Home Comparison of the fractional power motor with cores made of various magnetic materials
Article Open Access

Comparison of the fractional power motor with cores made of various magnetic materials

  • Zbigniew Gmyrek EMAIL logo , Marcin Lefik , Andrea Cavagnino and Luca Ferraris
Published/Copyright: December 29, 2017

Abstract

The optimization of the motor cores, coupled with new core shapes as well as powering the motor at high frequency are the primary reasons for the use of new materials. The utilization of new materials, like SMC (soft magnetic composite), reduce the core loss and/or provide quasi-isotropic core’s properties in any magnetization direction. Moreover, the use of SMC materials allows for avoiding degradation of the material portions, resulting from punching process, thereby preventing the deterioration of operating parameters of the motor. The authors examine the impact of technological parameters on the properties of a new type of SMC material and analyze the possibility of its use as the core of the fractional power motor. The result of the work is an indication of the shape of the rotor core made of a new SMC material to achieve operational parameters similar to those that have a motor with a core made of laminations.

1 Introduction

SMC materials, which have been known for decades and extensively studied for several years, are made of small ferromagnetic pieces, enclosed by a thin layer of an insulating material [1]. The insulation is made in various technological processes, ranging from oxide isolation, polymer isolation and resin insulation. The relatively high content of the dielectric (insulation) in the composite improves its resistivity and deteriorate its magnetic properties such as lower relative magnetic permeability and flat B-H magnetization curve. Unfortunately, the mechanical properties are lower than those for laminated magnetic materials [2]. Therefore, it is essential for the appropriate selection of technological process parameters to produce the SMC material. It concerns both the step of preparing a magnetic powder (grinding time), as well as the process of molding (pressure and temperature of the pressing). Production of large-sized components introduces additional technological problems tied to uniform pressure and material density of the component. Currently, many researchers are working in the selection of the composition and sintering conditions, so as to achieve optimum material properties [3, 4, 5, 6, 7, 8, 9, 10]. This is the first problem investigated in this work. The second problem considered and analyzed here is the use of SMC material in the construction of electric motors, especially those small and with fractional power. These motors have relatively small geometrical dimensions and use classical solutions (core made of a laminations), then operating parameters reduction (resulting from e.g. the damage of part of the material, during forming the shape of the core, by performing the punching process) arises. In the literature there are a number of research results related to the use of SMC materials for the motor core’s construction [5, 11, 12, 13, 14]. Available works can be divided into the following groups: operating parameters of high speed motors [11]; optimization of the motor core [12]; design of motors having complex 3-D cores or core manufactured by separate elements [13, 14]. This paper describes the results of research, both measurement, technology and simulation, carried out on the mass produced LSSR (Line-Started Synchronous Reluctance) motor of a nominal power of 120 W.

2 Experimental activity

For this work a mass-produced, 4-pole line-started 120 W synchronous reluctance motor was chosen as the object of research. The motor is dedicated for use with a three-phase 400 V/50 Hz sinusoidal supply. Self-start of the motor is guaranteed by a rotor cage existence. The experimental study was conducted by energizing the motor windings with sinusoidal voltage with a frequency that varied in the range 20-50 Hz. The authors wanted to avoid Joule loss (in the rotor cage) to be taken into account in the calculation process. Therefore the motor version without the rotor cage was studied. Lack of the rotor cage was the reason causing of the some difficulties at motor starting [15]. However, it was possible to reach complete synchronization of the rotor. The test stand was equipped with the following devices: a programmable three-phase power supply (18kVA, 360AMXT Pacific Power Source), a high accuracy digital wattmeter, a digital oscilloscope (used to record the phase current and phase voltage waveforms). The stator winding temperature was on-line monitored by means of the embedded thermal sensors and the sensor readings are used to compute the stator Joule losses. The executed experiments recorded the phase current and phase voltage waveforms, as well as determined the iron loss in the motor core. These values and waveforms was then used as a reference basis for assessing the adequacy and accuracy of the 3D FEM model, adopted in the prosecution of the research. A very good convergence was achieved in simulation results, both in the form of a waveform of the input current and phase voltage (having characteristic deformation resulting from the lack of rotor cage and core saturation) as well as iron loss in the stator core – see Fig. 1. These results were the basis to consider that the built FEM model reconstructs very well the characteristics and electromagnetic phenomena in the test motor.

Figure 1 The phase current waveforms at overexcitation (50 Hz). 1 – measured (red), 2 – 3D FEM simulations (black)
Figure 1

The phase current waveforms at overexcitation (50 Hz). 1 – measured (red), 2 – 3D FEM simulations (black)

3 The research on innovative SMC material

The advantages that SMCs can offer with respect to the traditional lamination steels (mainly a 3D ferromagnetic behavior) must be evaluated considering both magnetic and mechanical aspects. Taking as a reference an Insulated Iron Powder Compound (I.I.P.C.) available on the market, novel SMC materials can be obtained by mixing common iron powders together with organic resins. In Fig.2 we can see the comparison of B-H curves for commonly used magnetic laminations (M600-50A for the tested motor), a SMC material available on the market and the innovative SMC material proposed by the Authors. The research, carried out with the support of a polymeric research group, has focused the attention on epoxy resins as innovative binders for SMC realization. The main goal was the improvement of the mechanical properties, maintaining the magnetic characteristics of the I.I.P.C. taken as reference (that is in practice the only material adopted for these kind of applications). In a past activity the Authors adopted such I.I.P.C. to realize parts of a motor, but the results highlighted insufficient mechanical properties; it seemed necessary to find a way to significantly increase the mechanical resistance of at least 100% or more.

Figure 2 The B-H curves of used magnetic materials. 1 – original M600-50A material, 2 – Somaloy SMC material, 3 – proposed innovative SMC material
Figure 2

The B-H curves of used magnetic materials. 1 – original M600-50A material, 2 – Somaloy SMC material, 3 – proposed innovative SMC material

The base of the SMCs preparation is a common ferromagnetic powder, without any insulating layer on the grains; the addition of the binder keeps together the grain structure, and provides electrical insulation. At first the most suitable binder has been selected, then the impact of different binder percentages and different compacting pressures has been observed. This activity has been made possible due to the capability of self-producing the samples in our own laboratories. The realization process is totally under control: from the powder mixing, to the samples realization in the mold, up to the wounded toroid structure for the magnetic measurements and for mechanical tests.

The experimental results showed similar magnetic characteristics and increased mechanical performance with respect to the basic I.I.P.C. product.

In Fig. 3 the hysteresis loop is reported as an example of how the introduction of the epoxy resin impacts on the magnetic behavior of the pure ferromagnetic powder, while in Fig. 4 the magnetic characteristics of samples obtained with different bonder percentages are shown.

Figure 3 Hysteresis loop of the proposed Epoxy SMC compared with the base ferromagnetic material
Figure 3

Hysteresis loop of the proposed Epoxy SMC compared with the base ferromagnetic material

Figure 4 Magnetic characteristics of epoxy samples for different binder percentage at a compacting pressure of 700 MPa
Figure 4

Magnetic characteristics of epoxy samples for different binder percentage at a compacting pressure of 700 MPa

The mechanical characteristics of the SMC have been verified with bending tests to evaluate the strength of the samples, which can be expressed through the so called “Transverse Rupture Strength” (or TRS), with a three-points bending test, typically adopted for brittle materials.

The sensitivity of the mechanical resistance with respect to the binder percentage and to the adopted mold pressures has been investigated, and the results are shown in Fig. 5 where the TRS value concerning the I.I.P.C. is reported as a reference horizontal line. From the mechanical point of view low binder percentage and high molding pressures improve mechanical performances.

Figure 5 Mechanical performance TRS as a function of the binder percentage and compacting pressure
Figure 5

Mechanical performance TRS as a function of the binder percentage and compacting pressure

The proposed SMC material, adopting an epoxy binder, presents a very significant increment of the mechanical resistance with respect to the commercial I.I.P.C., and this result is obtained without penalties for the magnetic prerogatives; these last ones are better when small binder percentages are adopted.

4 3D FEM simulation results

Research studies of the mass produced 120 W and 550 W motors, having core made of a standard M600-50A material, have been published in prestigious journals and conference proceedings [15, 16, 17]. These studies, supported by experimental activities have allowed for calibration of the 3D FEM model used in the present study. This model was then used to determinate the operating parameters of the motor having a core made of the SMC material. The test motor has a rotor made by the punching die used for the production of induction motor having the same dimensions. Part of the rotor teeth has been removed, thereby forming a geometric anisotropy of the rotor – Fig. 6 and Fig. 7.

Figure 6 The rotor lamination geometry of the test motor
Figure 6

The rotor lamination geometry of the test motor

Figure 7 The mesh and one of the phase winding of the used motor
Figure 7

The mesh and one of the phase winding of the used motor

During this research the authors adopted three variants of the SMC material application: only for the stator core (variant 1), only for the rotor core (variant 2), both for the stator and the rotor cores (variant 3). In addition, they decided to leave unchanged the winding parameters such as the winding type, the number of series turns per phase and the diameter of the wire. The authors assumed that from an economic point of view, apart from changing the material core, it is not possible to complete reconstruction of the motor. Only a small change in the length of the core package is possible.

The simulations were performed by energizing the stator winding by three-phase voltage of 400 V/50 Hz (Y connected windings). The starting point of the analysis was assumption that the core length of the motors, having a core made of SMC, Somaloy and M600-50A materials, is the same. The efficiency values of the investigated motor, for such assumption, calculated by 3D FEM models are reported in Table 1, where it is possible to appreciate the performance detriment moving from the laminations to SMC materials. However, the efficiency reduction was lower for the variant 2, where the SMC material was used for the rotor only.

Table 1

The motor efficiency calculated by FEM model (at 50 Hz, rated torque, core length of 35 mm)

MaterialEfficiency [%]
Variant 1Variant 2Variant 3
M600-50A68.0 (baseline)
Somaloy50.563.048.5
Proposed SMC57.666.953.3

Computer simulations also allowed determination of consumed current as well as loss in the stator core. In the case of the test motor, the dominant loss is the Joule component in the stator windings, and possibly loss enlargement in the stator core. The application of SMC material does not significantly affect the motor efficiency.

The main reason for reduction of the motor efficiency, is the consumed current increase, resulting from worsening B-H magnetization curve of the SMC material. This leads to increase in the Joule losses in the stator winding. Calculated input phase currents and stator iron loss are presented in Table 2.

Table 2

FEM-computed phase current and stator iron losses (at 50 Hz, rated torque, core length of 35 mm)

MaterialPhase current [A]
Variant 1Variant 2Variant 3
M600-50A0.41 (baseline)
Somaloy0.650.490.72
Proposed SMC0.550.440.60
Stator iron loss [W]
M600-50A3.7 (base line)
Somaloy7.603.677.26
Proposed SMC13.503.7613.10

Further studies were focused on:

  1. The changes in the core length from 35 mm to 40 mm. The proposed variation range does not require the change of the master necessary to form the stator coil winding; in this way the same stator winding production costs are maintained.

  2. The changes in the outer shape of the rotor teeth - Fig. 8.

Figure 8 The analyzed shapes of rotor. a) reference tooth shape, b) wider outer teeth, c) narrower outer teeth
Figure 8

The analyzed shapes of rotor. a) reference tooth shape, b) wider outer teeth, c) narrower outer teeth

The change of the core length (for reference tooth shape) causes:

  1. reduction in consumed current by 10% (variant 1 and 2); by 20% (variant 3);

  2. increase in motor efficiency by 3% (variant 1 and 2); by 5% (variant 3) – for Somaloy; by 1.5% (variant 1 and 2); by 4% (variant 3) – proposed SMC.

Leaving the reference core length (35 mm) and using proposed SMC material, the change in the shape of the outer rotor tooth causes:

  1. for wider outer tooth – slightly larger consumed current (0.45 A and 0.62 A) and reduction in efficiency (64.5% and 50.4%) – for variant 2 and 3 respectively; slight differences in consumed current (0.55 A) and efficiency (57.4%) – for variant 1;

  2. for narrower outer tooth - slightly larger consumed current (0.48 A and 0.63 A) and reduction in efficiency (63.3% and 50.2%) – for variant 2 and 3 respectively; slight differences in consumed current (0.49 A) and efficiency (60.3%) – for variant 1.

The change of the outer teeth shape in the rotor has an effect on the flux density change in these teeth (lower flux density in whole teeth - see the variant in Fig. 8b) or the flux density change in the teeth area located near the gap (higher flux density only in this part of the teeth - see the variant in Fig. 8c).

5 Conclusions

The authors present the results of research conducted with an innovative SMC material, characterized by a significantly improved magnetization curve compared to those that have commercial SMC materials available on the market (e.g. Somaloy material). Moreover, the proposed novel material has improved mechanical characteristics but unfortunately it has a greater specific loss with respect to competitive SMC materials. This is a disadvantage of this material, and therefore its use (for the current parameters) must be well thought out. Therefore, further studies are needed on the influence of processing parameters. The effect of the use of two types of SMC materials (commercial material available on the market and novel one proposed by the authors) in the reluctance motor of fractional power, is described in the second part of the paper. The authors accepted the assumption that from economic viewpoint, a re-design of the core geometry is not rational. For this reason, the stator geometry remains unchanged, with the possibility to small extend a package, so there was no need to re-design and initiate a new manufacturing of the punching die and the stator winding former. That is why the authors only tested the effects of the use of the SMC material instead of the currently used laminations type M600-50A. It is difficult to directly compare the results achievable in the available literature, because the authors did not find such a comparable solution. Known works, with similar research, concern motors in which the stator core is made of SMC material or motors in which the rotor shape was optimized, using other than our optimization criteria. As was mentioned before, for the examined problem, minimizing processing cost was particularly important. That’s why the rotor geometry was not changed, except minor corrections of the outer teeth. General conclusions regarding the second part of the conducted research are as follows: the most efficient solution (due to the motor efficiency) is the usage of the SMC material in the rotor only; it is possible to achieve a similar efficiency as the reference motor (made of the M600-50A material) after packet extension by 10% and use of the novel SMC material. Analyzed small geometry corrections of the outer rotor teeth does not have a positive impact on the motor efficiency, and therefore the authors suggest to leave the rotor geometry the same as in the reference motor.

References

[1] Guo Y. G., Zhu J. G., Applications of soft magnetic composite materials in electrical machines, Australian Journal of Electrical and Electronics Engineering, 2006, 3, 37-46.10.1080/1448837X.2006.11464143Search in Google Scholar

[2] Schoppa A., Delarbre P., Holzmann E., Sigl M., Magnetic properties of soft magnetic powder composites at higher frequencies in comparison with electrical steels, Proceedings of 3rd International Electric Drives Production Conference (29-30 October 2013, Nuremberg, Germany), 2013.10.1109/EDPC.2013.6689717Search in Google Scholar

[3] Ferraris L., Poskovic E., Franchini F., New soft magnetic composites for electromagnetic applications with improved mechanical properties, AIP Advances, 2016, 6 (5), id 056209.10.1063/1.4943413Search in Google Scholar

[4] Bidulsky R., Bidulska J., Actis Grande M., Ferraris L., Aluminium alloy addition effects on the behaviour of soft magnetic materials at low frequencies, Acta Metallurgica Slovaka, 2014, 20, 271-278.10.12776/ams.v20i3.351Search in Google Scholar

[5] Gmyrek Z., Lefik M., Cavagnino A., Ferraris L., Comparison of the fractional power LSSR motor with cores made of various magnetic materials, Proceedings of 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (14-16 September 2017, Łódź, Poland), 2017.10.1109/ISEF.2017.8090709Search in Google Scholar

[6] Actis Grande M., Bidulsky R., Cavagnino A., Ferraris L., Ferraris P., Investigations on different processing conditions on soft magnetic composite material behavior at low frequency, IEEE Transaction Ind. Appl., July/August 2012, 48 (4), 1335-1343.10.1109/TIA.2012.2199951Search in Google Scholar

[7] Zagirnyak M. V., Prus V. V., Lyashenko V. P., Miljavec D., Structuring soft-magnetic composite materials, Proceedings of 51st International Conference on Microelectronics, Devices and Materials (23-25 September 2011, Ajdovscina, Slovenia), 86-91.Search in Google Scholar

[8] Ziębowicz B., Szewieczek D., Dobrzański L. A., New possibilities of application of composite materials with soft magnetic properties, Journal of Achievements in Materials and Manufacturing Engineering, 2007, 20, 207-210.Search in Google Scholar

[9] Dobrzański L. A., Drak M., Ziębowicz B., Manufacturing, properties and application of composite materials with specific magnetic properties, Archives of Materials Science, 2008, 29, 159-167.Search in Google Scholar

[10] Shokrollahi H., Janghorban K., Soft magnetic composite materials (SMCs), Journal of Processing Technology, 2007, 189, 1-12.10.1016/j.jmatprotec.2007.02.034Search in Google Scholar

[11] Chebak A., Viarouge P., Cros J., Optimal design of a high-speed slotless permanent magnet synchronous generator with soft magnetic composite stator yoke and rectifier load, Mathematics and Computers in Simulation, October 2010, 81, 239-251.10.1016/j.matcom.2010.05.002Search in Google Scholar

[12] Cros J., Viarouge P., Kakhki M. T., Design and optimization of soft magnetic composite mechines with finite element methods, IEEE Transaction Magn. November 2011, 47 (10), 4384-4390.10.1109/TMAG.2011.2157113Search in Google Scholar

[13] Schoppa A., Delarbre P., Soft magnetic powder composites and potential applications in modern electric machines and devices, IEEE Transaction Magn., April 2014, 50 (4), id 2004304.10.1109/TMAG.2013.2290135Search in Google Scholar

[14] Stefano R., Marignetti F., Electromagnetic analysis of axial-flux permenent magnet synchronous machines with fractional windings with experimental validation, IEEE Transaction Industrial Electronics, June 2012, 59 (6), 2573-2582.10.1109/TIE.2011.2165458Search in Google Scholar

[15] Bojoi R., Cavagnino A., Gmyrek Z., Lefik M., Experimental assessment of the annealing effects on magnetic core of fractional power synchronous reluctance motors, Proceedings of XXII International Conference on Electrical Machines (4-7 September 2016, Lausanne, Switzerland), 1692-1699.10.1109/ICELMACH.2016.7732752Search in Google Scholar

[16] Bojoi R., Cavagnino A., Gmyrek Z., Lefik M., Post-annealing behaviors of small-size synchronous reluctance motors, Proceedings of IECON42nd Annual Conference of the IEEE Industrial Electronics Society (23-26 October 2016, Firenze, Italy), 1732-1737.10.1109/IECON.2016.7793739Search in Google Scholar

[17] Cavagnino A., Bojoi R., Gmyrek Z., Stator lamination geometry influence on the building factor of synchronous reluctance motor cores, IEEE Transaction Ind. Appl., 2017, 53 (4), 3394-3403.10.1109/ECCE.2016.7855467Search in Google Scholar

Received: 2017-11-2
Accepted: 2017-11-12
Published Online: 2017-12-29

© 2017 Zbigniew Gmyrek et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Regular Articles
  2. Analysis of a New Fractional Model for Damped Bergers’ Equation
  3. Regular Articles
  4. Optimal homotopy perturbation method for nonlinear differential equations governing MHD Jeffery-Hamel flow with heat transfer problem
  5. Regular Articles
  6. Semi- analytic numerical method for solution of time-space fractional heat and wave type equations with variable coefficients
  7. Regular Articles
  8. Investigation of a curve using Frenet frame in the lightlike cone
  9. Regular Articles
  10. Construction of complex networks from time series based on the cross correlation interval
  11. Regular Articles
  12. Nonlinear Schrödinger approach to European option pricing
  13. Regular Articles
  14. A modified cubic B-spline differential quadrature method for three-dimensional non-linear diffusion equations
  15. Regular Articles
  16. A new miniaturized negative-index meta-atom for tri-band applications
  17. Regular Articles
  18. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel
  19. Regular Articles
  20. Distributed containment control of heterogeneous fractional-order multi-agent systems with communication delays
  21. Regular Articles
  22. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir
  23. Regular Articles
  24. Quantum mechanics with geometric constraints of Friedmann type
  25. Regular Articles
  26. Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System
  27. Regular Articles
  28. Application of the optimal homotopy asymptotic method to nonlinear Bingham fluid dampers
  29. Regular Articles
  30. Analysis of Drude model using fractional derivatives without singular kernels
  31. Regular Articles
  32. An unsteady MHD Maxwell nanofluid flow with convective boundary conditions using spectral local linearization method
  33. Regular Articles
  34. New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method
  35. Regular Articles
  36. Quantum mechanical calculation of electron spin
  37. Regular Articles
  38. CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine)
  39. Regular Articles
  40. Chain on a cone
  41. Regular Articles
  42. Multi-task feature learning by using trace norm regularization
  43. Regular Articles
  44. Superluminal tunneling of a relativistic half-integer spin particle through a potential barrier
  45. Regular Articles
  46. Neutrosophic triplet normed space
  47. Regular Articles
  48. Lie algebraic discussion for affinity based information diffusion in social networks
  49. Regular Articles
  50. Radiation dose and cancer risk estimates in helical CT for pulmonary tuberculosis infections
  51. Regular Articles
  52. A comparison study of steady-state vibrations with single fractional-order and distributed-order derivatives
  53. Regular Articles
  54. Some new remarks on MHD Jeffery-Hamel fluid flow problem
  55. Regular Articles
  56. Numerical investigation of magnetohydrodynamic slip flow of power-law nanofluid with temperature dependent viscosity and thermal conductivity over a permeable surface
  57. Regular Articles
  58. Charge conservation in a gravitational field in the scalar ether theory
  59. Regular Articles
  60. Measurement problem and local hidden variables with entangled photons
  61. Regular Articles
  62. Compression of hyper-spectral images using an accelerated nonnegative tensor decomposition
  63. Regular Articles
  64. Fabrication and application of coaxial polyvinyl alcohol/chitosan nanofiber membranes
  65. Regular Articles
  66. Calculating degree-based topological indices of dominating David derived networks
  67. Regular Articles
  68. The structure and conductivity of polyelectrolyte based on MEH-PPV and potassium iodide (KI) for dye-sensitized solar cells
  69. Regular Articles
  70. Chiral symmetry restoration and the critical end point in QCD
  71. Regular Articles
  72. Numerical solution for fractional Bratu’s initial value problem
  73. Regular Articles
  74. Structure and optical properties of TiO2 thin films deposited by ALD method
  75. Regular Articles
  76. Quadruple multi-wavelength conversion for access network scalability based on cross-phase modulation in an SOA-MZI
  77. Regular Articles
  78. Application of ANNs approach for wave-like and heat-like equations
  79. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  80. Study on node importance evaluation of the high-speed passenger traffic complex network based on the Structural Hole Theory
  81. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  82. A mathematical/physics model to measure the role of information and communication technology in some economies: the Chinese case
  83. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  84. Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps
  85. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  86. On the libration collinear points in the restricted three – body problem
  87. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  88. Research on Critical Nodes Algorithm in Social Complex Networks
  89. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  90. A simulation based research on chance constrained programming in robust facility location problem
  91. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  92. A mathematical/physics carbon emission reduction strategy for building supply chain network based on carbon tax policy
  93. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  94. Mathematical analysis of the impact mechanism of information platform on agro-product supply chain and agro-product competitiveness
  95. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  96. A real negative selection algorithm with evolutionary preference for anomaly detection
  97. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  98. A privacy-preserving parallel and homomorphic encryption scheme
  99. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  100. Random walk-based similarity measure method for patterns in complex object
  101. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  102. A Mathematical Study of Accessibility and Cohesion Degree in a High-Speed Rail Station Connected to an Urban Bus Transport Network
  103. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  104. Design and Simulation of the Integrated Navigation System based on Extended Kalman Filter
  105. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  106. Oil exploration oriented multi-sensor image fusion algorithm
  107. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  108. Analysis of Product Distribution Strategy in Digital Publishing Industry Based on Game-Theory
  109. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  110. Expanded Study on the accumulation effect of tourism under the constraint of structure
  111. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  112. Unstructured P2P Network Load Balance Strategy Based on Multilevel Partitioning of Hypergraph
  113. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  114. Research on the method of information system risk state estimation based on clustering particle filter
  115. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  116. Demand forecasting and information platform in tourism
  117. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  118. Physical-chemical properties studying of molecular structures via topological index calculating
  119. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  120. Local kernel nonparametric discriminant analysis for adaptive extraction of complex structures
  121. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  122. City traffic flow breakdown prediction based on fuzzy rough set
  123. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  124. Conservation laws for a strongly damped wave equation
  125. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  126. Blending type approximation by Stancu-Kantorovich operators based on Pólya-Eggenberger distribution
  127. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  128. Computing the Ediz eccentric connectivity index of discrete dynamic structures
  129. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  130. A discrete epidemic model for bovine Babesiosis disease and tick populations
  131. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  132. Study on maintaining formations during satellite formation flying based on SDRE and LQR
  133. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  134. Relationship between solitary pulmonary nodule lung cancer and CT image features based on gradual clustering
  135. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  136. A novel fast target tracking method for UAV aerial image
  137. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  138. Fuzzy comprehensive evaluation model of interuniversity collaborative learning based on network
  139. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  140. Conservation laws, classical symmetries and exact solutions of the generalized KdV-Burgers-Kuramoto equation
  141. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  142. After notes on self-similarity exponent for fractal structures
  143. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  144. Excitation probability and effective temperature in the stationary regime of conductivity for Coulomb Glasses
  145. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  146. Comparisons of feature extraction algorithm based on unmanned aerial vehicle image
  147. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  148. Research on identification method of heavy vehicle rollover based on hidden Markov model
  149. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  150. Classifying BCI signals from novice users with extreme learning machine
  151. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  152. Topics on data transmission problem in software definition network
  153. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  154. Statistical inferences with jointly type-II censored samples from two Pareto distributions
  155. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  156. Estimation for coefficient of variation of an extension of the exponential distribution under type-II censoring scheme
  157. Special issue on Nonlinear Dynamics in General and Dynamical Systems in particular
  158. Analysis on trust influencing factors and trust model from multiple perspectives of online Auction
  159. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  160. Coupling of two-phase flow in fractured-vuggy reservoir with filling medium
  161. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  162. Production decline type curves analysis of a finite conductivity fractured well in coalbed methane reservoirs
  163. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  164. Flow Characteristic and Heat Transfer for Non-Newtonian Nanofluid in Rectangular Microchannels with Teardrop Dimples/Protrusions
  165. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  166. The size prediction of potential inclusions embedded in the sub-surface of fused silica by damage morphology
  167. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  168. Research on carbonate reservoir interwell connectivity based on a modified diffusivity filter model
  169. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  170. The method of the spatial locating of macroscopic throats based-on the inversion of dynamic interwell connectivity
  171. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  172. Unsteady mixed convection flow through a permeable stretching flat surface with partial slip effects through MHD nanofluid using spectral relaxation method
  173. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  174. A volumetric ablation model of EPDM considering complex physicochemical process in porous structure of char layer
  175. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  176. Numerical simulation on ferrofluid flow in fractured porous media based on discrete-fracture model
  177. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  178. Macroscopic lattice Boltzmann model for heat and moisture transfer process with phase transformation in unsaturated porous media during freezing process
  179. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  180. Modelling of intermittent microwave convective drying: parameter sensitivity
  181. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  182. Simulating gas-water relative permeabilities for nanoscale porous media with interfacial effects
  183. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  184. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model
  185. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  186. Investigation effect of wettability and heterogeneity in water flooding and on microscopic residual oil distribution in tight sandstone cores with NMR technique
  187. Special Issue on Advances on Modelling of Flowing and Transport in Porous Media
  188. Analytical modeling of coupled flow and geomechanics for vertical fractured well in tight gas reservoirs
  189. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  190. Special Issue: Ever New "Loopholes" in Bell’s Argument and Experimental Tests
  191. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  192. The ultimate loophole in Bell’s theorem: The inequality is identically satisfied by data sets composed of ±1′s assuming merely that they exist
  193. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  194. Erratum to: The ultimate loophole in Bell’s theorem: The inequality is identically satisfied by data sets composed of ±1′s assuming merely that they exist
  195. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  196. Rhetoric, logic, and experiment in the quantum nonlocality debate
  197. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  198. What If Quantum Theory Violates All Mathematics?
  199. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  200. Relativity, anomalies and objectivity loophole in recent tests of local realism
  201. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  202. The photon identification loophole in EPRB experiments: computer models with single-wing selection
  203. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  204. Bohr against Bell: complementarity versus nonlocality
  205. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  206. Is Einsteinian no-signalling violated in Bell tests?
  207. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  208. Bell’s “Theorem”: loopholes vs. conceptual flaws
  209. Special Issue on Ever-New "Loopholes" in Bell’s Argument and Experimental Tests
  210. Nonrecurrence and Bell-like inequalities
  211. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  212. Three-dimensional computer models of electrospinning systems
  213. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  214. Electric field computation and measurements in the electroporation of inhomogeneous samples
  215. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  216. Modelling of magnetostriction of transformer magnetic core for vibration analysis
  217. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  218. Comparison of the fractional power motor with cores made of various magnetic materials
  219. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  220. Dynamics of the line-start reluctance motor with rotor made of SMC material
  221. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  222. Inhomogeneous dielectrics: conformal mapping and finite-element models
  223. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  224. Topology optimization of induction heating model using sequential linear programming based on move limit with adaptive relaxation
  225. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  226. Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis
  227. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  228. Current superimposition variable flux reluctance motor with 8 salient poles
  229. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  230. Modelling axial vibration in windings of power transformers
  231. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  232. Field analysis & eddy current losses calculation in five-phase tubular actuator
  233. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  234. Hybrid excited claw pole generator with skewed and non-skewed permanent magnets
  235. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  236. Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method
  237. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  238. Field-circuit analysis and measurements of a single-phase self-excited induction generator
  239. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  240. A comparative analysis between classical and modified approach of description of the electrical machine windings by means of T0 method
  241. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  242. Field-based optimal-design of an electric motor: a new sensitivity formulation
  243. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  244. Application of the parametric proper generalized decomposition to the frequency-dependent calculation of the impedance of an AC line with rectangular conductors
  245. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  246. Virtual reality as a new trend in mechanical and electrical engineering education
  247. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  248. Holonomicity analysis of electromechanical systems
  249. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  250. An accurate reactive power control study in virtual flux droop control
  251. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  252. Localized probability of improvement for kriging based multi-objective optimization
  253. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  254. Research of influence of open-winding faults on properties of brushless permanent magnets motor
  255. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  256. Optimal design of the rotor geometry of line-start permanent magnet synchronous motor using the bat algorithm
  257. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  258. Model of depositing layer on cylindrical surface produced by induction-assisted laser cladding process
  259. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  260. Detection of inter-turn faults in transformer winding using the capacitor discharge method
  261. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  262. A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle
  263. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  264. Lamination effects on a 3D model of the magnetic core of power transformers
  265. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  266. Detection of vertical disparity in three-dimensional visualizations
  267. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  268. Calculations of magnetic field in dynamo sheets taking into account their texture
  269. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  270. 3-dimensional computer model of electrospinning multicapillary unit used for electrostatic field analysis
  271. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  272. Optimization of wearable microwave antenna with simplified electromagnetic model of the human body
  273. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  274. Induction heating process of ferromagnetic filled carbon nanotubes based on 3-D model
  275. Special Issue: The 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF 2017
  276. Speed control of an induction motor by 6-switched 3-level inverter
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/phys-2017-0097/html
Scroll to top button