Home Holonomicity analysis of electromechanical systems
Article Open Access

Holonomicity analysis of electromechanical systems

  • Miroslaw Wcislik EMAIL logo and Karol Suchenia
Published/Copyright: December 29, 2017

Abstract

Electromechanical systems are described using state variables that contain electrical and mechanical components. The equations of motion, both electrical and mechanical, describe the relationships between these components. These equations are obtained using Lagrange functions. On the basis of the function and Lagrange - d’Alembert equation the methodology of obtaining equations for electromechanical systems was presented, together with a discussion of the nonholonomicity of these systems. The electromechanical system in the form of a single-phase reluctance motor was used to verify the presented method. Mechanical system was built as a system, which can oscillate as the element of physical pendulum. On the base of the pendulum oscillation, parameters of the electromechanical system were defined. The identification of the motor electric parameters as a function of the rotation angle was carried out. In this paper the characteristics and motion equations parameters of the motor are presented. The parameters of the motion equations obtained from the experiment and from the second order Lagrange equations are compared.

1 Introduction

The foundations of mechanics were created by generations of mathematicians and astronomers trying to describe the motion of such complex mechanical system as the planet system. Lagrange occupies a special place among them. Benefiting from his achievements W. R. Hamilton in 1834 stated that [1] ”Among the successors of those illustrious men (autor’s remark Galileo, Newton), Lagrange has perhaps done more than any other analyst to give extent and harmony to such deductive researches, by showing that the most varied consequences respecting the motions of systems of bodies may be derived from one radical formula; the beauty of the methods so suiting the dignity of the results as to make of his great work a kind of scientific poem”.

Euler also played a great role in the creation of the mechanics of many bodies [2]. However, it was Lagrange who formulated the function called his name, which is a difference between kinetic energy and potential energy.

fL=EkEp(1)

where: Ek - kinetic energy, Ep - potential energy.

The kinetic energy is the sum of the kinetic energy of all components and, similarly, potential energy is the sum of the potential energy of all components. It is worth noting that Lagrange was considering a conservative arrangement. This means that there are no energy dissipation components in the Lagrange function. For the electromechanical system, a distinction between kinetic electrical and mechanical energy, as well as potential electric and mechanical energy, can be made. For electromechanical rotating devices, the independent (input) mechanical coordinate, variable of the model, is the rotor rotation angle, and the electric input coordinate is the electric charge of the electrical circuit. A characteristic feature of such a system is the lack of potential energy, both electrical and mechanical. But in the Lagrange function, there is a mechanical coordinate in the form of the dependence of the inductance of the electrical circuit from the angle of rotation. In addition, there are the electrical and mechanical coordinate time derivatives, velocities occurring in the expressions of kinetic energy. After the distinction of the generalised coordinates and their velocities, the Lagrange equation of the first kind (Lagrange - d’Alembert equation) is derived:

ddtfLq˙eδqe+ddtfLq˙mδqm=0(2)

Above equation is the sum of products derived from Euler’s variation products of Lagrange function and virtual displacements of individual generalised variables. When these displacements are independent, the system is holonomic and the Euler variation derivatives of the Lagrange function describing the virtual forces balances of the elements of the considered system are called Euler - Lagrange equations:

ddtfLq˙e=0(3)
ddtfLq˙mfLqm=0(4)

The equations above are called the equations of motion and they fully describe the dynamics of the system. But if the virtual displacements are not independent, then the system is a nonholonomic one. The Lagrange - d’Alembert equation should be used in the description of the system and on this basis, the character of interactions between mechanical and electrical system should be determined, “there is no doubt that the correct equations of motion for nonholonomic mechanical systems are given by the Lagrange - d’Alembert principle” [3] (page 236).

From Ref. [3] it also follows that experimental studies should be considered for the analysis of interactions between elements of a complex dynamic system, “the question of applicability of the nonholonomic model … cannot, in any specific situation, be solved within the framework of an axiomatic scheme without recourse to experimental results” [3] (page 244).

The Lagrange function is most commonly used to describe motion equations of electromechanical systems [4]. It is described by generalized coordinates and velocities as the difference between kinematic and potential energy (1).

In general, potential energy is often not present in electromechanical systems. The Lagrange function does not describe energy flow. It describes relation between particular generalized coordinates and their derivatives. Hence, the holonomicity of the system should be discussed on the basis of Lagrange function of homogeneous and conservative systems. If, electric coordinates (electric charges) qe and mechanical coordinates (angles) qm are discriminated among generalized coordinates the Lagrange function of the system may be described as:

fL=12L(qm)dqedt2+12Jdqmdt2(5)

Based on the Lagrange function, Lagrange - d’Alembert equation may be formulated [5]. For the electromechanical system, it is in form presented as Equation (2).

According to Ref. [5] (page 90), the variations δqe and δqm from Lagrange - d’Alembert equation are independent only for the holonomic system, and only for that system, we obtain the Lagrange equations of the second kind (Euler - Lagrange equations) in form (3) and (4).

In order to analyze the motion equation of the electromechanical system, the reluctance motor with a single pair of stator and rotor poles was chosen – Figure 1.

Figure 1 A general diagram of the reluctance motor
Figure 1

A general diagram of the reluctance motor

A construction of a reluctance motor (RM) is very simple because it has no brushes, magnets and rotor windings. Consequently, a reluctance motor is highly reliable and fault-tolerant. The second advantage of reluctance motors is that the friction torque of the motor depends mainly on friction of bearing, it is rather small and can easily be regulated.

The major drawback of the motor is that it starts to operate only for particular angles of the rotor versus stator. However, the electric circuit is described only by means of one equation. Therefore, it facilitates the analysis and experimental verification of the mathematical model.

The mathematical model of an electromechanical device consists of electrical and mechanical parts, described only by two equations. The analysis of systems is based on the measurement of the electric circuit and the mechanical system parameters. The mechanical and electric equations are most often formulated as follows [6, 7]:

Jdωdt+k(ω)+TL=Te(6)
L(i,φ)didt+dL(i,φ)dφiω+Rsi=Us(7)

where: J - moment of inertia, k(ω) - torque of friction, TL - torque of load, ∂Lφ/∂φ - derivative of inductance versus the rotor rotation angle, Us - terminal voltage, i - phase current, Rs - winding resistance and Te, the electromagnetic torque, is defined as [8]:

Te=12L(φ)φi2(8)

Multiplying the equation (6) by the angular velocity ω, gives a power balance equation for the mechanical part (9). Multiplying the equation (7) by the current i, yields the power equation of electric equation (10):

Jdωdtω+k(ω)ω+TLω=12L(φ)φωi2(9)
L(φ)didti+Lφφωi2+Rsi2=Usi(10)

A term on the right side of the equation (9) represents the power which is transferred from the electrical part of motor. Terms on the left side of the equation (9) represent the power related to the changes of rotor kinetic energy, friction power, and load power.

The first term on the left side of the equation (10) defines the rate of change of magnetic energy which is cumulated in the motor inductance. The second term describes the intensity of energy which is transformed to the mechanical system. The last term represents the thermal loss energy of stator winding. A term on the right side describes the electric power supplied to the motor. It should be emphasized, that the power transferred to the mechanical system from the electric system in the equation (10) is different than the intensity of energy transferred to the mechanical system in the equation (9).

Some explanation of the power difference may be found in [9, 10, 11]. In these papers, the power transformed from electric circuit is split into two parts:

12Ldi2dt+12i2dLdφω+12i2dLdφω+Rsi2=Usi(11)

and then it is written as:

ddt(12Li2)+12i2dLdφω+Rsi2=Usi(12)

The first term is interpreted as the rate of magnetic energy accumulation, the second one is described as power transformed to the mechanical system. It should be noted, that in a steady state, the energy stored in the coil has two terms: the first one - 12Ldi2dt, in the steady state equals zero, and the second one - 12i2ωdLdφ, has the same form as the power transferred to the mechanical system. In a steady state the transfer of electric power to mechanical output power is continuous. It means that accumulation rate of magnetic energy is also constant and the magnetic energy of motor increases continuously. Is it possible?

2 Identification of parameters

In order to verify the above relations, the test bench with the reluctance motor was constructed. The stator of the motor had one pair of poles, and a rotor had only one pair of teeth – see Figure 1.

The measurement of the parameters during the rotation process is quite complex, because the moment of load has to be set and measured. Therefore, in order to analyze the coefficients of the equations (6) and (7), the mechanical system of the motor was modified. A steel rod of 6mm × 6mm × 354mm dimensions and of 100g weight was attached to the rotor axis. The rod and the rotor together formed a physical pendulum – see Figure 2 [12].

Figure 2 The measurement diagram of the reluctance motor parameters
Figure 2

The measurement diagram of the reluctance motor parameters

A resistor R is connected in series with the coil of stator, and it is used to measure current in the stator winding. The values of voltage, current and rotation angle are measured simultaneously using NI 9225 and NI 6216 boards. The boards are serviced by a LabVIEW program installed on the computer where the data are recorded in a text data file *.txt. The data files were loaded into MATLAB and processed using Golay - Savitzky filter to eliminate noise and calculate derivatives. The parameters of the motion equations were calculated using least squares method [13].

On a motor shaft there is also a rotary encoder, which is used to measure the inclination angle of the rotor in relation to the stator.

In order to specify the relation between inductance and the rotation angle of the rotor, the motor winding was supplied by AC 50 Hz voltage source. The rotation angle was set up with a 5 degree step. Due to the symmetry of the motor, the research was carried out for the angle range of 180 degrees. The instantaneous values of current and the voltage of the motor winding were measured simultaneously. The measurements were also conducted using the National Instruments measurement boards, as well as LabVIEW and MATLAB – Simulink programs. The inductance profile, as a function of rotation angle, was established using the measured values - see Figure 3.

Figure 3 The inductance profile for the angle of rotation
Figure 3

The inductance profile for the angle of rotation

The intermediate value of a derivative of inductance versus rotation angle for the rising quasilinear section of the characteristic in Figure 3 was calculated. Its value between a 20 degree and a 75 degree rotation angle amounts to:

Lφφ0.0395Hrad(13)

In order to check the coefficients of the motion equations (6) and (7), the identification of the equations parameters was carried out. The motor parameters were identified for stabilized current supply, thus derivative of the current in the equation (14) was omitted. The general form of the motion equations of the system was assumed as follows:

w1i+w2dφdti=Us(14)
w3d2φdt2+w4signdφdt+w5i2=mglsin(φ)2(15)

where: w1 - stator winding resistance (Rs), w2, w5 - derivative of inductance versus the rotor rotation angle in relation to stator ∂Lφ/∂φ, w3 - moment of inertia (J), w4 - coefficient of dry friction, m - weight rod, g - acceleration of gravity, l - length of rod.

The rotation angle measurement without current was related to vertical position of the bar and the direction of earth gravity point A in Figure 3. When the stator circuit is powered by a DC voltage source with a stabilized current value the pendulum moves up by about 50 degree. – point B in Figure 3. The value of current is selected to match the inclination angle of the pendulum placed in the middle of positive slope of curve in Figure 3. Then the pendulum position was deflected manually. After release, the oscillations of the steel bar position angle were observed. In the test the changes of inductance are placed on the rising part of the inductance profile – Figure 3.

The approximate values of coefficients in the equations (14) and (15) were calculated. Based on measurement of current i, angle φ, and time derivatives of angle the parameters w1, …, w5 were identified. Both the voltage induced in the winding, and its approximation calculation from the equation (14) are shown in Figure 4. Similarly, time characteristics of load torque from the equation (15) are displayed in Figure 5.

Figure 4 The waveform of voltage oscillation of the stator windings
Figure 4

The waveform of voltage oscillation of the stator windings

Figure 5 The oscillation of load torque in the mechanical equation
Figure 5

The oscillation of load torque in the mechanical equation

On the basis of the measurement, the coefficients of the equation (14) and the coefficients of the equation (15) are:

w1=3.28Ω(16)
w2=0.0199Hrad(17)
w3=0.003kgm2(18)
w4=0.0028kgm2s(19)
w5=0.0197Hrad(20)

It can be seen, that the values of the coefficient w2 from the equation (17) and of the coefficient w5 from the equation (20) are very similar. Both values almost equal a half of the value of the derivative of inductance profile versus the rotation angle (13) as presented in Figure 3 with the accuracy being one percent. The correlation coefficient between measured and calculated voltages in Figure 4 is 0.9307. For the mechanical equation the correlation coefficient in Figure 5 is equal to 0.9925. The experiment showed that in the equation (14), the term which contains the derivative of inductance with respect to rotation angle, should be multiplied by coefficient 12. The experiment results shown, that the equation of motion of electric circuit ought to be formulated as follows:

Us=L(φ)didt+12Lφφωi+Rsi(21)

The equation, which resulted from the experiment (21), is different from the widely known electric equation of electric motor [6, 7, 8] due the presence of the 12 coefficient. Therefore, the relation between power balance and the holonomicity of the reluctance motor should be analyzed.

3 Holonomicity analysis of electromechanical system

If it is assumed that the virtual displacements are substituted by virtual velocities, the Lagrange - d’Alembert equation (2) becomes the equation of power balance. By substituting in the equation (2) with Lagrange function (5), and by assuming that δqe = i = const and δqm = ω = const, the equation of power balance is not fulfilled in steady state:

L(φ)φωi212L(φ)φωi20(22)

The power balance (22) is different than zero, hence Lagrange - d’Alembert equation of the reluctance motor is not satisfied. Consequently, it is apparent, that the analyzed electromechanical system is nonholonomic.

If a dynamic system is described by n generalized coordinates, but its equations contain only m < n of these coordinates and all generalized velocities, then the system is nonholonomic [5] (pages 107-108). The same rule is applicable to the equations of electromechanical systems. There is no generalized electric coordinate (electric charge) in electric equations. Therefore, it may be concluded that the electric equation determines whether the analyzed system is holonomic or nonholonomic.

From Ref. [14] it follows that the same procedure may be applied to both nonholonomic and holonomic systems. But, some correction in the equations is necessary. “The modifications that have to be made to the Lagrange equations may be found by looking at the problem in a slightly different way, and regarding the constrained system as the unconstrained system acted on by certain external forces, namely those forces which have to be exerted in order to compel the system to obey the constraint. This formulation has the advantage that in it the coordinates q1, q2, …, qn may be regarded as independent; the constraints now appear as the effect of additional forces, and not as relations between the coordinates. Because the coordinates are independent, Lagrange equations may be used, and the equations of motion of the constrained systems may be obtained by including the effects of the additional forces in the Lagrange equations.” [14] (page 145-146). According to above, in the analyzed example in electric equation, a force QN was introduced.

ddtfLq˙e+QNδqe+ddtfLq˙mfLqmδqm=0(23)

A similar method is described in Ref. [5]. If the system is nonholonomic, the vector of reactions of nonholonomic constraints, as an additional expression (QN ≠ 0) should be added. Then d’Alembert – Lagrange equation may be represented by Equation (23). After the changes, the fragment from [5] (page 92) is described as follows: “if QN is the generalized force of reaction in the process of movement of the non-holonomic system, then the equation describes also the process of movement of some holonomic system, along with kinetic energy Ek and the generalized force of reaction QN”. It allows us to analyze the equations of electric and mechanical systems independently.

On the basis of the equation (23) and the kinetic energy of the conservative system, we may determine a correction QN. Assuming that the variations of generalized coordinates are equal to the derivatives of these coordinates, and taking into account the correction in steady-state, we get a following equation:

L(φ)φωi212L(φ)φωi2+QNi=0(24)

Hence, an additional force QN equals:

QN=12L(φ)φωi(25)

If the additional force is used in an electric equation and are added dissipative and potential forces, the following relation is obtained:

L(φ)didt+12L(φ)φωi+Rsi=Us(26)

It can be seen that the equation (26) is the same as the equation (21), established on the basis of measurements. The multiplication of the equation (26) by the current i yields:

L(φ)didti+12L(φ)φωi2+Rsi2=Usi(27)

The above equation is physically interpretable and along with the mechanical equation (9), describes the power balance of an electromechanical system.

4 Conclusions

It may be concluded that the power balance in the reluctance motor equations is achieved only after using the additional voltage, which plays a role of “nonholonomic force” in the electric equation of the reluctance motor. Only then, the powers in the given motor model are balanced. The power transferred to the mechanical system is equal to the power transferred from the electric equation. It proves that the analyzed motor is a nonholonomic system.

The equation describing an electric circuit for a non-holonomic system should be formulated as in (21). The correction presented in this paper may also be applied in more complex electromagnetic systems e.g. multi phase switching reluctance motor.

It ought to be noted that for system parts of different kind, e.g. electrical and mechanical, the generalized forces are measured in different units and that’s why the action and reaction forces between the parts could not be compared or equipared. The action and the reaction between the part should consider only the form of power.

The discussion presented in this article allows to present proposals for the procedure of formulating motion equations based on Lagrange’s function. The steps of this procedure are as follows:

  1. Formulation of the Lagrange function,

  2. The determination of Euler - Lagrange equations and the introduction of nonholomicity correction forces to equations, in which there is no generalized coordinate for which the equation was formulated,

  3. Substituting the generalized velocities (generalized variables time derivatives) for virtual displacements (variations of generalized variables), formulation of the Lagrange - d’Alembert equation in steady state and determination of the nonholonomicity correctors. For the holonomic system, the correctors shall be equal to zero,

  4. Insertion of nonholonomicity correctors into the Euler-Lagrange equations and addition of generalized external input and output forces such as supply, load, friction, heat dissipation of energy, etc.

As a result, the motion equations are obtained for both the holonomic and nonholonomic system.

References

[1] Taylor J. R., Classical Mechanics, University Science Books, Sausalito, California, 2005Search in Google Scholar

[2] Bauchau O. A., Flexible Multibody Dynamics, Solid Mechanics and its Applications, Springer Science + Business Media B. V., 2011, 17610.1007/978-94-007-0335-3Search in Google Scholar

[3] Bloch A. M. with the collaboration of Baillieul J., Crouch P., Marsden J. E., Zenkov D., Nonholonomic Mechanics and Control, Springer - Verlag New York 2003, 201510.1007/b97376Search in Google Scholar

[4] Landau L. D., Lifszyc J. M., Mechanika, Warszawa, PWN, 2007 (in Polish)Search in Google Scholar

[5] Nejmark J. I., Fufajew N. A., Dynamics of Nonholonomic Systems, Amer. Mathem. Society, USA, 1972Search in Google Scholar

[6] Krishnan R., Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, CRC Press LLC, 2001Search in Google Scholar

[7] Moreno - Torres P., Lafoz M., Blanco M., Navarro G., Torres J., Garcia - Tabares L., Switched reluctance drives with degraded mode for electric vehicles, INTECH, 201610.5772/64431Search in Google Scholar

[8] Sato Y., Murakami K., Tsubo Y., Sensorless Torque and Thrust Estimation of a Rotational/Linear Two Degrees - of - Freedom Switched Reluctance Motor, IEEE Transactions on Magnetics, 2016,52, 7, 820450410.1109/TMAG.2016.2536682Search in Google Scholar

[9] Miller T. J. E., Brushless Permanent - Magnet and Reluctance Motor Drives, Oxford University Press, 198910.1049/pe:19880010Search in Google Scholar

[10] Miller T. J. E., Electronic Control of Switched Reluctance Machines, Newnes Power Engineering Series, 2001Search in Google Scholar

[11] Skvarenina T. L., The Power Electronics Handbook Industrial Electronics Series, CRC Press LLC, 2002Search in Google Scholar

[12] Wcislik M., Suchenia K., Zagninski P., Motion equations of electromechanical system on the example of reluctance motor, Przeglad Elektrotechniczny, 2012, 88, 325-328Search in Google Scholar

[13] Wcislik M., Suchenia K., Core losses model of switched reluctance motor, IEEE 10.1109/WZEE.2015.7394014, 201510.1109/WZEE.2015.7394014Search in Google Scholar

[14] Bishop R. E. D., Gladwell G. M. L., Michaelson S., Matrix analysis of vibration, Cambridge University Press, 1968Search in Google Scholar

Received: 2017-11-5
Accepted: 2017-11-12
Published Online: 2017-12-29

© 2017 Miroslaw Wcislik and Karol Suchenia

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Regular Articles
  2. Analysis of a New Fractional Model for Damped Bergers’ Equation
  3. Regular Articles
  4. Optimal homotopy perturbation method for nonlinear differential equations governing MHD Jeffery-Hamel flow with heat transfer problem
  5. Regular Articles
  6. Semi- analytic numerical method for solution of time-space fractional heat and wave type equations with variable coefficients
  7. Regular Articles
  8. Investigation of a curve using Frenet frame in the lightlike cone
  9. Regular Articles
  10. Construction of complex networks from time series based on the cross correlation interval
  11. Regular Articles
  12. Nonlinear Schrödinger approach to European option pricing
  13. Regular Articles
  14. A modified cubic B-spline differential quadrature method for three-dimensional non-linear diffusion equations
  15. Regular Articles
  16. A new miniaturized negative-index meta-atom for tri-band applications
  17. Regular Articles
  18. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel
  19. Regular Articles
  20. Distributed containment control of heterogeneous fractional-order multi-agent systems with communication delays
  21. Regular Articles
  22. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir
  23. Regular Articles
  24. Quantum mechanics with geometric constraints of Friedmann type
  25. Regular Articles
  26. Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System
  27. Regular Articles
  28. Application of the optimal homotopy asymptotic method to nonlinear Bingham fluid dampers
  29. Regular Articles
  30. Analysis of Drude model using fractional derivatives without singular kernels
  31. Regular Articles
  32. An unsteady MHD Maxwell nanofluid flow with convective boundary conditions using spectral local linearization method
  33. Regular Articles
  34. New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method
  35. Regular Articles
  36. Quantum mechanical calculation of electron spin
  37. Regular Articles
  38. CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine)
  39. Regular Articles
  40. Chain on a cone
  41. Regular Articles
  42. Multi-task feature learning by using trace norm regularization
  43. Regular Articles
  44. Superluminal tunneling of a relativistic half-integer spin particle through a potential barrier
  45. Regular Articles
  46. Neutrosophic triplet normed space
  47. Regular Articles
  48. Lie algebraic discussion for affinity based information diffusion in social networks
  49. Regular Articles
  50. Radiation dose and cancer risk estimates in helical CT for pulmonary tuberculosis infections
  51. Regular Articles
  52. A comparison study of steady-state vibrations with single fractional-order and distributed-order derivatives
  53. Regular Articles
  54. Some new remarks on MHD Jeffery-Hamel fluid flow problem
  55. Regular Articles
  56. Numerical investigation of magnetohydrodynamic slip flow of power-law nanofluid with temperature dependent viscosity and thermal conductivity over a permeable surface
  57. Regular Articles
  58. Charge conservation in a gravitational field in the scalar ether theory
  59. Regular Articles
  60. Measurement problem and local hidden variables with entangled photons
  61. Regular Articles
  62. Compression of hyper-spectral images using an accelerated nonnegative tensor decomposition
  63. Regular Articles
  64. Fabrication and application of coaxial polyvinyl alcohol/chitosan nanofiber membranes
  65. Regular Articles
  66. Calculating degree-based topological indices of dominating David derived networks
  67. Regular Articles
  68. The structure and conductivity of polyelectrolyte based on MEH-PPV and potassium iodide (KI) for dye-sensitized solar cells
  69. Regular Articles
  70. Chiral symmetry restoration and the critical end point in QCD
  71. Regular Articles
  72. Numerical solution for fractional Bratu’s initial value problem
  73. Regular Articles
  74. Structure and optical properties of TiO2 thin films deposited by ALD method
  75. Regular Articles
  76. Quadruple multi-wavelength conversion for access network scalability based on cross-phase modulation in an SOA-MZI
  77. Regular Articles
  78. Application of ANNs approach for wave-like and heat-like equations
  79. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  80. Study on node importance evaluation of the high-speed passenger traffic complex network based on the Structural Hole Theory
  81. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  82. A mathematical/physics model to measure the role of information and communication technology in some economies: the Chinese case
  83. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  84. Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps
  85. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  86. On the libration collinear points in the restricted three – body problem
  87. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  88. Research on Critical Nodes Algorithm in Social Complex Networks
  89. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  90. A simulation based research on chance constrained programming in robust facility location problem
  91. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  92. A mathematical/physics carbon emission reduction strategy for building supply chain network based on carbon tax policy
  93. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  94. Mathematical analysis of the impact mechanism of information platform on agro-product supply chain and agro-product competitiveness
  95. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  96. A real negative selection algorithm with evolutionary preference for anomaly detection
  97. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  98. A privacy-preserving parallel and homomorphic encryption scheme
  99. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  100. Random walk-based similarity measure method for patterns in complex object
  101. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  102. A Mathematical Study of Accessibility and Cohesion Degree in a High-Speed Rail Station Connected to an Urban Bus Transport Network
  103. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  104. Design and Simulation of the Integrated Navigation System based on Extended Kalman Filter
  105. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  106. Oil exploration oriented multi-sensor image fusion algorithm
  107. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  108. Analysis of Product Distribution Strategy in Digital Publishing Industry Based on Game-Theory
  109. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  110. Expanded Study on the accumulation effect of tourism under the constraint of structure
  111. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  112. Unstructured P2P Network Load Balance Strategy Based on Multilevel Partitioning of Hypergraph
  113. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  114. Research on the method of information system risk state estimation based on clustering particle filter
  115. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  116. Demand forecasting and information platform in tourism
  117. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  118. Physical-chemical properties studying of molecular structures via topological index calculating
  119. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  120. Local kernel nonparametric discriminant analysis for adaptive extraction of complex structures
  121. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  122. City traffic flow breakdown prediction based on fuzzy rough set
  123. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  124. Conservation laws for a strongly damped wave equation
  125. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  126. Blending type approximation by Stancu-Kantorovich operators based on Pólya-Eggenberger distribution
  127. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  128. Computing the Ediz eccentric connectivity index of discrete dynamic structures
  129. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  130. A discrete epidemic model for bovine Babesiosis disease and tick populations
  131. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  132. Study on maintaining formations during satellite formation flying based on SDRE and LQR
  133. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  134. Relationship between solitary pulmonary nodule lung cancer and CT image features based on gradual clustering
  135. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  136. A novel fast target tracking method for UAV aerial image
  137. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  138. Fuzzy comprehensive evaluation model of interuniversity collaborative learning based on network
  139. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  140. Conservation laws, classical symmetries and exact solutions of the generalized KdV-Burgers-Kuramoto equation
  141. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  142. After notes on self-similarity exponent for fractal structures
  143. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  144. Excitation probability and effective temperature in the stationary regime of conductivity for Coulomb Glasses
  145. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  146. Comparisons of feature extraction algorithm based on unmanned aerial vehicle image
  147. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  148. Research on identification method of heavy vehicle rollover based on hidden Markov model
  149. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  150. Classifying BCI signals from novice users with extreme learning machine
  151. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  152. Topics on data transmission problem in software definition network
  153. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  154. Statistical inferences with jointly type-II censored samples from two Pareto distributions
  155. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  156. Estimation for coefficient of variation of an extension of the exponential distribution under type-II censoring scheme
  157. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  158. Analysis on trust influencing factors and trust model from multiple perspectives of online Auction
  159. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  160. Coupling of two-phase flow in fractured-vuggy reservoir with filling medium
  161. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  162. Production decline type curves analysis of a finite conductivity fractured well in coalbed methane reservoirs
  163. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  164. Flow Characteristic and Heat Transfer for Non-Newtonian Nanofluid in Rectangular Microchannels with Teardrop Dimples/Protrusions
  165. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  166. The size prediction of potential inclusions embedded in the sub-surface of fused silica by damage morphology
  167. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  168. Research on carbonate reservoir interwell connectivity based on a modified diffusivity filter model
  169. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  170. The method of the spatial locating of macroscopic throats based-on the inversion of dynamic interwell connectivity
  171. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  172. Unsteady mixed convection flow through a permeable stretching flat surface with partial slip effects through MHD nanofluid using spectral relaxation method
  173. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  174. A volumetric ablation model of EPDM considering complex physicochemical process in porous structure of char layer
  175. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  176. Numerical simulation on ferrofluid flow in fractured porous media based on discrete-fracture model
  177. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  178. Macroscopic lattice Boltzmann model for heat and moisture transfer process with phase transformation in unsaturated porous media during freezing process
  179. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  180. Modelling of intermittent microwave convective drying: parameter sensitivity
  181. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  182. Simulating gas-water relative permeabilities for nanoscale porous media with interfacial effects
  183. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  184. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model
  185. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  186. Investigation effect of wettability and heterogeneity in water flooding and on microscopic residual oil distribution in tight sandstone cores with NMR technique
  187. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  188. Analytical modeling of coupled flow and geomechanics for vertical fractured well in tight gas reservoirs
  189. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  190. Special Issue: Ever New "Loopholes" in Bell’s Argument and Experimental Tests
  191. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  192. The ultimate loophole in Bell’s theorem: The inequality is identically satisfied by data sets composed of ±1′s assuming merely that they exist
  193. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  194. Erratum to: The ultimate loophole in Bell’s theorem: The inequality is identically satisfied by data sets composed of ±1′s assuming merely that they exist
  195. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  196. Rhetoric, logic, and experiment in the quantum nonlocality debate
  197. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  198. What If Quantum Theory Violates All Mathematics?
  199. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  200. Relativity, anomalies and objectivity loophole in recent tests of local realism
  201. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  202. The photon identification loophole in EPRB experiments: computer models with single-wing selection
  203. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  204. Bohr against Bell: complementarity versus nonlocality
  205. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  206. Is Einsteinian no-signalling violated in Bell tests?
  207. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  208. Bell’s “Theorem”: loopholes vs. conceptual flaws
  209. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  210. Nonrecurrence and Bell-like inequalities
  211. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  212. Three-dimensional computer models of electrospinning systems
  213. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  214. Electric field computation and measurements in the electroporation of inhomogeneous samples
  215. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  216. Modelling of magnetostriction of transformer magnetic core for vibration analysis
  217. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  218. Comparison of the fractional power motor with cores made of various magnetic materials
  219. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  220. Dynamics of the line-start reluctance motor with rotor made of SMC material
  221. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  222. Inhomogeneous dielectrics: conformal mapping and finite-element models
  223. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  224. Topology optimization of induction heating model using sequential linear programming based on move limit with adaptive relaxation
  225. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  226. Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis
  227. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  228. Current superimposition variable flux reluctance motor with 8 salient poles
  229. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  230. Modelling axial vibration in windings of power transformers
  231. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  232. Field analysis & eddy current losses calculation in five-phase tubular actuator
  233. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  234. Hybrid excited claw pole generator with skewed and non-skewed permanent magnets
  235. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  236. Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method
  237. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  238. Field-circuit analysis and measurements of a single-phase self-excited induction generator
  239. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  240. A comparative analysis between classical and modified approach of description of the electrical machine windings by means of T0 method
  241. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  242. Field-based optimal-design of an electric motor: a new sensitivity formulation
  243. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  244. Application of the parametric proper generalized decomposition to the frequency-dependent calculation of the impedance of an AC line with rectangular conductors
  245. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  246. Virtual reality as a new trend in mechanical and electrical engineering education
  247. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  248. Holonomicity analysis of electromechanical systems
  249. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  250. An accurate reactive power control study in virtual flux droop control
  251. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  252. Localized probability of improvement for kriging based multi-objective optimization
  253. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  254. Research of influence of open-winding faults on properties of brushless permanent magnets motor
  255. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  256. Optimal design of the rotor geometry of line-start permanent magnet synchronous motor using the bat algorithm
  257. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  258. Model of depositing layer on cylindrical surface produced by induction-assisted laser cladding process
  259. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  260. Detection of inter-turn faults in transformer winding using the capacitor discharge method
  261. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  262. A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle
  263. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  264. Lamination effects on a 3D model of the magnetic core of power transformers
  265. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  266. Detection of vertical disparity in three-dimensional visualizations
  267. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  268. Calculations of magnetic field in dynamo sheets taking into account their texture
  269. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  270. 3-dimensional computer model of electrospinning multicapillary unit used for electrostatic field analysis
  271. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  272. Optimization of wearable microwave antenna with simplified electromagnetic model of the human body
  273. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  274. Induction heating process of ferromagnetic filled carbon nanotubes based on 3-D model
  275. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  276. Speed control of an induction motor by 6-switched 3-level inverter
Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/phys-2017-0115/html
Scroll to top button