Home Nonlinear Schrödinger approach to European option pricing
Article Open Access

Nonlinear Schrödinger approach to European option pricing

  • Marcin Wróblewski EMAIL logo
Published/Copyright: May 4, 2017

Abstract

This paper deals with numerical option pricing methods based on a Schrödinger model rather than the Black-Scholes model. Nonlinear Schrödinger boundary value problems seem to be alternatives to linear models which better reflect the complexity and behavior of real markets. Therefore, based on the nonlinear Schrödinger option pricing model proposed in the literature, in this paper a model augmented by external atomic potentials is proposed and numerically tested. In terms of statistical physics the developed model describes the option in analogy to a pair of two identical quantum particles occupying the same state. The proposed model is used to price European call options on a stock index. the model is calibrated using the Levenberg-Marquardt algorithm based on market data. A Runge-Kutta method is used to solve the discretized boundary value problem numerically. Numerical results are provided and discussed. It seems that our proposal more accurately models phenomena observed in the real market than do linear models.

1 Introduction

This paper is concerned with the numerical calculation of European call stock option value using a nonlinear Schrödinger rather than Black-Scholes partial differential equation as the option pricing model. A nonlinear Schrödinger option pricing model is assumed to contain nonvanishing external potential energy terms.

Formulated in the 1970s, the Black-Scholes option pricing model is the foundation of the area of classical financial derivative pricing [1]. This model is based on assumption that a stock price S, 0 ≤S < ∞, follows in time t, 0 ≤t < T, where T > 0 is a real number denoting the stock option maturity time, a geometric Brownian motion [2] with a drift µ, and a volatility σ given by the stochastic differential equation with the standard Wiener process W

(1)dS(t)=μS(t)+σS(t)dW(t).

In mathematical finance the Black-Scholes partial differential equation is usually derived from the stochastic differential equation using the Itô lemma [3]. This linear parabolic equation governing time-evolution of the market value u = u(t, S) of a stock option with the stock asset price S has the form

(2)ut=12(σS)22uS2rSuS+ru,

where r is the short term risk free interest rate. The equation is completed by a suitable boundary conditions. For a European call option this boundary condition takes the form

(3)u(T,S(T))=max{0,S(T)K},

where K > 0 is a given strike price. In the framework of the economic approach the Black-Scholes option pricing theory is based on the efficient market hypothesis [4]. Moreover it is assumed that the option price depends on the stock price which in turn is a random variable depending on time. For details concerning assumptions of Black-Scholes model see [1]. Note that in the area of statistical physics equation (2) is derived from the stochastic differential equation (1) using the Stratonovich interpretation [5]. Moreover, equation (1) resembles the backward Fokker-Planck equation describing the time evolution of the probability density function for a position occupied by a particle [6]. This equation is obtained from the stochastic differential equation using the Kolmogorov probability approach [7].

Analytical investigations as well as market applications of the classical Black-Scholes model (1) indicate that it may be not capable of providing option price data of real markets, especially when market conditions are different than the model’s assumptions [8]. Therefore different alternative option pricing models are being developed, such as stochastic volatility models [9], or models based on Lévy processes [10] aiming to follow large jumps of the stock price and leading computationally to solution of parabolic integro-differentional equations with singular kernels [11], as well as fractional or stochastic differential equations [12]. Note that due to their complexity option pricing problems are also challenging problems in the field of computational mathematics or physics [13]. The first computational option pricing methods included binomial tree methods or Monte Carlo methods [14]. Although these methods are in many cases robust, it appears that they may not provide sufficiently accurate results and they may be inefficient in their basic forms. Since time evolution of option market values is governed by partial differential equations or variational inequalities, finite difference or finite element methods are used [15] to solve these equations. For numerical solutions of stochastic differential equations see [16].

A group of alternative option pricing models has been also developed in the framework of statistical physics. In the 1990s physicists turned their attention to economics and social sciences, and particularly financial economics [17]. This interest has given rise to econophysics, i.e., a quantitative approach to social and economic phenomena using models and concepts coming mainly from statistical physics [18-20]. Option pricing problems are also considered in the framework of econophysics. Using the quantum probability formalism [21], the probability density function being a solution to a time dependent linear Schrödinger equation and corresponding to the market value of a stock option satisfying equation (1) rather than this market value itself may be considered. The linear Schrödinger equation governs the evolution of the complex-valued wave ψ function for which its square | ψ |2 defines the probability density function. The existence results for different types of linear Schrödinger equations can be found in book [22]. Stock options pricing models based on linear Schrödinger equations and their relation to Black-Scholes models are reported in many papers [23-29]. Among others in the author’s previous paper [29], the European call option price based on the linear Schrödinger equation has been calculated. The solution to this equation has been found using a Fourier method, i.e., the option price is given by the following function

(4)ψ(y(t),t)=exp(kt2r/2kσy(t)+g),
(5)y(t)=ln(S(t))rσ22t,

where k > 0 is a real constant reflecting particle expected energy and the parameter g is a constant obtained by data calibration. The obtained results indicated that the Schrödinger equation used for the option pricing needs to have a more complicated form than linear, especially the potential energy that describes the relation between particle and the entourage. Nevertheless, if the described Schrödinger equation varies from real form, it gives additional information about market forecasting, especially about trader leverage for the market. One of the reasons that is not possible to forecast stock or option prices on the basis of historical data is the influence of measurement impact (trader or market participant) on the measured object (stock, option). However, the general model can predict option prices more precisely.

Recently, based on an adaptive market hypothesis as well as Elliott wave market theory, a more general option pricing model based on a nonlinear Schrödinger equation has been proposed in [30, 31]. In [32] this model has been solved numerically using a domain decomposition method. Therefore, in this paper the nonlinear Schrödinger equation [30] is used to price European call options on index WIG20 listed on the Warsaw Stock Exchange (WSE). The model used in this paper contains an additional quantum potential as well as an internal potential rather than only an internal potential as in [30,31]. The nonlinear boundary value problem is solved numerically using a Runge-Kutta method. The obtained numerical results are discussed and compared to solutions found using a linear model. The obtained results indicate that the developed approach provides information about critical underlying asset price.

2 Financial optiom pricing with Schrödinger equation

As was shown in [29], the Black-Scholes equation can be replaced by a linear Schrödinger equation. However the main difference between the Black-Scholes and Schrödinger equations is that the Black-Scholes equation is aligned to the Euclidean space. In contrast, Schrödinger equation exists in Hilbert (complex) space. In general, the Black-Scholes equation can be written as a Wick rotated Schrödinger one. In this paper, an option pricing model based on the real part of the Schrödinger equation will be proposed. As a motivation of this approach, we will compare the Black-Scholes numerical solution with the real and imaginary parts of a linear and a nonlinear Schrödinger solution.

2.1 Black-Scholes equation numerical solution

Using Wolfram Mathematica, numerical solution (by method of lines) for the Black-Scholes (2) equation will be shown. We assumed that expiry time T = 1, volatility σ = 0.3, risk free interest rate r = 0.05, and strike price K = 10. The same values for the mentioned parameters will be used for the Schrödinger equation solutions. The boundary condition is described in (3) and u(1000, t) = 1000-K, u(0.001, t) = 0. Solution is shown in Figure 1.

Figure 1 Numerical solution for Black-Scholes equation
Figure 1

Numerical solution for Black-Scholes equation

2.2 Schrödinger equation numerical solution

In this section, numerical solutions for the Schrödinger equation will be showen. The boundary and initial conditions used for linear and nonlinear Schrödinger equation are: ψ(S, T) = max(S - K, 0), ψ(1000, t) = 1000 -K, ψ(0.001, t) = 0.

The linear Schrödinger equation for a free particle is given by the form below:

(6)iψ(S,t)t=12σ2ψ(S,t)S2.

Solutions for linear equation (6) are presented in Figure 2 (the real part) and in Figure 3 (the imaginary part) respectively. We see that only the real part of the solution of the linear Schrödinger equation Figure 2 has a similar form to the solution of the Black-Scholes equation presented in Figure 1. Similar computations have been made for a nonlinear Schrödinger equation (described in next section) and are given below:

Figure 2 Numerical solution for linear Schrödinger equation (real part)
Figure 2

Numerical solution for linear Schrödinger equation (real part)

Figure 3 Numerical solution for linear Schrödinger equation (imaginary part)
Figure 3

Numerical solution for linear Schrödinger equation (imaginary part)

(7)iψ(S,t)t=12σ2ψ(S,t)S2+V(x)ψ(S,t)+β|ψ(S,t)|2ψ(S,t),

We assumed that β = 0.0001. Solutions for real and imaginary part of the nonlinear Schrödinger equation are presented in Figure 4 and Figure 5: We also see that

Figure 4 Numerical solution for nonlinear Schrödinger equation (real part)
Figure 4

Numerical solution for nonlinear Schrödinger equation (real part)

Figure 5 Numerical solution for nonlinear Schrödinger equation (imaginary part)
Figure 5

Numerical solution for nonlinear Schrödinger equation (imaginary part)

only the real part of the solution of the Schrödinger equation (Figure 4) has a similar form as the solution of the Black-Scholes equation presented in Figure 1. The above numerical experiments proved that option pricing with Schrödinger equation can be obtained, but by only considering the real part of the solution.

3 Nonlinear Schrödinger equation with vanishing external potential as option pricing model

In quantum physics a nonlinear Schrödinger equation [33] describes a Bose-Einstein condensate [34], i.e., two identical quantum particles having the same state. Based on relations between the linear Schrödinger and the Black-Scholes partial differential equations, as well as to satisfy both efficient and behavioral markets and their complexity adaptive wave-form, a nonlinear and stochastic option pricing model based on a nonlinear Schrödinger equation has been proposed. This equation defining the option price wave function ψ = ψ(S, t), whose absolute square | ψ(S, t) |2 is the probability density function for the option price, in terms of the stock price and time has the form [30]

(8)iψ(S,t)t=12σ2ψ(S,t)S2+V(x)ψ(S,t)+β|ψ(S,t)|2ψ(S,t),

where i=1andV(S)+β|ψ(S,t)|2 stands for the total potential energy with V representing the external potential. The Landau coefficient β = β(r, w) is interpreted as an adaptive market potential depending on interest rate r and/or control parameters w. First we shall consider the equation assuming no external potential, i.e., V(S) = 0.

For the existence results for nonlinear Schrödinger boundary value problems see [35].

The equation (8) will be solved exactly using the power series expansion method of Jacobi elliptic functions. Note that for low interest rate r, β(r) << 1, equation (8) can be approximated by the linear Schrödinger equation. Similarly we shall look for the solution to equation (8) in the form

(9)ψ(S,t)=ϕ(ξ)expi(kSωt),

where ϕ(ξ) ∈ R is an unknown function depending on ξ = S - σkt, and k, ωR are constant parameters. These parameters in physics terms are interpreted as the wave number and circular frequency, respectively. Using (9) we can calculate the derivatives and the terms of equation (8)

(10)iψ(S,t)t=ei(kStω)ωϕ(ξ)ikσϕ(ξ)ξ,
(11)12σ2ψ(S,t)S2=12ei(kStω)σk2ϕ(ξ)2ikϕ(ξ)ξ2ϕ(ξ)ξ2,
(12)β|ψ(S,t)|2ψ(S,t)=ei(kStω)2Im(kStω)β|ϕ(ξ)|2ϕ(ξ),

where the symbol Im defines the imaginary part of a complex number. k, S, ω, t are real, therefore we have

(13)Im(kStω)=0.

As ϕ(S) > 0, this results in

(14)|ϕ(ξ)|2ϕ(ξ)=ϕ(ξ)3.

Applying (13) and (14) into (12), we find that:

(15)β|ψ(S,t)|2ψ(S,t)=ei(kStω)βϕ(ξ)3.

After inserting (10), (11), and (15) into equation (8), we get the final equation to solve:

(16)2ϕ(ξ)ξ2+(ω12σk2)ϕ(ξ)βϕ(ξ)3=0,

with boundary conditions: ϕ(ξ = 0) = ϕ0 and ϕ′(ξ = 0) = ϕ01. Recall that the equation (16) is and ordinary differential equation describing a nonlinear oscillator [33]. The solution to this equation is supposed to have the form [30]:

(17)ϕ(ξ)=a0+a1sn(ξ),

where a0and a1 are unknown constants and sn(ξ) = sn(ξ, m) is defined [36] as the Jacobi elliptic function:

(18)sn(ξ)=sn(ξ,m),

with elliptic modulus m ∈[0,1]. Recall a few properties of Jacobi elliptic functions [36]:

(19)sn(ξ,0)=sin(ξ),sn(ξ,1)=tanh(ξ),
(20)cn(ξ,0)=cos(ξ),dn(ξ,0)=1,
(21)ddξ(sn(ξ))=cn(ξ)dn(ξ),
(22)ddξ(cn(ξ))=sn(ξ)dn(ξ).

Using (17), the first and second order derivatives of function (17) are calculated as equal to:

(23)ϕ(ξ)ξ=a1cn(ξ)dn(ξ),

and

(24)2ϕ(ξ)ξ2=a1sn(ξ)[1m2sn2(ξ)]+m2sn(ξ)[1sn2(ξ)].

After substituting function (17) into the nonlinear oscillator equation (16) and using formulas (23)-(24) we get:

(25)a0=0,a1=±σβ,ω=12(1+m2+k2),ϕ(ξ)=±mσβsn(ξ),m[0,1),
(26)ϕ(ξ)=±σβtanh(ξ),m=1.

Using the functions (25) - (26) we obtain the periodic solution (9) to the equation (8) in the form:

(27)ψ(S,t)=±mσβsn(Sσkt)expi(kS12σt(1+m2+k2)),m[0,1),

and

(28)ψd(S,t)=±σβtanh(Sσkt)expi(kS12σ(2+k2)),m=1.

Functions (27) and (28) denote a general solution for m ∈ [0,1) and the so-called dark soliton solution for m = 1, respectively. We expect the function ψ(S, t) to be real [30].

The function presented in equation (27) also contains an imaginary part. Using the splitting formula of any complex function into real and imaginary parts, i.e., exp ix = cos x+ i sin x and considering that β > 0, we see that the real part of equation (27) is given by:

(29)ψr(S,t)=±mσβsn(Sσkt)cos(kS12σt(1+m2+k2)),m[0,1)

and ψrd(S,t) denotes the real part of equation (28):

(30)ψrd(S,t)=±σβtanh(Sσkt)cos(kS12σt(2+k2)),m=1.

Functions (29) and (30) will be calibrated with market data. We will check the correlation between the model that uses the above equations and compare it to the market data.

4 Nonlinear Schrödinger model calibration

Let us calibrate equation (29) based on market data. These data are taken from the Warsaw Stock Exchange (WSE) listings of the option denoted as OW20F3280. This European call option has been listed in 2013. It is based on the index WIG20 assembling the stocks of the biggest companies listed on the WSE. The maturity date of this option was June 27,2013. Its strike price was equal to 2800 points.

Calibration was performed using the Levenberg-Marquardt [37] algorithm that was implemented using a Python application. It was included in the scipy.optimize package. In mathematics and computing, the Levenberg-Marquardt algorithm provides a numerical solution to the problem of minimizing a general non-linear function over the space of parameters of this function. These minimization problems arise especially in least squares curve fitting and non-linear programming. The Levenberg-Marquardt interpolates between the Gauss-Newton algorithm [38] and the method of gradient descent. Levenberg-Marquardt is more efficient than Gauss-Newton. This means that in many cases it finds a solution even if it starts very far from the minimum. On the other hand, for well-behaved functions and reasonable starting parameters, Levenberg-Marquardt is slower than Gauss-Newton. Levenberg-Marquardt can also be considered as Gauss-Newton using a trust region approach. The Pearson correlation coefficient was calculated using the scipy.stats package. The Correlation coefficient is calculated at the basis of estimated function and market data comparison. Charts were performed using the matplotlib library.

4.1 Stock WIG20 price calibration

A Python script has been created to estimate third-order polynomial parameters for approximating WIG20 trade using the Levenberg-Marquardt algorithm. Our calculations are presented in Figure 6. We achieved a correlation coefficient equal to 0.97 when we performed market approximation (WIG20 stock) using a third-order polynomial. A similar dark soliton (30) calibration will be performed. Next, we will calibrate the general solution given by equation (29). Computations will be performed for different m values.

Figure 6 WIG20 stock approximation using 3-order polynomial
Figure 6

WIG20 stock approximation using 3-order polynomial

4.2 Option OW20F3280 price calibration

We have used the the Levenberg-Marquardt algorithm to calibrate function (29). However, functions (29) and (30) have been simplified to the following form:

(31)ψr(S,t)=mzsn(S(t)σkt)cos(kS(t)12σt(1+m2+k2)),m(0,1)

where

(32)z=±σβ,

and S(t) is stock price (WIG20), approximated using 3-order polynomial. The same simplification is proposed for function (30):

(33)ψrd(S,t)=ztanh(S(t)σkt)cos(kS(t)12σt(2+k2)).

Calibrating function (33), the dark soliton, with market data gives the results presented in Figure 7. with a correlation coefficient equal to 0.57. Now, we will check if calibration of the equation (31) can give different results than obtained for tha dark soliton. A set of values were created (sequence from 0.01 to 0.99 with 0.01 step for parameter m), and for each value, we have calculated the parameters z, σ and k. The stock price (WIG20) S(t) was approximated using a third-order polynomial. In Figure 8 we have presented computations for four cases. We see that highest correlation was achieved for point c, where the parameter m was equal to 0.69. For this case, the correlation coefficient is equal to 0.68 and is higher than it was for the dark soliton solution.

Figure 7 Calibrating dark soliton (33) with OW20F3280 option market data
Figure 7

Calibrating dark soliton (33) with OW20F3280 option market data

Figure 8 Calibrating equation (31) with OW20F3280 option market data, for different parameter m values
Figure 8

Calibrating equation (31) with OW20F3280 option market data, for different parameter m values

4.3 Nonlinear and linear model comparison

We will compare the linear and nonlinear Schrödinger models on the basis of market data calibration. The time range has been reduced for the option to check if we can get better correlation than was obtained when calibration was performed for the full time range. For the linear model, we have obtained a correlation coefficient equal to 0.91, presented in Figure 9. For the non-linear model, we have performed the calibration presented in Figure 10. An additional Python script was written to calculate the correlation coefficient on the basis of given parameter m. Coefficients were calculated for parameters m generated from 0.00001 to 0.99999 with a step equal to 0.00005. As the basis of these calculations we have chosen parameter m equal to 0.27455. The Correlation coefficient has increased for the nonlinear equation from 0.68 (full time range) to 0.87 (narrowed time range). As we see, the linear and nonlinear model can produce similar results when they are calculated for a narrower time range. It seems interesting to enhance the nonlinear model with additional external potentials.

Figure 9 Calibrating linear Schrödinger (4) equation with OW20F3280 option market data
Figure 9

Calibrating linear Schrödinger (4) equation with OW20F3280 option market data

Figure 10 Calibrating (31) equation with OW20F3280 option market data
Figure 10

Calibrating (31) equation with OW20F3280 option market data

5 Nonlinear Schrödinger model with external quantum potential

The lack of larger sets of the market data make it not possible to perform reliable computations. However, the model calibration was performed for a narrower time range and we have obtained satisfactory correlation with market data. This suggests that the considered model can be used for daily/weekly option pricing. If we had more market data to analysis, i.e., daily stock/option prices, then our model would probably forecast option prices more accurately.

Note that until now the simplest case of potential energy in equation (8) was considered, i.e., V(S) = 0 has been set. Additionally, improvement in the model based on the assumption that V(S) = 0 will be considered. In particular, the potential V(S) can be represented by different atomic potentials such as the Yukawa, Coulomb, Hulthen, and harmonic oscillator potentials [39], [40]. Since the calculation of the analytical solution for nonlinear Schrödinger equation with V(S) = 0 is very complicated we will use numerical methods. Assume that the function ψ(S, t) can be split into

(34)ψ(S,t)=ϕ(S)exp(iμt).

The variable µR is called the chemical potential, also known as partial molar free energy. Having inserted function (34) into equation (8) we get the equation:

(35)12σ2S2+V(S)+β|ϕ(S)|2ϕ(S)=μϕ(S),

which is called in literature the time independent Gross-Pitaevskii equation, and where the function ϕ(S) describes the ground state of a quantum system of identical bosons. This equation shows the relation between option price and asset price and is important to determine the maximum value of the asset price, i.e., critical underlying asset price, above which a crisis can occur. Recall that the square of the wave function is interpreted in quantum theory as the density probability of finding the particle at location S and time t. Let us write down the mentioned interpretation in the following mathematical way:

(36)|ψ(S,t)|2=|ϕ(S)exp(iμt)|2=|ϕ(S)|2,

which is only dependent on the ϕ(S) function. Equation (35) with function V(S) representing different atomic potentials will be solved numerically using a Runge-Kutta fourth-order method.

5.1 Quantum potentials

The first used potential, called the Yukawa potential, is given by following equation:

(37)Vy(ξ)=g2exp(kmpξ)ξ,

where g is a magnitude scaling constant, mp is the mass of the affected particle, ξ is the radial distance to the particle, and k is a scaling constant. The variable ξ is identified with underlying asset price S. This potential reflects the fact that the nuclear strong force is carried by a particle with a mass approximately 200 times bigger than the electron mass [39].

The Coulomb potential describes the pairwise interaction between charged particles and has the form [39]:

(38)Vc(ξ)=ke2ξ.

Here e and k denote the elementary charge and a constant, respectively.

The Hulthen potential is a short-range potential which behaves like a Coulomb potential for small values of ξ and decreases exponentially for large values of distance. The Hulthen potential has been used in many branches of physics, such as nuclear, atomic, and solid state physics. It is given by:

(39)Vh(ξ)=zαexp(ξα)1exp(ξα),

where α is the screening parameter and z is a constant which is identified with the atomic number when the potential is used for atomic phenomena.

The quantum oscillator potential is given by:

(40)Vo(ξ)=12kξ2,

where k is a constant. A diatomic molecule vibrates like two masses on a spring with a potential energy that depends upon the square of the displacement from equilibrium. The energy levels are quantized at equally spaced values.

5.2 Numerical solution of stationary nonlinear Schrödinger equation

Let us first solve numerically the nonlinear Schrödinger time independent equation. Next the solutions for different external potentials will be computed using a Runge-Kutta fourth-order method. The details of this method can be found in the Appendix. Let us write the second order equation (35) in the standard form (56) of the Runge-Kutta method:

(41)2ϕ(S)S2=2σϕ(S)V(S)+β|ϕ(S)|2μ,

with the assumption that 2σ=1. To solve the second order differential equation there is a need to introduce the new function:

(42)τ(S)=ϕ(S)S=ϕ(S).

Numerical solutions for equations (42) and (41) can be provided with the assumption that boundary conditions for ϕ(S) and ϕ′(S) are given in the following form:

(43)ϕ(S0)=ϕ0,τ(S0)=ϕ(S0)=ϕ01.

The price S, τ(S), and ϕ(S) are going to be discretized into set of n-points. Sn, τn, ϕn are the n-values for the nth point respectively.

The first step is to calculate the k1, k2, k3, k4 parameters to compute the τ(S) function. The right hand side functionfin (56) is defined for this step as equal to:

(44)f(ϕ(S),S)=ϕ(S)V(S)+β|ϕ(S)|2μ.

The value for τn is calculated using:

(45)τn+1=τn+16k1+2k2+2k3+k4,

where τn is the value for function τ calculated at the previous point. The next step is to calculate the k1,k2,k3, k4 parameters to compute the ϕ(S) function. The right hand side function f (56) for this step is defined as:

(46)f(τ(S),S)=τ(S).

The value for ϕn+1 is calculated using:

(47)ϕn+1=ϕn+16k1+2k2+2k3+k4,

where ϕn is the value for function ϕ calculated at previous point.

5.3 Numerical results

Let us report on the obtained numerical results. First, a solution is provided for equation (35) with the assumption that V(S) = 0. This step is required to obtain the general shape of the solution and to compare it to solutions obtained for V(S) ≠ 0 potentials. In Figure 11 is presented the solution for the stationary Schrödinger equation with V(S) = 0. There are two parameters that have impact on the solution: the first one is the parameter β, and the second one is µ. It seems that increasing parameter µ increases the period of the ϕ(S) function, and increasing parameter β affects the value of the ϕ(S) function (ϕ(S) raises when β increases).

Figure 11 Numerical solution for equation (35) with assumption that V(S) = 0
Figure 11

Numerical solution for equation (35) with assumption that V(S) = 0

Another solution was obtained for a Coulomb potential Vc, defined in equation (38), with the assumption that the parameter e = 1. Using this additional potential provides another parameter k that has an effect on the solution ϕ(S). The results are displayed in Figure 12. The period of the ϕ(S) function is increasing when the parameter µ is raising. When the parameter k is raising, then the ϕ(S) function is decreasing.

Figure 12 Numerical solution for equation (35) with assumption that V(S) is represented by Coulomb potential Vc
Figure 12

Numerical solution for equation (35) with assumption that V(S) is represented by Coulomb potential Vc

Further computation is performed for the Yukawa potential Vy, given by (37) and assuming that m = g2 and a = kmp. In Figure 13, the numerical solution for equation (35) is provided. Note that the period of the solution is increasing when parameter µ is growing. The ϕ(S) function is increasing when the parameters g and a are decreasing.

Figure 13 Numerical solution for equation (35) with assumption that V(S) is represented by Yukawa potential Vy
Figure 13

Numerical solution for equation (35) with assumption that V(S) is represented by Yukawa potential Vy

Next, the equation (41) has been solved with a Hulthen potential Vh, given by (39) with the simplification that g=zα and p=1α. The obtained solution is presented in Figure 14. It is observed that the period of the ϕ(S) function is increasing when the parameter µ is raising. Decreasing parameters g and p cause the value of the ϕ(S) function to grow.

Figure 14 Numerical solution for equation (35) with assumption that V(S) is represented by Hulthen potential Vh
Figure 14

Numerical solution for equation (35) with assumption that V(S) is represented by Hulthen potential Vh

Finally, computation has been provided for an oscillator potential V0, described by (40), and is presented on Figure 15.

Figure 15 Numerical solution for equation (35) with assumption that V(S) is represented by an oscillator potential
Figure 15

Numerical solution for equation (35) with assumption that V(S) is represented by an oscillator potential

When parameter µ is increasing, then the period of the ϕ(S) function is raising. When parameter k is raising then the value of the ϕ(S) function is growing. Note that the impact on the function ϕ(S) satisfying the equation (41) is different for the Coulomb, Yukawa and Hulthen potentials compared with the oscillator potential. The impact of the first three potentials on the Hamiltonian is negative while the impact of the oscillator potential is positive. However all of the potentials presented in Figures 1115 have interesting properties in terms of option valuation. In each case the function ϕ(S) attains a maximum. It may be interpreted as critical value for the option price S. Exceeding this critical asset price, causes the ϕ(S) function to decrease rapidly. This means that probability of finding option for underlying asset price higher than critical one decreases to zero. THe presented results show that external potentials have changed the shape of the time independent, nonlinear Schrödinger equation.

6 Conclusions

In this paper an analytical option pricing model based on the nonlinear Schrödinger partial differential equation with vanishing external potential has been considered. Comparing the results generated by linear and nonlinear Schrödinger models, it seems that these models can provide similar results for a suitably selected time range. General and special solutions to nonlinear Schrödinger system have been computed and compared, and in addition the correlation between the model and the market data has been verified. Better results were obtained for the general than for the special, i.e., dark soliton, solution.

As a model enhancement, numerical solutions for stationary nonlinear Schrödinger equation with external atomic potentials have been proposed. The obtained results indicate that there exists a critical underlying asset price. Exceeding it causes the time independent nonlinear Schrödinger solution to decrease rapidly. This phenomenon can be associated with crises observed on the market. External potentials are changing the shape of the time independent nonlinear Schrödinger solution. Numerical solutions contribute to understanding this process and can be used in option price forecasting.

The introduced model requires further investigation, especially with respect to potential relation with Lévy processes. The selection of suitable elliptic moduli parameters or, in general, parameters influencing the potential term in the Schrödinger model may be formulated and investigated as optimal control problems for the nonlinear Schrödinger differential equation.

Acknowledgement

The author would like to thank the anonymous reviewers for constructive remarks which helped to improve the paper as well as Prof. Andrzej Myśliński for his support and inspiration.

References

[1] Black F., Scholes M., The pricing of options and corporate liabilities, Journal of Political Economy, 1973, 81, 637-654.10.1142/9789814759588_0001Search in Google Scholar

[2] Papoulis A., Wiener-Lévy Process in probability, Random Variables, and Stochastic Processes, McGraw-Hill, 1984, 292-293.Search in Google Scholar

[3] Itô K., On stochastic differential equations, Mem. Am. Math. Soc., 1951, 4, 1-51.Search in Google Scholar

[4] Fama E., The behavior of stock market prices, J. Bus., 1965, 105, 34-105.10.1086/294743Search in Google Scholar

[5] Stratonovich R.L., A new representation for stochastic integrals and equations, SIAM J. Control, 1966, 4, 362-371.10.1137/0304028Search in Google Scholar

[6] Kadanoff L.P., Statistical physics: statics, dynamics and renormalization, World Scientific, Singapore, 2000, 43-61.10.1142/4016Search in Google Scholar

[7] Gardiner C.W., Handbook of stochastic methods, Springer, 1983, 2-11.10.1007/978-3-662-02377-8Search in Google Scholar

[8] Chriss N.A., Black-Scholes and Beyond: Option Pricing Models, McGraw-Hill, 1996, 8-23.Search in Google Scholar

[9] Fouque J.P., Papanicolaou G., Sircar K.R., Derivatives in financial markets with stochastic volatility, Cambridge University Press, 2000.Search in Google Scholar

[10] Schoutens W., Lévy processes in finance: pricing financial derivatives, Wiley, 2003.10.1002/0470870230Search in Google Scholar

[11] Cont R., Voltchkova E., Lévy models, SIAM Journal on Numerical Analysis, 2005, 43, 1596-1626.10.1137/S0036142903436186Search in Google Scholar

[12] Henriksson D., Ludvigsson G., Yacob A., Finite difference and Monte-Carlo methods for pricing of options in markets with jumps, Uppsala University/Research Report, 2014, 45-60.Search in Google Scholar

[13] Yves A., Pironneau O., Computational methods for option pricing, Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM)/Philadelphia, 2005, 30.Search in Google Scholar

[14] Nwozo C.R., Fadugba S.E., Some numerical methods for options valuation, Communications in Mathematical Finance, 2012, 1, 51-74.Search in Google Scholar

[15] Cont R., Lantos N., Pironneau O., A reduced basis for option pricing, SIAM J. Financial Math., 2011, 2, 287-316.10.1137/10079851XSearch in Google Scholar

[16] Hutzenthalter M., Jentzen A., Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients, Memoirs of the American Mathematical Society, 2015, 236.10.1090/memo/1112Search in Google Scholar

[17] Schinckus C., Between complexity of modelling and modelling of complexity: an essay on econophysics, Physica A, 2013, 392, 3654-3665.10.1016/j.physa.2013.04.005Search in Google Scholar

[18] Ilinski K., Physics of finance: gauge modelling in non-equilibrium pricing, Wiley, 2001, 53-67.Search in Google Scholar

[19] Dash J.W., Quantitative finance and risk management: a physcist approach, World Scientific/Singapore, 2004, 9-17.10.1142/5436Search in Google Scholar

[20] Baaquie B.E., Quantum finance: path integrals and Hamiltonians for option and interest rates, Cambridge University Press/Cambridge, 2007, 147-191Search in Google Scholar

[21] Ivancevic V., Ivancevic T., Complex dynamics: advanced system dynamics in complex variables, Springer/Dordrecht, 2007, 43-62.10.1007/978-1-4020-6412-8Search in Google Scholar

[22] Teschl G., Mathematical methods in quantum mechanics: with applications to Schrödinger operators, AMS Graduate Studies in Mathematics, 2014, 157.10.1090/gsm/157/07Search in Google Scholar

[23] Baaquie B.E., A path integral to option price with stochastic volatility: some exact results, J. Phys. I, EDP Sciences/France, 1997, 12, 1733-1753.10.1051/jp1:1997167Search in Google Scholar

[24] Baaquie B.E. , Financial modeling and quantum mathematics, computers and mathematics with applications, 2013, 65, 1665-1673.10.1016/j.camwa.2013.01.025Search in Google Scholar

[25] Haven E., The wave-equivalent of the Black-Scholes option price: an interpretation, Physica A, 2004, 344, 142-145.10.1016/j.physa.2004.06.105Search in Google Scholar

[26] Haven E., A discussion on embedding the Black-Scholes option price model in a quantum physics setting, Physica A, 2002, 304, 507-524.10.1016/S0378-4371(01)00568-4Search in Google Scholar

[27] Contreras M., Pellicer R., Willena M., Ruiz A., A quantum model of option pricing: when Black-Scholes meets Schrödinger and its semi-classical limit, Physica A, 2010, 329, 5447-5459.10.1016/j.physa.2010.08.018Search in Google Scholar

[28] Contreras M., Montalva R., Pellicer R., Villena M., Dynamic option pricing with endegeneous stochastic arbitrage, Physica A, 2010, 389, 3552-3564.10.1016/j.physa.2010.04.019Search in Google Scholar

[29] Wróblewski M., Quantum physics methods in share option valuation, Technical Transactions Automatic Control, 2013, 2-AC/2013, 23-40.Search in Google Scholar

[30] Ivancevic V., Adaptive wave alternative for the Black-Scholes option pricing model, Cogn. Comput, 2010, 2, 17-30.10.1007/s12559-009-9031-xSearch in Google Scholar

[31] Ivancevic V., Adaptive wave models for sophisticated option pricing, Journal of Mathematical Finance, 2011, 1, 41-49.10.4236/jmf.2011.13006Search in Google Scholar

[32] Gonzáles-Gaxiola O., de Chávez J.R., Solving the Ivancevic option pricing model using the Elsaki-domain decomposition method, International Journal of Applied Mathematics, 2015, 28, 515-525.10.12732/ijam.v28i5.5Search in Google Scholar

[33] Bradley C.C., Sackett C.A., Tollett J.J., Hulet R.G., Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Physical review letters, 1997, 75, 1687-1690.10.1103/PhysRevLett.75.1687Search in Google Scholar PubMed

[34] Weiner R.M., The mysteries of fermions, International Journal of Theoretical Physics, 2010, 49, 1174-1180.10.1007/s10773-010-0292-7Search in Google Scholar

[35] Hayashi M., Ozawa T., Well-posedness for a generalized derivative nonlinear Schrödinger equation, J. Differential Equations, 2016, 261, 5424-5445.10.1016/j.jde.2016.08.018Search in Google Scholar

[36] Bowman F., Introduction to elliptic functions with applications, Dover, 1961, 115.Search in Google Scholar

[37] Levenberg K., A Method for the solution of certain non-Linear problems in least squares, The Quarterly of Applied Mathematics, 1944, 2, 164-168.10.1090/qam/10666Search in Google Scholar

[38] Pereyra V., Iterative methods for solving nonlinear least squares problems, SIAM Journal on Numerical Analysis, 1967, 4, 27-36.10.1137/0704003Search in Google Scholar

[39] Nerlo-Pomorska B., Pomorski K., Introduction to nuclear theory (in Polish), Polish Scientific Publisher, Warsaw, 1999.Search in Google Scholar

[40] Gerry C., Knight P.L., Introduction to quantum optics, Cambridge University Press, Cambridge, 2004.10.1017/CBO9780511791239Search in Google Scholar

[41] Butcher J.C., The Numerical analysis of ordinary differential Equations: Runge-Kutta and general linear methods, Wiley, 1987, 82-119.Search in Google Scholar

A Appendix

The Runge-Kutta algorithm [41] is the method that is behind the most of the physics simulations in this paper by letting us solve a differential equation numerically. It is known to be a very accurate and well behaved method for a wide range of problems. We wish to approximate the solution to a first order differential equation given by:

(48)dy(x)dx=y(x)=f(y(x),x),

with boundary condition:

(49)y(x0)=y0.

Function y(x) is an unknown function of x, which we would like to approximate. Another asumption is that y(x) is the a function of t and y(x) itself. At the boundary condition x0 the corresponding y value is y0. The function f (y(x), x) and the data x0, y0 are given. In general, the very basic numerical method to find solutions for y(x) as defined in equation (48) is called the Euler method and is defined as:

(50)yn+1=yn+hf(xn,yn),

where: yn+1 advances the solution from xn to xn+1 = xn + h, where h is the step size. The formula is unsymmetrical: it advances the solution through an interval h, but uses derivative information only at the beginning of that interval. That means (and this can be verified by expansion in a power series) that the step’s error is only one power of h smaller than the correction, i.e O(h2) added to equation (50). Unfortunately, the Euler method is not very accurate when compared to other methods running at the equivalent step size, and also this method is not very stable. That is why scientists are looking for more accurate and stable methods. One of the ideas to improve the Euler method is to use the midpoint, then use the value of both x and y at that midpoint to compute the real step across the whole interval. This method takes to extremes the idea of correcting the predicted value of the next solution point in the numerical solution. Finally, the solution for y function can be described as:

(51)yn+1=yn+16k1+2k2+2k3+k4,

where:

(52)k1=hf(xn,yn),
(53)k2=hf(xn+h2,yn+k12),
(54)k3=hf(xn+h2,yn+k22),
(55)k4=hf(xn+h,yn+k3).

The parameter k1 is the same quantity as given by the Euler method (the vertical jump from the current point to the next Euler predicted point along with the numerical solution). Parameter k2 is evaluating the function f for xn+h2, with assumption that the y value will be changed by yn+k12. To summarize, the function f is being evaluated at a point that lies halfway between the current point and the Euler-predicted next point. Parameter k3 has a similar formula to k2. Essentially, the f value at this point is another estimation of the slope of the solution at the midpoint of the prediction interval. The y value of the midpoint is predicted already with the k2 value. Parameter k4 evaluates the f function at the xn + h point. The y value is equal to yn + k3 and is an estimation of the y value at the right of the interval. In general, this method is intended to find numerical solutions for first order differential equations. Solving higher order differential equations can be reduced to first order differential equations (assuming that the condition y(x0)=y01 is known):

(56)y(x)=f(y(x),x),

then let us introduce a new function:

(57)z(x)=y(x).

From (56) and (57) we get:

(58)z(x)=f(y(x),x).

The final step is to solve the equation below:

(59)y(x)=z(x).
Received: 2016-6-8
Accepted: 2017-3-6
Published Online: 2017-5-4

© 2017 Marcin Wróblewski

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Articles in the same Issue

  1. Regular Articles
  2. Analysis of a New Fractional Model for Damped Bergers’ Equation
  3. Regular Articles
  4. Optimal homotopy perturbation method for nonlinear differential equations governing MHD Jeffery-Hamel flow with heat transfer problem
  5. Regular Articles
  6. Semi- analytic numerical method for solution of time-space fractional heat and wave type equations with variable coefficients
  7. Regular Articles
  8. Investigation of a curve using Frenet frame in the lightlike cone
  9. Regular Articles
  10. Construction of complex networks from time series based on the cross correlation interval
  11. Regular Articles
  12. Nonlinear Schrödinger approach to European option pricing
  13. Regular Articles
  14. A modified cubic B-spline differential quadrature method for three-dimensional non-linear diffusion equations
  15. Regular Articles
  16. A new miniaturized negative-index meta-atom for tri-band applications
  17. Regular Articles
  18. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel
  19. Regular Articles
  20. Distributed containment control of heterogeneous fractional-order multi-agent systems with communication delays
  21. Regular Articles
  22. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir
  23. Regular Articles
  24. Quantum mechanics with geometric constraints of Friedmann type
  25. Regular Articles
  26. Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System
  27. Regular Articles
  28. Application of the optimal homotopy asymptotic method to nonlinear Bingham fluid dampers
  29. Regular Articles
  30. Analysis of Drude model using fractional derivatives without singular kernels
  31. Regular Articles
  32. An unsteady MHD Maxwell nanofluid flow with convective boundary conditions using spectral local linearization method
  33. Regular Articles
  34. New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method
  35. Regular Articles
  36. Quantum mechanical calculation of electron spin
  37. Regular Articles
  38. CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine)
  39. Regular Articles
  40. Chain on a cone
  41. Regular Articles
  42. Multi-task feature learning by using trace norm regularization
  43. Regular Articles
  44. Superluminal tunneling of a relativistic half-integer spin particle through a potential barrier
  45. Regular Articles
  46. Neutrosophic triplet normed space
  47. Regular Articles
  48. Lie algebraic discussion for affinity based information diffusion in social networks
  49. Regular Articles
  50. Radiation dose and cancer risk estimates in helical CT for pulmonary tuberculosis infections
  51. Regular Articles
  52. A comparison study of steady-state vibrations with single fractional-order and distributed-order derivatives
  53. Regular Articles
  54. Some new remarks on MHD Jeffery-Hamel fluid flow problem
  55. Regular Articles
  56. Numerical investigation of magnetohydrodynamic slip flow of power-law nanofluid with temperature dependent viscosity and thermal conductivity over a permeable surface
  57. Regular Articles
  58. Charge conservation in a gravitational field in the scalar ether theory
  59. Regular Articles
  60. Measurement problem and local hidden variables with entangled photons
  61. Regular Articles
  62. Compression of hyper-spectral images using an accelerated nonnegative tensor decomposition
  63. Regular Articles
  64. Fabrication and application of coaxial polyvinyl alcohol/chitosan nanofiber membranes
  65. Regular Articles
  66. Calculating degree-based topological indices of dominating David derived networks
  67. Regular Articles
  68. The structure and conductivity of polyelectrolyte based on MEH-PPV and potassium iodide (KI) for dye-sensitized solar cells
  69. Regular Articles
  70. Chiral symmetry restoration and the critical end point in QCD
  71. Regular Articles
  72. Numerical solution for fractional Bratu’s initial value problem
  73. Regular Articles
  74. Structure and optical properties of TiO2 thin films deposited by ALD method
  75. Regular Articles
  76. Quadruple multi-wavelength conversion for access network scalability based on cross-phase modulation in an SOA-MZI
  77. Regular Articles
  78. Application of ANNs approach for wave-like and heat-like equations
  79. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  80. Study on node importance evaluation of the high-speed passenger traffic complex network based on the Structural Hole Theory
  81. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  82. A mathematical/physics model to measure the role of information and communication technology in some economies: the Chinese case
  83. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  84. Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps
  85. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  86. On the libration collinear points in the restricted three – body problem
  87. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  88. Research on Critical Nodes Algorithm in Social Complex Networks
  89. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  90. A simulation based research on chance constrained programming in robust facility location problem
  91. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  92. A mathematical/physics carbon emission reduction strategy for building supply chain network based on carbon tax policy
  93. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  94. Mathematical analysis of the impact mechanism of information platform on agro-product supply chain and agro-product competitiveness
  95. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  96. A real negative selection algorithm with evolutionary preference for anomaly detection
  97. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  98. A privacy-preserving parallel and homomorphic encryption scheme
  99. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  100. Random walk-based similarity measure method for patterns in complex object
  101. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  102. A Mathematical Study of Accessibility and Cohesion Degree in a High-Speed Rail Station Connected to an Urban Bus Transport Network
  103. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  104. Design and Simulation of the Integrated Navigation System based on Extended Kalman Filter
  105. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  106. Oil exploration oriented multi-sensor image fusion algorithm
  107. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  108. Analysis of Product Distribution Strategy in Digital Publishing Industry Based on Game-Theory
  109. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  110. Expanded Study on the accumulation effect of tourism under the constraint of structure
  111. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  112. Unstructured P2P Network Load Balance Strategy Based on Multilevel Partitioning of Hypergraph
  113. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  114. Research on the method of information system risk state estimation based on clustering particle filter
  115. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  116. Demand forecasting and information platform in tourism
  117. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  118. Physical-chemical properties studying of molecular structures via topological index calculating
  119. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  120. Local kernel nonparametric discriminant analysis for adaptive extraction of complex structures
  121. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  122. City traffic flow breakdown prediction based on fuzzy rough set
  123. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  124. Conservation laws for a strongly damped wave equation
  125. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  126. Blending type approximation by Stancu-Kantorovich operators based on Pólya-Eggenberger distribution
  127. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  128. Computing the Ediz eccentric connectivity index of discrete dynamic structures
  129. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  130. A discrete epidemic model for bovine Babesiosis disease and tick populations
  131. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  132. Study on maintaining formations during satellite formation flying based on SDRE and LQR
  133. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  134. Relationship between solitary pulmonary nodule lung cancer and CT image features based on gradual clustering
  135. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  136. A novel fast target tracking method for UAV aerial image
  137. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  138. Fuzzy comprehensive evaluation model of interuniversity collaborative learning based on network
  139. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  140. Conservation laws, classical symmetries and exact solutions of the generalized KdV-Burgers-Kuramoto equation
  141. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  142. After notes on self-similarity exponent for fractal structures
  143. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  144. Excitation probability and effective temperature in the stationary regime of conductivity for Coulomb Glasses
  145. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  146. Comparisons of feature extraction algorithm based on unmanned aerial vehicle image
  147. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  148. Research on identification method of heavy vehicle rollover based on hidden Markov model
  149. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  150. Classifying BCI signals from novice users with extreme learning machine
  151. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  152. Topics on data transmission problem in software definition network
  153. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  154. Statistical inferences with jointly type-II censored samples from two Pareto distributions
  155. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  156. Estimation for coefficient of variation of an extension of the exponential distribution under type-II censoring scheme
  157. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  158. Analysis on trust influencing factors and trust model from multiple perspectives of online Auction
  159. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  160. Coupling of two-phase flow in fractured-vuggy reservoir with filling medium
  161. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  162. Production decline type curves analysis of a finite conductivity fractured well in coalbed methane reservoirs
  163. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  164. Flow Characteristic and Heat Transfer for Non-Newtonian Nanofluid in Rectangular Microchannels with Teardrop Dimples/Protrusions
  165. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  166. The size prediction of potential inclusions embedded in the sub-surface of fused silica by damage morphology
  167. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  168. Research on carbonate reservoir interwell connectivity based on a modified diffusivity filter model
  169. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  170. The method of the spatial locating of macroscopic throats based-on the inversion of dynamic interwell connectivity
  171. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  172. Unsteady mixed convection flow through a permeable stretching flat surface with partial slip effects through MHD nanofluid using spectral relaxation method
  173. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  174. A volumetric ablation model of EPDM considering complex physicochemical process in porous structure of char layer
  175. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  176. Numerical simulation on ferrofluid flow in fractured porous media based on discrete-fracture model
  177. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  178. Macroscopic lattice Boltzmann model for heat and moisture transfer process with phase transformation in unsaturated porous media during freezing process
  179. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  180. Modelling of intermittent microwave convective drying: parameter sensitivity
  181. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  182. Simulating gas-water relative permeabilities for nanoscale porous media with interfacial effects
  183. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  184. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model
  185. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  186. Investigation effect of wettability and heterogeneity in water flooding and on microscopic residual oil distribution in tight sandstone cores with NMR technique
  187. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  188. Analytical modeling of coupled flow and geomechanics for vertical fractured well in tight gas reservoirs
  189. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  190. Special Issue: Ever New "Loopholes" in Bell’s Argument and Experimental Tests
  191. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  192. The ultimate loophole in Bell’s theorem: The inequality is identically satisfied by data sets composed of ±1′s assuming merely that they exist
  193. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  194. Erratum to: The ultimate loophole in Bell’s theorem: The inequality is identically satisfied by data sets composed of ±1′s assuming merely that they exist
  195. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  196. Rhetoric, logic, and experiment in the quantum nonlocality debate
  197. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  198. What If Quantum Theory Violates All Mathematics?
  199. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  200. Relativity, anomalies and objectivity loophole in recent tests of local realism
  201. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  202. The photon identification loophole in EPRB experiments: computer models with single-wing selection
  203. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  204. Bohr against Bell: complementarity versus nonlocality
  205. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  206. Is Einsteinian no-signalling violated in Bell tests?
  207. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  208. Bell’s “Theorem”: loopholes vs. conceptual flaws
  209. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  210. Nonrecurrence and Bell-like inequalities
  211. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  212. Three-dimensional computer models of electrospinning systems
  213. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  214. Electric field computation and measurements in the electroporation of inhomogeneous samples
  215. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  216. Modelling of magnetostriction of transformer magnetic core for vibration analysis
  217. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  218. Comparison of the fractional power motor with cores made of various magnetic materials
  219. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  220. Dynamics of the line-start reluctance motor with rotor made of SMC material
  221. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  222. Inhomogeneous dielectrics: conformal mapping and finite-element models
  223. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  224. Topology optimization of induction heating model using sequential linear programming based on move limit with adaptive relaxation
  225. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  226. Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis
  227. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  228. Current superimposition variable flux reluctance motor with 8 salient poles
  229. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  230. Modelling axial vibration in windings of power transformers
  231. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  232. Field analysis & eddy current losses calculation in five-phase tubular actuator
  233. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  234. Hybrid excited claw pole generator with skewed and non-skewed permanent magnets
  235. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  236. Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method
  237. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  238. Field-circuit analysis and measurements of a single-phase self-excited induction generator
  239. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  240. A comparative analysis between classical and modified approach of description of the electrical machine windings by means of T0 method
  241. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  242. Field-based optimal-design of an electric motor: a new sensitivity formulation
  243. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  244. Application of the parametric proper generalized decomposition to the frequency-dependent calculation of the impedance of an AC line with rectangular conductors
  245. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  246. Virtual reality as a new trend in mechanical and electrical engineering education
  247. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  248. Holonomicity analysis of electromechanical systems
  249. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  250. An accurate reactive power control study in virtual flux droop control
  251. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  252. Localized probability of improvement for kriging based multi-objective optimization
  253. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  254. Research of influence of open-winding faults on properties of brushless permanent magnets motor
  255. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  256. Optimal design of the rotor geometry of line-start permanent magnet synchronous motor using the bat algorithm
  257. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  258. Model of depositing layer on cylindrical surface produced by induction-assisted laser cladding process
  259. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  260. Detection of inter-turn faults in transformer winding using the capacitor discharge method
  261. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  262. A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle
  263. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  264. Lamination effects on a 3D model of the magnetic core of power transformers
  265. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  266. Detection of vertical disparity in three-dimensional visualizations
  267. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  268. Calculations of magnetic field in dynamo sheets taking into account their texture
  269. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  270. 3-dimensional computer model of electrospinning multicapillary unit used for electrostatic field analysis
  271. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  272. Optimization of wearable microwave antenna with simplified electromagnetic model of the human body
  273. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  274. Induction heating process of ferromagnetic filled carbon nanotubes based on 3-D model
  275. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  276. Speed control of an induction motor by 6-switched 3-level inverter
Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/phys-2017-0031/html
Scroll to top button