157. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  158. Analysis on trust influencing factors and trust model from multiple perspectives of online Auction
  159. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  160. Coupling of two-phase flow in fractured-vuggy reservoir with filling medium
  161. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  162. Production decline type curves analysis of a finite conductivity fractured well in coalbed methane reservoirs
  163. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  164. Flow Characteristic and Heat Transfer for Non-Newtonian Nanofluid in Rectangular Microchannels with Teardrop Dimples/Protrusions
  165. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  166. The size prediction of potential inclusions embedded in the sub-surface of fused silica by damage morphology
  167. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  168. Research on carbonate reservoir interwell connectivity based on a modified diffusivity filter model
  169. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  170. The method of the spatial locating of macroscopic throats based-on the inversion of dynamic interwell connectivity
  171. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  172. Unsteady mixed convection flow through a permeable stretching flat surface with partial slip effects through MHD nanofluid using spectral relaxation method
  173. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  174. A volumetric ablation model of EPDM considering complex physicochemical process in porous structure of char layer
  175. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  176. Numerical simulation on ferrofluid flow in fractured porous media based on discrete-fracture model
  177. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  178. Macroscopic lattice Boltzmann model for heat and moisture transfer process with phase transformation in unsaturated porous media during freezing process
  179. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  180. Modelling of intermittent microwave convective drying: parameter sensitivity
  181. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  182. Simulating gas-water relative permeabilities for nanoscale porous media with interfacial effects
  183. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  184. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model
  185. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  186. Investigation effect of wettability and heterogeneity in water flooding and on microscopic residual oil distribution in tight sandstone cores with NMR technique
  187. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  188. Analytical modeling of coupled flow and geomechanics for vertical fractured well in tight gas reservoirs
  189. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  190. Special Issue: Ever New "Loopholes" in Bell’s Argument and Experimental Tests
  191. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  192. The ultimate loophole in Bell’s theorem: The inequality is identically satisfied by data sets composed of ±1′s assuming merely that they exist
  193. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  194. Erratum to: The ultimate loophole in Bell’s theorem: The inequality is identically satisfied by data sets composed of ±1′s assuming merely that they exist
  195. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  196. Rhetoric, logic, and experiment in the quantum nonlocality debate
  197. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  198. What If Quantum Theory Violates All Mathematics?
  199. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  200. Relativity, anomalies and objectivity loophole in recent tests of local realism
  201. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  202. The photon identification loophole in EPRB experiments: computer models with single-wing selection
  203. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  204. Bohr against Bell: complementarity versus nonlocality
  205. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  206. Is Einsteinian no-signalling violated in Bell tests?
  207. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  208. Bell’s “Theorem”: loopholes vs. conceptual flaws
  209. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  210. Nonrecurrence and Bell-like inequalities
  211. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  212. Three-dimensional computer models of electrospinning systems
  213. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  214. Electric field computation and measurements in the electroporation of inhomogeneous samples
  215. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  216. Modelling of magnetostriction of transformer magnetic core for vibration analysis
  217. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  218. Comparison of the fractional power motor with cores made of various magnetic materials
  219. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  220. Dynamics of the line-start reluctance motor with rotor made of SMC material
  221. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  222. Inhomogeneous dielectrics: conformal mapping and finite-element models
  223. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  224. Topology optimization of induction heating model using sequential linear programming based on move limit with adaptive relaxation
  225. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  226. Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis
  227. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  228. Current superimposition variable flux reluctance motor with 8 salient poles
  229. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  230. Modelling axial vibration in windings of power transformers
  231. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  232. Field analysis & eddy current losses calculation in five-phase tubular actuator
  233. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  234. Hybrid excited claw pole generator with skewed and non-skewed permanent magnets
  235. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  236. Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method
  237. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  238. Field-circuit analysis and measurements of a single-phase self-excited induction generator
  239. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  240. A comparative analysis between classical and modified approach of description of the electrical machine windings by means of T0 method
  241. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  242. Field-based optimal-design of an electric motor: a new sensitivity formulation
  243. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  244. Application of the parametric proper generalized decomposition to the frequency-dependent calculation of the impedance of an AC line with rectangular conductors
  245. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  246. Virtual reality as a new trend in mechanical and electrical engineering education
  247. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  248. Holonomicity analysis of electromechanical systems
  249. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  250. An accurate reactive power control study in virtual flux droop control
  251. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  252. Localized probability of improvement for kriging based multi-objective optimization
  253. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  254. Research of influence of open-winding faults on properties of brushless permanent magnets motor
  255. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  256. Optimal design of the rotor geometry of line-start permanent magnet synchronous motor using the bat algorithm
  257. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  258. Model of depositing layer on cylindrical surface produced by induction-assisted laser cladding process
  259. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  260. Detection of inter-turn faults in transformer winding using the capacitor discharge method
  261. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  262. A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle
  263. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  264. Lamination effects on a 3D model of the magnetic core of power transformers
  265. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  266. Detection of vertical disparity in three-dimensional visualizations
  267. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  268. Calculations of magnetic field in dynamo sheets taking into account their texture
  269. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  270. 3-dimensional computer model of electrospinning multicapillary unit used for electrostatic field analysis
  271. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  272. Optimization of wearable microwave antenna with simplified electromagnetic model of the human body
  273. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  274. Induction heating process of ferromagnetic filled carbon nanotubes based on 3-D model
  275. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  276. Speed control of an induction motor by 6-switched 3-level inverter
Heruntergeladen am 12.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/phys-2017-0094/html
Button zum nach oben scrollen