Home Localized probability of improvement for kriging based multi-objective optimization
Article Open Access

Localized probability of improvement for kriging based multi-objective optimization

  • Yinjiang Li , Song Xiao , Paolo Di Barba , Mihai Rotaru and Jan K. Sykulski EMAIL logo
Published/Copyright: December 29, 2017

Abstract

The paper introduces a new approach to kriging based multi-objective optimization by utilizing a local probability of improvement as the infill sampling criterion and the nearest neighbor check to ensure diversification and uniform distribution of Pareto fronts. The proposed method is computationally fast and linearly scalable to higher dimensions.

1 Introduction

Research on multiple objective optimization (MO) has been attracting significant attention of the engineering community since 1980s; with the aid of fast computers solutions to many complex optimization problems have been made possible. The Vector Evaluated Genetic Algorithm (VEGA) [1] is one of the earliest examples of Multi-Objective Evolutionary Algorithms (MOEAs). The more recent developments include NSGA-II [2] and its modified versions as well as Particle Swarm based methods [3]. A comprehensive review of problem definitions and non-EA based solution methods may be found in [4].

There is an increasing number of indicator-based MOEAs that have been proposed in recent years; the indicator is used as a fitness measure for a set of Pareto points, and – by optimizing the indicator function – the MO problem essentially becomes a single objective optimization problem as the solver only needs to locate the optimal value of the indicator value and update the generation based on it. One of the best-known indicators is the hypervolume [5]; it has been successfully applied to both EAs and surrogate-based algorithms. Despite its unique feature of being strictly monotonic to Pareto improvements [6], it suffers from high computational cost for higher dimensions.

The general opinion favors EAs as advantageous in solving MO problems by often being population based, thus multiple solutions can be obtained in a single run. However, solutions to practical problems may be expensive in terms of computational time and effort. In the context of electromagnetic devices, the finite element method is a common design tool; it often takes hours or even days to obtain a single solution, therefore surrogate model based algorithms are often preferred.

In this study we propose a new indicator focused Localized Probability of Improvement (LPoI) approach for MO problems; its implementation requires the predicted mean and mean square errors to be available, hence it is not applicable to other EAs, but for Gaussian based surrogate models (including those relying on kriging) it has the advantage of being linearly scalable to problems with higher number of objectives.

2 Kriging theory

Modern engineering design often involves implementation of deterministic computer simulation; in electromagnetic design, time consuming finite element models (FEM) are often built to represent the actual devices. Designs are analyzed and optimized before being put into production. In these types of problems, the optimization can be a very time consuming process due to a large number of FEM calls needed. Therefore surrogate modeling techniques are often used to reduce the number of expensive FEM simulations.

Kriging is one of the most commonly used surrogate techniques amongst many others. An ordinary kriging model Y consists of a global mean f and a local departure Z:

Yx=fx+Zx(1)

where x is the location of any design site.

The local departure follows the Gaussian distribution with a mean of zero, variance σ2 and non-zero covariance. A general exponential correlation function is one of the most commonly used correlation functions, due to its continuous characteristic and flexibility

corrxi,xj=nkexpθnxinxjnpn(2)

where xi and xj are a pair of observations, k is the problem dimension, while θn and pn are hyperparameters controlling the shape of the correlation function.

Kriging parameters u, σ2 and the hyperparameters θ and p are obtained via the Maximum Likelihood Estimation (MLE), with the maximum likelihood function given by

12ππ2(σ2)π2R12expy1uR1(y1u)2σ2(3)

where y denotes all observations and R is the correlation matrix.

The kriging prediction and the predicted mean square error (MSE) at a given location x are given as follows

y^=μ^+rR1(y1μ^)(4)
s2=σ^21rR1r+1rR1r21R11(5)

with σ^2=11u^R1(y1μ^)nandμ^=1R1y1R11, where μ̂ and σ̂2 are the optimal mean and variance, respectively, obtained by solving the maximum likelihood function.

3 Localized probability of improvement

Compared to other surrogate modeling methods, kriging has the advantage of providing both the predicted mean and the associated mean square error (MSE) at an unknown location. The probability of improvement PoI at any location is given by

PoIx=Φytxy^xs^x(6)

where yt is the target of improvement, ŷ the kriging predicted mean at location x, ŝ is a square root of the mean square error at location x and Φ(⋅) is the cumulative distribution function.

The first improvement target yext is associated with the minimum value of each individual objective function; the subscript ext stands for “extreme value” and yext is given by

yextn=yminn(1p)(7)

where yminn is the known minimum value of the nth objective function and p is the percentage of improvement to be defined; parameter p is discussed later in this section. The corresponding PoI is:

PoIextnx=Φyextny^nxs^nx(8)

where ŷn, ŝn, yextn and PoIextn are the corresponding measures of the nth objective function.

For the first improvement target, we find n values of PoI, which equals to the number of objectives, because the PoIext is calculated based on the extreme value of each objective function. We consider the maximum potential improvement for all individual objectives, hence

PoIextx=maximizePoIextnx(9)

The second improvement target yintn (x) is associated withthe reference point that is defined based on the location of x. The subscript int stands for “intermediate” and yref is calculated as

yintn=yrefn(1p)(10)

where yref is the calculated reference point.

To obtain the reference point yref, the algorithm finds the Pareto front for the existing design sites using non-dominated sorting. For each closest set of Pareto points (the number of points is equal to the number of objectives) it calculates the corresponding reference point. The coordinates for the reference point of each dimension is equal to the maximum value of the coordinates for these Pareto points in the same dimension. The coordinates for the corresponding reference point in the nth dimension Ref (xn) is given by:

yrefn=max{Yn}(11)

where Yn is the collection of the nth objective values for all of the points in that Pareto set.

Taking a bi-objective problem as an example, assuming the reference point yref is to be determined for Pareto points P1 and P2, the coordinates of P1 and P2 are therefore denoted by [P1.x1, P1.x2] and [P2.x1, P2.x2], respectively. Note that xn is the nth objective value at the location in the search space associated with P. The x1 and x2 coordinates (in the objective space) of the reference point are thus described as follows

yref1=maxP1.x1,P2.x1(12)
yref2=maxP1.x2,P2.x2(13)

and the corresponding PoI is given as

PoIrefnx=Φyintnxy^nxs^nx(14)

where yrefn, ŷn, ŝn, PoIrefn and PoIextn are the corresponding measures of the nth objective function.

We have therefore obtained n values of PoI for the second improvement target. However, unlike the first improvement target, the second one uses a localized target. Therefore, we consider using the minimum potential improvement for all individual objectives and hence

LPoIrefx=minimizePoIrefnx(15)

Finally, the proposed indicator LPoI for any given point is the maximum of these two probability of improvement measures, given by

LPoIx=maximizeLPoIref,PoIext(16)

where PoIext, as described by (9), is due to the fact that the minimum of each individual objective function is always present in the Pareto front, thus the PoI at each location x, over the optimal target of that function, is always considered. This term also contributes to the diversification of the Pareto front.

Furthermore, LPoIref – as described by (15) – can be treated as a maximum of the minimum potential improvements to a local target. This term helps to improve the Pareto front both towards the origin and in the direction of the objective value. It contributes to the diversification of the Pareto front, while the max-min method also contributes to the uniformity of the Pareto front.

To obtain the next infill sampling point, the algorithm finds the location x associated with the maximum LPoI measure in the objective space.

The parameter p – as seen in (7) and (10) – is associated with the magnitude of target improvement; it controls the convergence rate of the algorithm. A smaller amount of improvement will guide the solver towards existing Pareto points, while a larger value will encourage the exploration of the design space. It is crucial to use a proper p, since too small a value may lead to a false Pareto front, while a large value may result in a slow convergence rate or zero probability of improvement at all unknown sites. Thus it is advisable to dynamically adjust the value while monitoring the convergence.

We provide a simple self-adjusted method for parameter p in this paper. First, the initial improvement target percentage pinitial is defined and then the parameter p is calculated as

p=pinitialmax{LPoIprev}(17)

where LPoIprev is a complete set of LPoI at previous iteration.

The next infill point is taken at the location with a maximum LPoI. Therefore, the solver tends to minimise the localised probability of improvement and converges towards the Pareto front. When the design space is well explored, or p is especially small, the solver will converge towards existing Pareto fronts; at this stage, it is common for the LPoI to be equal, or come close, to 1 at multiple unknown sites (extremely likely to improve over the target point). In order to obtain a uniformly distributed Pareto front, the algorithm selects candidates which have the largest Euclidean distance to existing Pareto points compared to the next infill sampling points. For this reason, the maximum value of LPoI can be capped between 0.9 and 1 for faster exploitation of the existing Pareto front without degrading the overall performance.

4 Test examples

The top graph in Figure 1 shows the kriging model (solid line) after 45 iterations, with the red crosses plotted at the true Pareto ront, while the bottom plot shows the proposed indicator value for the unknown sites. As can be seen, the algorithm has correctly converged to all four Pareto point clusters in the search space and thus further sampling will lead to more exploitation on the Pareto front. The sampled design sites in the objective space are plotted in Figure 2, where the red dots indicate the location of the true Pareto front. The improvement direction imposed by the two improvement targets are illustrated in Figure 2, where the yellow arrows show the improvement direction for the first improvement target, and the blue arrows indicate the improvement direction for the second improvement target.

Figure 1 The kriging model and the LPoI criterion in the search space
Figure 1

The kriging model and the LPoI criterion in the search space

Figure 2 Existing design sites in the criterion space after 20 iterations
Figure 2

Existing design sites in the criterion space after 20 iterations

Figure 3 Existing design sites in the criterion space after 45 iterations
Figure 3

Existing design sites in the criterion space after 45 iterations

5 Solving the new TEAM problem

A new TEAM problem was proposed at the Compumag conference in Korea, June 2017 [7]. This is devoted specifically to multi-objective optimization. In its extended version, an additional objective has been added and there are therefore in total three objectives. The model consists of an air-cored multi-turn winding. By arranging the current-carrying coils, a desired magnetic field distribution is to be obtained. The flux density at point z is given by

Bz=μ02ddrirsJr2ξdrdξr2ξ+zξ23(18)

The problem is specified as follows: given the current density J within the coil, and prescribed flux density, find the optimal r distribution of radii r(z), —dzd that yields the prescribed flux density B0(z).

An initial arrangement of turns was given in the extended paper of [7], the width of each turn w and the height h are 1 mm and 1.5m m, respectively.

Figure 4 Example of radii distribution; geometry and magnetic flux lines
Figure 4

Example of radii distribution; geometry and magnetic flux lines

The model consists of 20 turns connected in series, symmetrically distributed, hence there are 10 radii which need to be optimized (the main objective f1). Two additional objectives were proposed to complement the first objective f1. The three objectives f1, f2 and f3 may be described as follows:

f1: find the optimal distribution of r, so that the discrepancy between the prescribed flux density B0 and the actual induction field B is minimized;

f2: minimize the sensitivity function;

f3: minimize the power loss related function.

Mathematically the three objective functions are expressed as

f1r=supq=1,npBrξl,zqB0rq,zq,l=1,nt(19)
f2r=supl=1,ntB+Brξl,zq+Brξl,zqB,q=1,np(20)
f3r=l=1ntrξl(21)

where B+ = B (r (ξl + Δξ), zq), B = B (r (ξlΔξ),zq), l = 1, nt and q = 1, np. Δξ = 0.5 mm. At this stage it was suggested to consider only two objectives at the time, f1 and either f2 or f3.

The optimization results are illustrated by Figs. 5 and 6, where objectives 2 and 3 are plotted against objective 1, respectively. The globally optimal points A and B (defined by the closeness to the respective utopia points) are defined by the radii distributions [11.4, 8.6, 9.1, 12.1, 8.9, 8.3, 7.0, 6.4, 6.8, 5.9] and [7.2, 10.6, 7.2, 6.6, 9.0, 5.2, 9.2, 5.0, 5.4, 6.9], respectively.

Figure 5 Pareto front of f1 and f2 in the objective space
Figure 5

Pareto front of f1 and f2 in the objective space

Figure 6 Pareto front of f1 and f3 in the objective space
Figure 6

Pareto front of f1 and f3 in the objective space

6 Conclusion

A novel approach to kriging-based multi objective optimization is put forward relying on the Localized Probability of Improvement. For illustration purposes a bi-objective test problem is provided, as well as the recently introduced TEAM benchmark problem. It is shown that the proposed method addresses efficiently both the diversification and uniformity of the Pareto solution, is computationally efficient and is linearly scalable to higher number of objectives.

References

[1] Schaffer J.D., Multiple objective optimization with vector evaluated genetic algorithms, Proceedings of the 1st International Conference on Genetic Algorithms, 1985, 93-100Search in Google Scholar

[2] Deb K., Agrawal S., Pratap A., Meyarivan T., A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, in Schoenauer M. et al. (eds), Parallel Problem Solving from Nature PPSN VI, 200010.1007/3-540-45356-3Search in Google Scholar

[3] Parsopoulos K.E., Vrahatis M.N., Particle swarm optimization method in multiobjective problems, SAC’02 Proceedings of the 2002 ACM Symposium on Applied Computing, 2002, 603-60710.1145/508791.508907Search in Google Scholar

[4] Marler R.T., Arora J. S., Survey of multi-objective optimization methods for engineering, Structural and Multidisciplinary Optimization, 2004, 26, 6, 36910.1007/s00158-003-0368-6Search in Google Scholar

[5] Zitzler E., Thiele L., Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE Transactions on Evolutionary Computation, 1999, 3, 4, 257-27110.1109/4235.797969Search in Google Scholar

[6] Knowles J., Corne D., On metrics for comparing nondominated sets, Evolutionary Computation, Proceedings of CEC’02, Honolulu, 2002, 711-71610.1109/CEC.2002.1007013Search in Google Scholar

[7] Barba P.D., Mognaschi M.E., Song X., Lowther D.A., Sykulski J.K., A benchmark TEAM problem for multiobjective Pareto optimization of electromagnetic devices, IEEE Transactions on Magnetics, 2017, PP, 99Search in Google Scholar

Received: 2017-10-30
Accepted: 2017-11-12
Published Online: 2017-12-29

© 2017 Yinjiang Li et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Regular Articles
  2. Analysis of a New Fractional Model for Damped Bergers’ Equation
  3. Regular Articles
  4. Optimal homotopy perturbation method for nonlinear differential equations governing MHD Jeffery-Hamel flow with heat transfer problem
  5. Regular Articles
  6. Semi- analytic numerical method for solution of time-space fractional heat and wave type equations with variable coefficients
  7. Regular Articles
  8. Investigation of a curve using Frenet frame in the lightlike cone
  9. Regular Articles
  10. Construction of complex networks from time series based on the cross correlation interval
  11. Regular Articles
  12. Nonlinear Schrödinger approach to European option pricing
  13. Regular Articles
  14. A modified cubic B-spline differential quadrature method for three-dimensional non-linear diffusion equations
  15. Regular Articles
  16. A new miniaturized negative-index meta-atom for tri-band applications
  17. Regular Articles
  18. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel
  19. Regular Articles
  20. Distributed containment control of heterogeneous fractional-order multi-agent systems with communication delays
  21. Regular Articles
  22. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir
  23. Regular Articles
  24. Quantum mechanics with geometric constraints of Friedmann type
  25. Regular Articles
  26. Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System
  27. Regular Articles
  28. Application of the optimal homotopy asymptotic method to nonlinear Bingham fluid dampers
  29. Regular Articles
  30. Analysis of Drude model using fractional derivatives without singular kernels
  31. Regular Articles
  32. An unsteady MHD Maxwell nanofluid flow with convective boundary conditions using spectral local linearization method
  33. Regular Articles
  34. New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method
  35. Regular Articles
  36. Quantum mechanical calculation of electron spin
  37. Regular Articles
  38. CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine)
  39. Regular Articles
  40. Chain on a cone
  41. Regular Articles
  42. Multi-task feature learning by using trace norm regularization
  43. Regular Articles
  44. Superluminal tunneling of a relativistic half-integer spin particle through a potential barrier
  45. Regular Articles
  46. Neutrosophic triplet normed space
  47. Regular Articles
  48. Lie algebraic discussion for affinity based information diffusion in social networks
  49. Regular Articles
  50. Radiation dose and cancer risk estimates in helical CT for pulmonary tuberculosis infections
  51. Regular Articles
  52. A comparison study of steady-state vibrations with single fractional-order and distributed-order derivatives
  53. Regular Articles
  54. Some new remarks on MHD Jeffery-Hamel fluid flow problem
  55. Regular Articles
  56. Numerical investigation of magnetohydrodynamic slip flow of power-law nanofluid with temperature dependent viscosity and thermal conductivity over a permeable surface
  57. Regular Articles
  58. Charge conservation in a gravitational field in the scalar ether theory
  59. Regular Articles
  60. Measurement problem and local hidden variables with entangled photons
  61. Regular Articles
  62. Compression of hyper-spectral images using an accelerated nonnegative tensor decomposition
  63. Regular Articles
  64. Fabrication and application of coaxial polyvinyl alcohol/chitosan nanofiber membranes
  65. Regular Articles
  66. Calculating degree-based topological indices of dominating David derived networks
  67. Regular Articles
  68. The structure and conductivity of polyelectrolyte based on MEH-PPV and potassium iodide (KI) for dye-sensitized solar cells
  69. Regular Articles
  70. Chiral symmetry restoration and the critical end point in QCD
  71. Regular Articles
  72. Numerical solution for fractional Bratu’s initial value problem
  73. Regular Articles
  74. Structure and optical properties of TiO2 thin films deposited by ALD method
  75. Regular Articles
  76. Quadruple multi-wavelength conversion for access network scalability based on cross-phase modulation in an SOA-MZI
  77. Regular Articles
  78. Application of ANNs approach for wave-like and heat-like equations
  79. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  80. Study on node importance evaluation of the high-speed passenger traffic complex network based on the Structural Hole Theory
  81. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  82. A mathematical/physics model to measure the role of information and communication technology in some economies: the Chinese case
  83. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  84. Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps
  85. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  86. On the libration collinear points in the restricted three – body problem
  87. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  88. Research on Critical Nodes Algorithm in Social Complex Networks
  89. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  90. A simulation based research on chance constrained programming in robust facility location problem
  91. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  92. A mathematical/physics carbon emission reduction strategy for building supply chain network based on carbon tax policy
  93. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  94. Mathematical analysis of the impact mechanism of information platform on agro-product supply chain and agro-product competitiveness
  95. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  96. A real negative selection algorithm with evolutionary preference for anomaly detection
  97. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  98. A privacy-preserving parallel and homomorphic encryption scheme
  99. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  100. Random walk-based similarity measure method for patterns in complex object
  101. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  102. A Mathematical Study of Accessibility and Cohesion Degree in a High-Speed Rail Station Connected to an Urban Bus Transport Network
  103. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  104. Design and Simulation of the Integrated Navigation System based on Extended Kalman Filter
  105. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  106. Oil exploration oriented multi-sensor image fusion algorithm
  107. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  108. Analysis of Product Distribution Strategy in Digital Publishing Industry Based on Game-Theory
  109. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  110. Expanded Study on the accumulation effect of tourism under the constraint of structure
  111. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  112. Unstructured P2P Network Load Balance Strategy Based on Multilevel Partitioning of Hypergraph
  113. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  114. Research on the method of information system risk state estimation based on clustering particle filter
  115. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  116. Demand forecasting and information platform in tourism
  117. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  118. Physical-chemical properties studying of molecular structures via topological index calculating
  119. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  120. Local kernel nonparametric discriminant analysis for adaptive extraction of complex structures
  121. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  122. City traffic flow breakdown prediction based on fuzzy rough set
  123. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  124. Conservation laws for a strongly damped wave equation
  125. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  126. Blending type approximation by Stancu-Kantorovich operators based on Pólya-Eggenberger distribution
  127. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  128. Computing the Ediz eccentric connectivity index of discrete dynamic structures
  129. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  130. A discrete epidemic model for bovine Babesiosis disease and tick populations
  131. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  132. Study on maintaining formations during satellite formation flying based on SDRE and LQR
  133. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  134. Relationship between solitary pulmonary nodule lung cancer and CT image features based on gradual clustering
  135. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  136. A novel fast target tracking method for UAV aerial image
  137. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  138. Fuzzy comprehensive evaluation model of interuniversity collaborative learning based on network
  139. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  140. Conservation laws, classical symmetries and exact solutions of the generalized KdV-Burgers-Kuramoto equation
  141. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  142. After notes on self-similarity exponent for fractal structures
  143. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  144. Excitation probability and effective temperature in the stationary regime of conductivity for Coulomb Glasses
  145. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  146. Comparisons of feature extraction algorithm based on unmanned aerial vehicle image
  147. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  148. Research on identification method of heavy vehicle rollover based on hidden Markov model
  149. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  150. Classifying BCI signals from novice users with extreme learning machine
  151. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  152. Topics on data transmission problem in software definition network
  153. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  154. Statistical inferences with jointly type-II censored samples from two Pareto distributions
  155. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  156. Estimation for coefficient of variation of an extension of the exponential distribution under type-II censoring scheme
  157. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  158. Analysis on trust influencing factors and trust model from multiple perspectives of online Auction
  159. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  160. Coupling of two-phase flow in fractured-vuggy reservoir with filling medium
  161. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  162. Production decline type curves analysis of a finite conductivity fractured well in coalbed methane reservoirs
  163. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  164. Flow Characteristic and Heat Transfer for Non-Newtonian Nanofluid in Rectangular Microchannels with Teardrop Dimples/Protrusions
  165. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  166. The size prediction of potential inclusions embedded in the sub-surface of fused silica by damage morphology
  167. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  168. Research on carbonate reservoir interwell connectivity based on a modified diffusivity filter model
  169. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  170. The method of the spatial locating of macroscopic throats based-on the inversion of dynamic interwell connectivity
  171. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  172. Unsteady mixed convection flow through a permeable stretching flat surface with partial slip effects through MHD nanofluid using spectral relaxation method
  173. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  174. A volumetric ablation model of EPDM considering complex physicochemical process in porous structure of char layer
  175. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  176. Numerical simulation on ferrofluid flow in fractured porous media based on discrete-fracture model
  177. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  178. Macroscopic lattice Boltzmann model for heat and moisture transfer process with phase transformation in unsaturated porous media during freezing process
  179. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  180. Modelling of intermittent microwave convective drying: parameter sensitivity
  181. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  182. Simulating gas-water relative permeabilities for nanoscale porous media with interfacial effects
  183. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  184. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model
  185. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  186. Investigation effect of wettability and heterogeneity in water flooding and on microscopic residual oil distribution in tight sandstone cores with NMR technique
  187. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  188. Analytical modeling of coupled flow and geomechanics for vertical fractured well in tight gas reservoirs
  189. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  190. Special Issue: Ever New "Loopholes" in Bell’s Argument and Experimental Tests
  191. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  192. The ultimate loophole in Bell’s theorem: The inequality is identically satisfied by data sets composed of ±1′s assuming merely that they exist
  193. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  194. Erratum to: The ultimate loophole in Bell’s theorem: The inequality is identically satisfied by data sets composed of ±1′s assuming merely that they exist
  195. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  196. Rhetoric, logic, and experiment in the quantum nonlocality debate
  197. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  198. What If Quantum Theory Violates All Mathematics?
  199. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  200. Relativity, anomalies and objectivity loophole in recent tests of local realism
  201. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  202. The photon identification loophole in EPRB experiments: computer models with single-wing selection
  203. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  204. Bohr against Bell: complementarity versus nonlocality
  205. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  206. Is Einsteinian no-signalling violated in Bell tests?
  207. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  208. Bell’s “Theorem”: loopholes vs. conceptual flaws
  209. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  210. Nonrecurrence and Bell-like inequalities
  211. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  212. Three-dimensional computer models of electrospinning systems
  213. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  214. Electric field computation and measurements in the electroporation of inhomogeneous samples
  215. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  216. Modelling of magnetostriction of transformer magnetic core for vibration analysis
  217. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  218. Comparison of the fractional power motor with cores made of various magnetic materials
  219. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  220. Dynamics of the line-start reluctance motor with rotor made of SMC material
  221. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  222. Inhomogeneous dielectrics: conformal mapping and finite-element models
  223. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  224. Topology optimization of induction heating model using sequential linear programming based on move limit with adaptive relaxation
  225. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  226. Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis
  227. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  228. Current superimposition variable flux reluctance motor with 8 salient poles
  229. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  230. Modelling axial vibration in windings of power transformers
  231. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  232. Field analysis & eddy current losses calculation in five-phase tubular actuator
  233. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  234. Hybrid excited claw pole generator with skewed and non-skewed permanent magnets
  235. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  236. Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method
  237. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  238. Field-circuit analysis and measurements of a single-phase self-excited induction generator
  239. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  240. A comparative analysis between classical and modified approach of description of the electrical machine windings by means of T0 method
  241. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  242. Field-based optimal-design of an electric motor: a new sensitivity formulation
  243. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  244. Application of the parametric proper generalized decomposition to the frequency-dependent calculation of the impedance of an AC line with rectangular conductors
  245. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  246. Virtual reality as a new trend in mechanical and electrical engineering education
  247. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  248. Holonomicity analysis of electromechanical systems
  249. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  250. An accurate reactive power control study in virtual flux droop control
  251. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  252. Localized probability of improvement for kriging based multi-objective optimization
  253. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  254. Research of influence of open-winding faults on properties of brushless permanent magnets motor
  255. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  256. Optimal design of the rotor geometry of line-start permanent magnet synchronous motor using the bat algorithm
  257. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  258. Model of depositing layer on cylindrical surface produced by induction-assisted laser cladding process
  259. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  260. Detection of inter-turn faults in transformer winding using the capacitor discharge method
  261. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  262. A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle
  263. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  264. Lamination effects on a 3D model of the magnetic core of power transformers
  265. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  266. Detection of vertical disparity in three-dimensional visualizations
  267. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  268. Calculations of magnetic field in dynamo sheets taking into account their texture
  269. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  270. 3-dimensional computer model of electrospinning multicapillary unit used for electrostatic field analysis
  271. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  272. Optimization of wearable microwave antenna with simplified electromagnetic model of the human body
  273. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  274. Induction heating process of ferromagnetic filled carbon nanotubes based on 3-D model
  275. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  276. Speed control of an induction motor by 6-switched 3-level inverter
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/phys-2017-0117/html
Scroll to top button