Startseite Synthesis and crystal structure of a new polymorph of diisopropylammonium trichloroacetate, C8H16Cl3NO2
Artikel Open Access

Synthesis and crystal structure of a new polymorph of diisopropylammonium trichloroacetate, C8H16Cl3NO2

  • Guido J. Reiss EMAIL logo , Michaela K. Meyer und Jürgen Graf
Veröffentlicht/Copyright: 20. Juli 2019

Abstract

C8H16Cl3NO2, monoclinic, P21 (no. 4), a = 9.1804(5), Å, b = 19.4133(10) Å, c = 13.9191(7) Å, β = 90.593(3)°, V = 2480.6(2) Å3, Z = 8, Rgt(F) = 0.0605, wRref(F2) = 0.1387, T = 296(2) K.

CCDC no.: 1902131

The asymmetric unit of the title crystal structure is shown in the figure. Ellipsoids are drawn at the 50% probability level [1]. Tables 1 and 2 contain details on the crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Needle, colorless
Size:0.51 × 0.12 × 0.05 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.72 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω-scans
θmax, completeness:29°, >99%
N(hkl)measured, N(hkl)unique, Rint:56285, 13160, 0.064
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 11276
N(param)refined:521
Programs:DIAMOND [1], Bruker programs [2], SHELX [3], [4]

Source of the material

In a typical experiment 0.50 g (3.06 mmol) trichloroacetic acid and 0.30 g (3.00 mmol) diisopropylamine (dip) were mixed in a petri dish. The mixture emits a white smoke. After a few days two types of colourless crystals (cubes and needles) form in the solution. Recrystallization from ethanol yields cube crystals only, whereas the needle crystals were obtained from an 2-propanol solution. Preliminary X-ray experiments showed that the cubes represent an orthorhombic phase, whereas the needle crystals show monoclinic symmetry. The IR and Raman spectra show the typical bands and signals for the diisopropylammonium (dipH) cation [5] and the trichloroacetate (TCA) anion [6].

Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Cl1−0.0416(2)0.74558(11)0.38100(18)0.0533(6)
Cl2−0.1031(2)0.72644(10)0.17835(17)0.0464(5)
Cl30.19028(18)0.74415(9)0.24514(14)0.0346(4)
Cl40.48392(19)0.31158(9)0.36335(13)0.0337(4)
Cl50.70476(16)0.31718(8)0.51192(12)0.0260(3)
Cl60.40384(19)0.32273(9)0.56281(14)0.0356(4)
Cl70.38638(19)0.34106(10)0.10267(13)0.0359(4)
Cl80.67175(17)0.30574(9)0.03859(13)0.0312(4)
Cl90.4305(2)0.30275(9)−0.09573(13)0.0374(4)
Cl10−0.0458(2)0.74599(9)−0.14238(13)0.0372(4)
Cl110.17593(16)0.73766(8)−0.28623(12)0.0264(3)
Cl12−0.1222(2)0.71626(11)−0.34082(14)0.0424(5)
O1−0.0930(5)0.5990(2)0.2968(4)0.0262(10)
O20.1496(5)0.6018(3)0.2954(4)0.0291(11)
O30.4064(5)0.4546(2)0.4569(3)0.0227(9)
O40.6490(5)0.4564(2)0.4524(4)0.0258(10)
O50.4136(5)0.4573(2)−0.0326(4)0.0266(10)
O60.6542(5)0.4419(2)−0.0445(3)0.0250(10)
O70.1464(5)0.6025(2)−0.2026(3)0.0270(10)
O8−0.0960(5)0.5935(3)−0.2161(4)0.0295(11)
N1−0.0632(5)0.4731(3)0.3915(4)0.0192(10)
H11−0.1505740.4653230.4163830.023*
H12−0.0685860.5126660.3593940.023*
N20.4350(5)0.5822(3)0.3634(3)0.0165(10)
H210.4314810.5421840.3944950.020*
H220.3471040.5894790.3378040.020*
N30.1257(5)0.4979(3)−0.0673(4)0.0185(10)
H310.1265730.530349−0.1124680.022*
H320.2150370.480215−0.0638980.022*
N4−0.3762(5)0.5492(3)−0.1778(4)0.0181(10)
H41−0.2861790.565930−0.1811510.022*
H42−0.3754210.516328−0.1332190.022*
C10.0437(7)0.4824(3)0.4734(4)0.0198(12)
H1A0.1388350.4948730.4471910.024*
C2−0.0121(7)0.5423(3)0.5341(5)0.0251(14)
H2A−0.1060870.5308580.5592250.038*
H2B−0.0200120.5828400.4949590.038*
H2C0.0546550.5507490.5863350.038*
C3A0.0596(7)0.4173(4)0.5305(5)0.0254(14)
H3A−0.0325010.4053860.5579340.038*
H3B0.1302520.4241290.5809550.038*
H3C0.0912920.3808110.4891770.038*
C4−0.0328(7)0.4166(3)0.3201(4)0.0199(12)
H4A−0.0411020.3720940.3528560.024*
C5−0.1517(7)0.4211(4)0.2429(4)0.0248(13)
H5A−0.1475180.4653360.2122130.037*
H5B−0.2452630.4152340.2719300.037*
H5C−0.1369940.3855860.1960120.037*
C60.1192(7)0.4232(3)0.2811(5)0.0247(13)
H6A0.1320370.4685340.2548570.037*
H6B0.1334660.3895110.2316980.037*
H6C0.1888320.4159280.3320470.037*
C70.0289(7)0.6272(3)0.2902(4)0.0173(11)
C80.0201(7)0.7070(3)0.2743(5)0.0276(14)
C90.5408(7)0.5750(3)0.2831(4)0.0201(12)
H9A0.6375910.5648770.3098880.024*
C100.4906(8)0.5144(4)0.2212(5)0.0277(14)
H10A0.4903680.4731940.2593320.042*
H10B0.5559070.5087790.1683820.042*
H10C0.3940700.5231770.1970990.042*
C110.5476(8)0.6413(4)0.2259(5)0.0287(15)
H11A0.4511880.6540910.2053560.043*
H11B0.6079050.6347000.1707790.043*
H11C0.5879860.6772000.2655050.043*
C120.4637(7)0.6381(3)0.4364(4)0.0208(12)
H12A0.4530610.6828930.4047150.025*
C130.6167(7)0.6328(4)0.4780(5)0.0263(14)
H13A0.6299640.5883590.5069450.039*
H13B0.6308080.6679890.5256590.039*
H13C0.6862370.6388020.4275920.039*
C140.3457(7)0.6314(3)0.5127(5)0.0243(13)
H14A0.2513820.6337080.4824870.037*
H14B0.3554990.6683120.5583010.037*
H14C0.3562030.5880990.5453240.037*
C150.5299(6)0.4295(3)0.4608(4)0.0169(11)
C160.5327(6)0.3481(3)0.4766(5)0.0210(12)
C170.0941(7)0.5324(3)0.0280(4)0.0216(13)
H17A0.1103050.4988310.0795490.026*
C18−0.0624(7)0.5565(4)0.0316(5)0.0300(15)
H18A−0.0852860.5701660.0959480.045*
H18B−0.1258060.5196030.0120200.045*
H18C−0.0755930.594948−0.0109870.045*
C190.2026(7)0.5911(4)0.0408(5)0.0288(15)
H19A0.1883240.624334−0.0095630.043*
H19B0.2999590.5732850.0380490.043*
H19C0.1877680.6127820.1019010.043*
C200.0248(7)0.4423(3)−0.1001(4)0.0216(13)
H20A−0.0735460.461530−0.1065590.026*
C210.0759(7)0.4188(3)−0.1991(5)0.0261(14)
H21A0.0848910.458133−0.2405090.039*
H21B0.0062280.387262−0.2261150.039*
H21C0.1687330.396421−0.1928290.039*
C220.0205(8)0.3826(3)−0.0306(5)0.0271(14)
H22A0.1177480.366222−0.0187420.041*
H22B−0.0373620.346069−0.0576180.041*
H22C−0.0215600.3974350.0287690.041*
C230.5283(7)0.4234(3)−0.0264(4)0.0185(12)
C240.5067(7)0.3470(3)0.0044(4)0.0203(12)
C25−0.4132(7)0.5164(3)−0.2728(4)0.0191(12)
H25A−0.3995660.550728−0.3235490.023*
C26−0.5681(7)0.4915(4)−0.2774(5)0.0248(13)
H26A−0.5897730.466219−0.2199710.037*
H26B−0.5809480.462058−0.3322380.037*
H26C−0.6325920.530252−0.2828050.037*
C27−0.3039(7)0.4587(4)−0.2873(5)0.0267(14)
H27A−0.2069000.477091−0.2839930.040*
H27B−0.3200110.437862−0.3490020.040*
H27C−0.3156670.424672−0.2378950.040*
C28−0.4748(7)0.6060(3)−0.1443(4)0.0190(12)
H28A−0.5735310.587656−0.1372510.023*
C29−0.4787(8)0.6648(3)−0.2161(5)0.0250(14)
H29A−0.3811700.679821−0.2286960.038*
H29B−0.5338800.702328−0.1902910.038*
H29C−0.5236290.649277−0.2748650.038*
C30−0.4182(7)0.6296(4)−0.0455(4)0.0238(13)
H30A−0.4104040.590544−0.0034800.036*
H30B−0.4845800.662488−0.0189270.036*
H30C−0.3240620.650480−0.0524320.036*
C310.0208(7)0.6246(3)−0.2215(4)0.0200(12)
C320.0096(7)0.7026(3)−0.2483(4)0.0190(12)

The Raman spectrum was measured using a Bruker MULTIRAM spectrometer; Nd:YAG-Laser at 1064 nm; RT-InGaAS-detector; 4000–70 cm−1: 3062(w), 2986(ν(C—H), s), 2962(s), 2940(ν(C—H), vs), 2745(w), 2492(w), 1678(νas(COO), m), 1456(δ(C—H), m), 1428(δ(C—H), m), 1322(νsym. COO–, m), 1181(w), 1099(w), 954 (w), 912(w), 832(m), 804(s), 733(δ(COO), m), 670(m), 471(m), 443(s), 422(COO, vs) 318, 275 (δas(CCl3), s), 194 (ρs(CCl3), s), 119(w). IR data collected on a Digilab FT3400 spectrometer using a MIRacle ATR unit (Pike Technologies); 4000–560 cm−1: 3062(ν(CH3), s), 2985 (ν(C—H), s), 2946(m), 2890(m), 2694(m), 2585(w), 2498(m), 2446(w), 1657 (νas(COO), vs), 1615(sh), 1504(w), 1464(w), 1399(m), 1380(w), 1354(m), 1319((νs(COO), vs), 1149(m), 1102(m), 823(νas(CCl3, s), 735(δa(COO), s), 673(m) {w = weak, m = medium, s = strong, vs = very strong}.

Experimental details

The data collection followed the standard procedures of the APEX2 user interface. For data integration and reduction a strategy using the narrow frame algorithm for 3D profile modelling was applied [2]. Structure solution and completion of the structural model was performed using the SHELX software package [3], [4]. Hydrogen atoms were included in last stages of refinement using a riding model with constrained Uiso parameters [4]. It should be noted that the Flack parameter determined using 4522 Parsons’ quotients [7] was 0.12(2) for this Cl-containing structure measured using Mo radiation. Despite significant deviation from zero, no inversion twin was refined.

Comment

Some simple diisopropylammonium (dipH) salts have attracted attention as ferroelectric materials [8], [9], [10], [11], [12], [13]. The aforementioned studies almost exclusively focused on some of the corresponding halogenides. Newer developments point to dipH salts based on oxygen-containing counter anions like perchlorate [14], [15] or trifluormethylsulfonate to provide interesting physical properties [16]. For the dipH perchlorate [17], as well as for the methanesulfonate [5], we have presented some basic structural features many years ago. Generally, the structural chemistry of simple dipH salts dates back in the ninetys of the last century [18]. The dipH halogenides and some other directly related salt structures, which were characterized, all feature hydrogen bonded chains [19], [20], [21], [22], [23], [24], [25], [26], [27]. Even though the physical properties associated with temperature depending phase transitions have only been recently reported, the fact that this class of compounds exhibits polymorphism for almost each compound has been shown earlier. {chloride: [18], [20]; bromide: [22], [23]; iodide [24], [25]}. Furthermore, dipH salts are able to incorporate various solvent molecules [26], [27], [28]. This contribution forms part of our longstanding interest in hydrogen-bonded dipH halogenides and pseudo halogenide [19], [22], [24], [26], dipH salts with oxygen-containing counter anions [5], [17], [29] and a limited number of dipH halogenidometallates [30], [31]. Furthermore, hydrogen-bonded trichloroacetate salts are also materials with interesting properties [32], [33], [34]. Many of the chain-type hydrogen bonded polymers like dipHI, dipHCl, dipHBr, dipH[HF2] etc. crystallize in the space group P212121. In these structures hydrogen-bonded chains run along two crystallographically axes and thus are perpendicular to each other. Form a structural point of view the already reported structure of diisopropylammmonium trichloroacetate (dipH TCA) exactly features such hydrogen-bonded, perpendicularily crossed chains [35].

We here report a second polymorph of dipH TCA. The asymmetric unit contains four crystallographically independent dipH cations and four TCA counter anions (cf. the figure). Similarly to other dipH salts, hydrogen-bonded chains of cations and anions are formed. The N⋯O distances within these hydrogen bonds fall in the narrow range of 2.777(7)−2.811(7) Å. The graph set descriptor for the hydrogen bonding motif in the title structure is C22(6) [36]. Anions and cations are both ordered and their geometric parameters are all in the expected ranges. The isopropyl groups are individually rotated around the C—N bonds to fill the needs of packing, which is typical for the dipH salts.

To verify that the Z′ = 4 situation is true we furthermore analyzed some key features of the title structure. In detail, the two crystalllographically independent chains (chain 1: N1, N2, O1—O4; chain 2: N3, N4, O5—O8) feature significantly different geometries (cf. figure [1]). For example the N⋯N distances in chain 1 are 5.059(7) and 5.082(7) Å, whereas the corresponding distances are 4.944(7) and 4.941(7) Å in chain 2. The same is true for the N⋯N⋯N angles [chain 1: 129.7(1)°; chain 2: 136.5(1)°]. We had proposed that the general rules of hydrocarbon chain packing [37] can be retrieved sometime in the packing of a dipH salt [17]. Obviously, in the case of the title structure, optimization procedures during the crystallization process lead to a packing with Z′ = 4.

The comparison of the asymmetric unit of the title structure with the orthorhombic polymorph 1 shows that the content is doubled. Another obvious difference of the title structure compared to the orthorhombic polymorph 1 of dipH TCA [34] is that in the polymorph 1 one crystallographically independent TCA anion shows disorder of the CCl3 group, whereas the other one appears ordered. The most interesting observation is, that the hydrogen bonded chains run both along the crystallographic a direction in the title structure which is in glaring contrast to polymorph 1 in which the chains run along two directions, which are perpendicular to each other.

A solid-state phase transition between the orthorhombic polymorph 1 and the new monoclinic polymorph 2 seems unlikely given the fact that it would require a complete structural rearrangement, as the arrangement of crossed chains in 1 will not be reorganized to the parallel arrangement found in the title structure. However, it may be of interest to set up an advanced study to investigate the potential temperature and pressure dependence of structural changes for both polymorphs. Finally, it was surprising to us that in the case of dipH TCA two chain type structures are observed, whereas in the case of dipH trifluoroacetate and the corresponding pentafluoropropionate [29] as well as acetates with bulkier substituents [38], [39], hydrogen-bonded cyclic moieties, composed of two cations and two anions, are observed.

Acknowledgements

We gratefully acknowledge support by the Ministry of Innovation, Science and Research of North-Rhine Westphalia and the German Research Foundation (DFG) for financial support (Bruker diffractometer, APEX2-Dual Source; INST 208/589−1, project No. 208167569). Funding by the open access fund of the Heinrich-Heine-Universiät Düsseldorf is gratefully acknowledged.

References

1. Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Ver. 4.0. Crystal Impact, Bonn, Germany (2015).Suche in Google Scholar

2. Bruker. SAINT (Version 8.38A) in APEX3 (Version 2018.1-0). Bruker AXS Inc., Madison, WI, USA (2018).Suche in Google Scholar

3. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D.: Comparison of silver and molybdenum microfocus X-ray sources for single crystal structure determination. J. Appl. Crystallogr. 48 (2015) 3–10.10.1107/S1600576714022985Suche in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central

5. Reiss, G. J.; Meyer, M. K.: Diisopropylammonium methanesulfonate. Acta Crystallogr. E 67 (2011) o2169.10.1107/S1600536811029382Suche in Google Scholar PubMed PubMed Central

6. Debrus, S.; Marchewka, M. K.; Drozd, M.; Ratajczak, H.: Vibrational, calorimetric and nonlinear optical studies of melaminium bis(trichloroacetate) monohydrate molecular–ionic crystal. Opt. Mater. 29 (2007) 1058–1062.10.1016/j.optmat.2006.04.004Suche in Google Scholar

7. Parsons, S.; Flack, H. D.; Wagner, T.: Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. B69 (2013) 249–259.10.1107/S2052519213010014Suche in Google Scholar PubMed PubMed Central

8. Fu, D.-W.; Zhang, W.; Cai, H.-L.; Ge, J.-Z.; Zhang, Y.; Xiong, R.-G.: Diisopropylammonium chloride: a ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization. Adv. Mater. 23 (2011) 5658–5662.10.1002/adma.201102938Suche in Google Scholar PubMed

9. Louis, L.; Pitike, K. C.; Ghosh, A.; Poddar, S.; Ducharme, S.; Nakhmanson, S. M.: Polarization canting in ferroelectric diisopropylammonium-halide molecular crystals: a computational first principles study. J. Mater. Chem. C6 (2018) 1143–1152.10.1039/C7TC03732ESuche in Google Scholar

10. Baryshnikov, S. V.; Charnaya, E. V.; Milinskiy, A. Y.; Parfenov, V. A.; Egorova, I. V.: Impact of nanoconfinement on the diisopropylammonium chloride (C6H16ClN) organic ferroelectric. Phase Trans. 91 (2018) 293–300.10.1080/01411594.2017.1378880Suche in Google Scholar

11. Piecha, A.; Gagor, A.; Jakubas, R.; Szklarz, P.: Room-temperature ferroelectricity in diisopropylammonium bromide. CrystEngComm 15 (2013) 940–944.10.1039/C2CE26580JSuche in Google Scholar

12. Piecha-Bisiorek, A.; Gkagor, A.; Isakov, D.; Zieliński, P.; Gałkazka, M.; Jakubas, R.: Phase sequence in diisopropylammonium iodide: avoided ferroelectricity by the appearance of a reconstructed phase. Inorg. Chem. Front. 4 (2017) 553–558.10.1039/C6QI00583GSuche in Google Scholar

13. Fu, D. W.; Cai, H. L.; Liu, Y.; Ye, Q.; Zhang, W.; Zhang, Y.; Chen, X. Y.; Giovannetti, G.; Capone, M.; Li, J.; Xiong, R. G.: Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal. Science 339 (2013) 425–428.10.1126/science.1229675Suche in Google Scholar PubMed

14. Jiang, C.; Tong, W.-Y.; Lin, H.; Luo, C.; Peng, H.; Duan, C.-G.: Effect of counter anions on ferroelectric properties of diisopropylammonium-cation based molecular crystals. Phys. Status Solidi 214 (2017) 1700029.10.1002/pssa.201700029Suche in Google Scholar

15. Gao, K.; Cui, Z.; Liu, C.; Zhu, J.; Cai, H.-L.; Wu, X.: Two reversible ferroelectric phase transitions in diisopropylammonium perchlorate. RSC Adv. 5 (2015) 62647–62651.10.1039/C5RA09971DSuche in Google Scholar

16. Zhou, P.; Sun, Z.; Zhang, S.; Ji, C.; Zhao, S.; Xiong, R.-G.; Luo, J.: A sequentially switchable molecular dielectric material tuned by the stepwise ordering in diisopropylammonium trifluoromethanesulfonate. J. Mater. Chem. C2 (2014) 2341–2345.10.1039/C3TC32238FSuche in Google Scholar

17. Bajorat, S.; Reiss, G. J.: Diisopropylammonium perchlorate at 263 K. Acta Crystallogr. E63 (2007) o3144.10.1107/S1600536807027894Suche in Google Scholar

18. Prince, P.; Miller, J. A.; Fronczek, F. R.; Gandour, R. D.: Diisopropylammonium chloride. Acta Crystallogr. C46 (1990) 336–338.10.1107/S0108270189010073Suche in Google Scholar

19. Reiss, G. J.: Diisopropylammonium hydrogen difluoride. Acta Crystallogr. C 57 (2001) 994–995.10.1107/S0108270101008836Suche in Google Scholar

20. Adams, C.; Raithby, P. R.; Davies, J. E.: Diisopropylammonium chloride. Private Communication to the CCDC (1997). Reference code: JAYPUU01, deposition no. 100996.Suche in Google Scholar

21. Kociok-Köhn, G.; Lungwitz, B.; Filippou, A. C.: Diisopropylammonium bromide. Acta Crystallogr. C52 (1996) 2309–2311.10.1107/S010827019600354XSuche in Google Scholar

22. Reiss, G. J.: Diisopropylammonium bromide. Private Communication to the CCDC (2010). Reference code: TEJKUO03, deposition no. 770543.Suche in Google Scholar

23. Haberecht, M.; Lerner, H. W.; Bolte, M.: The low-temperature phase of diisopropylammonium bromide. Acta Crystallogr. C58 (2002) o555–557.10.1107/S0108270102013379Suche in Google Scholar PubMed

24. Reiss, G. J.: Diisopropylammonium iodide. Private Communication to the CCDC (2010). Reference code: UJOLIP, deposition no. 769746.Suche in Google Scholar

25. Saripalli, R. K.; Swain, D.; Prasad, S.; Nhalil, H.; Bhat, H. L.; Guru Row, T. N.; Elizabeth, S.: Observation of ferroelectric phase and large spontaneous electric polarization in organic salt of diisopropylammonium iodide. J. Appl. Phys. 121 (2017) 114101.10.1063/1.4978515Suche in Google Scholar

26. Reiss, G. J.; Koppelhuber-Bitschnau, B.: Diisopropylammonium chloride hemihydrate, a combined single-crystal and powder diffraction. Acta Crystallogr. E58 (2002) o1309–o1311.10.1107/S1600536802019347Suche in Google Scholar

27. Nieger, M. M.; Niecke, E.; Loew, A.: Diisopropylammonium chloride trichloromethane solvate. Private Communication to the CCDC (1999). Reference code: HORVAL; deposition no. 117802.Suche in Google Scholar

28. Vitze, H.; Lerner, H.-W.; Bolte, M.: Di-isopropylammonium chloride chloroform solvate. Private Communication to the CCDC (2005). Reference code: HORVAL01; deposition no. 275730.Suche in Google Scholar

29. Reiss, G. J.; Meyer, M. K.: Synthesis and structural characterization of diisopropylammonium trifluoroacetate and diisopropylammonium pentafluoropropionate, Z. Naturforsch. B65 (2010) 479–484.10.1515/znb-2010-0407Suche in Google Scholar

30. Reiss, G. J.: Bis(diisopropylammonium) hexafluorosilicate(IV). Acta Crystallogr. C54 (1998) 1489–1491.10.1107/S010827019800609XSuche in Google Scholar

31. Reiss, G. J.: The pseudosymmetric structure of bis(diisopropylammonium) hexachloroiridate(IV) and its relationship to potassium hexachloroiridate(III). Acta Crystallogr. E58 (2002) m47–m50.10.1107/S1600536802000417Suche in Google Scholar

32. Karuppasamy, P.; Senthil Pandian, M.; Ramasamy, P.; Das, S. K.: Growth and characterization of semi-organic nonlinear optical (NLO) guanidinium trichloroacetate (GTCA) single crystal. Optik 156 (2018) 707–719.10.1016/j.ijleo.2017.12.012Suche in Google Scholar

33. Dhanaraj, P. V.; Rajesh, N. P.; Vinitha, G.; Bhagavannarayana, G.: Crystal structure and characterization of a novel organic optical crystal: 2-Aminopyridinium trichloroacetate. Mater. Res. Bull. 46 (2011) 726–731.10.1016/j.materresbull.2011.01.013Suche in Google Scholar

34. Rekha, P.; Jayaprakash, P.; Rajasekar, G.; Mohan Kumar, R.; Vinitha, G.; Kanagadurai, R.: Synthesis, growth, structural and optical properties of a novel organic third order nonlinear optical crystal: Piperazinediium trichloroacetate. J. Mol. Struct. 1177 (2019) 579–593.10.1016/j.molstruc.2018.09.081Suche in Google Scholar

35. Reiss, G. J.; Meyer, M. K.: Diisopropylammonium trichloroacetate. Private Communication to the CCDC (2018). Reference code: BIWKOK, deposition no. 1883932.Suche in Google Scholar

36. Grell, J.; Bernstein, J.; Tinhofer, G.: Investigation of hydrogen bond patterns: a review of mathematical tools for the Graph Set approach. Crystallogr. Rev. 8 (2002) 1–56.10.1080/08893110211936Suche in Google Scholar

37. Förster, G.; Meister, A.; Blume, A.: Van der Waals energy contour map describing the orthorhombic hydrocarbon chain packing of symmetry Pbnm. Phys. Chem. Chem. Phys. 2 (2000) 4503–4508.10.1039/b003278fSuche in Google Scholar

38. Wei, B.: Diisopropylammonium 4-methoxybenzoate. Acta Crystallogr. E67 (2011) o1865.10.1107/S1600536811023762Suche in Google Scholar PubMed PubMed Central

39. Sarr, B.; Diop, C. A. K.; Diop, L.; Blanchard, F.; Michaud, F.: Diisopropylammonium 4-aminobenzenesulfonate. IUCrData 1 (2016) x161545.10.1107/S2414314616015455Suche in Google Scholar

Received: 2019-01-20
Accepted: 2019-03-09
Published Online: 2019-07-20
Published in Print: 2019-09-25

©2019 Guido J. Reiss et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Artikel in diesem Heft

  1. Frontmatter
  2. Crystal structure of poly[diaqua-(μ8-1,1′:2′,1′′-terphenyl-3,3′′,4′,5′-tetracarboxylato-κ8O1:O2:O3:O4:O5:O6:O7:O8)dicopper(II)], C22H14Cu2O10
  3. Crystal structure of 2-((1H-benzo[d]imidazol-2-ylimino)methyl)-4,6-di-tert-butylphenol, C22H27N3O
  4. Crystal structure of (4-ethoxynaphthalen-1-yl)(furan-2-yl)methanone, C17H14O3
  5. Crystal structure of 1-nonylpyridazin-1-ium iodide, C13H23N2I
  6. Crystal structure of bis[diaqua(1,10-phenanthroline-κ2N, N′)-copper(II)]diphenylphosphopentamolybdate dihydrate, C36H38Cu2Mo5N4O27P2
  7. The crystal structure of tetrakis(imidazole)-copper(I) hexafluorophosphate, C12H16CuF6PN8
  8. The crystal structure of dimethyl ((3,5-di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)phosphonate, C23H33O4P
  9. Crystal structure of diaqua-bis(1,10-phenanthroline κ2N,N′)nickel(II) trifluoroacetate- trifluoroacetic acid (1/1), C30H21F9N4NiO8
  10. Crystal structure of 2-(naphthalen-2-yl)-1,8-naphthyridine, C18H12N2
  11. Synthesis and crystal structure of a new polymorph of diisopropylammonium trichloroacetate, C8H16Cl3NO2
  12. Crystal structure of dimethanol-bis(1-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κN)-bis(thiocyanato-κN)cadmium(II) C34H34CdN12O2S2
  13. Crystal structure of ethyl 2,2-difluoro-2-(7-methoxy-2-oxo-2H-chromen-3-yl)acetate, C14H12F2O5
  14. The crystal structure of bis[μ2-(N,N-diethylcarbamodithioato-κSSS′)] bis[1′-(diphenylphosphino-κP)-1-cyanoferrocene]disilver(I), C56H56Ag2Fe2N4P2S4
  15. Crystal structure of bis(di-n-butylammonium) tetrachloridodiphenylstannate(IV), C28H50Cl4N2Sn
  16. The crystal structure of poly[(μ5-2-((5-bromo-3-formyl-2-hydroxybenzylidene)amino)benzenesulfonato-κ6O:O:O,O′:O′:O′′)sodium(I)], C13H9O4NSBrNa
  17. Crystal structure of catena-{poly[bis(O,O′-diethyldithiophosphato-S)-(μ2-1,2-bis(4-pyridylmethylene)hydrazine-N,N′)-zinc(II)] di-acetonitrile solvate}, {C20H30N4O4P2S4Zn ⋅ 2 C2H3N}n
  18. Halogen and hydrogen bonding in the layered crystal structure of 2-iodoanilinium triiodide, C6H7I4N
  19. Crystal structure of cyclohexane-1,4-diammonium 2-[(2-carboxylatophenyl)disulfanyl]benzoate — dimethylformamide — monohydrate (1/1/1), [C6H16N2][C14H8O4S2] ⋅ C3H7NO⋅H2O
  20. The synthesis and crystal structure of isobutyl 5-amino-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)sulfinyl)-1H-pyrazole-3-carboxylate, C16H13Cl2F6N3O3S
  21. Isolation and crystal structure of bufotalinin — methanol (1/1), C25H34O7
  22. Crystal structure of benzylbis(1,3-diphenylpropane-1,3-dionato-κ2O,O′) chloridotin(IV), C37H29ClO4Sn
  23. Crystal structure of Bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-methyl-imidazol)}diiodidocadmium(II), [Cd(C11H11N5)2I2], C22H22N10I2Cd
  24. Crystal structure of 4-isobutoxybenzaldehyde oxime, C11H15NO2
  25. The crystal structure of bis(acetato-κ1O)-bis(N′-hydroxypyrimidine-2-carboximidamide-κ2N,N′)manganese(II) — methanol (1/2), C14H18MnN8O6, 2(CH3OH)′
  26. Crystal structure of poly[bis(μ2-bis(4-(1H-imidazol-1-yl)phenyl)amine-κ2N:N′)-bis(nitrato-κO)cadmium(II)], C36H30CdN12O6
  27. Crystal structure and optical properties of 1,6-bis(methylthio)pyrene, C18H14S2
  28. The crystal structure of hexaquamagnesium(II) bis(3,4-dinitropyrazol-1-ide), C6H14MgN8O14
  29. Halogen bonds in the crystal structure of 4,3:5,4-terpyridine – 1,4-diiodotetrafluorobenzene (1/1), C21H11F4I2N3
  30. Crystal structure and photochromic properties of a novel photochromic perfluordiarylethene containing a triazole bridged pyridine group moiety, C24H18F6N4S2
  31. Crystal structure of bis[(μ3-oxido)-(μ2-(N,N-diisopropylthiocarbamoylthio) acetato-κ2O,O′)-((N,N-diisopropylthiocarbamoylthio)acetato-κO)-bis(di-4-methylbenzyl-tin(IV))], C100H136N4O10S8Sn4
  32. Crystal structure of dibromidobis(4-bromobenzyl)tin(IV), C14H12Br4Sn
  33. The crystal structure of (4Z)-2-[(E)-(1-ethyl-3,3-dimethyl-1,3-dihydro-2H-indol-2-ylidene)methyl]-4-[(1-ethyl-3,3-dimethyl-3H-indolium-2-yl)methylidene]-3-oxocyclobut-1-en-1-olate, C30H32N2O2
  34. The crystal structure of (E)-3-(4-(dimethylamino)styryl)-5,5-dimethylcyclohex-2-en-1-one, C18H23NO
  35. Crystal structure of dihydrazinium 1H-pyrazole-3,5-dicarboxylate, C5H12N6O4
  36. Crystal structure of poly[μ2-1,4-bis((1H-imidazol-1-yl)methyl)benzene-κ2N:N′)-(μ2-4-sulfidobenzoate-κ2O:S)cobalt(II)] dihydrate, C42H44Co2N8O7S2
  37. Crystal structure of 8-(3,4-dimethylbenzylidene)-6,10-dioxaspiro[4.5]decane-7,9-dione, C17H18O4
  38. Crystal structure of 4-(2-bromo-4-(6-morpholino-3-phenyl-3H-benzo[f]chromen-3-yl) cyclohexa-2,5-dien-1-yl)morpholine, C33H31BrN2O
  39. Synthesis and crystal structure of 2-((1-phenyl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)methylene)-2,3-dihydro-1H-inden-1-one, C23H16N2OS
  40. Crystal structure of poly[(μ2-1,1′-(oxybis(4,1-phenylene)bis(1H-imidazole)-κ2N,N′)(μ2-1,3-benzenecarboxylato-κ3O,O′:O′′)zinc(II)] dihydrate, C26H22N4O7Zn
  41. Crystal structure of diaqua-bis(cinnamato-κ2O,O′)zinc(II), C18H18ZnO6
  42. Crystal structure of 2-(prop-2-yn-1-yloxy)-1-naphthaldehyde, C14H10O2
  43. Crystal structure and photochromic properties of 1-(2-methyl-5-phenyl-3-thienyl)-2-{2-methyl-5-[4-(9-fluorenone hydrazone)-phenyl]-3-thienyl}perfluorocyclopentene, C41H26F6N2S2
  44. Hydrothermal synthesis and crystal structure of cylo[tetraaqua-bis(μ2-1,4-bis(1H-benzo[d]imidazol-1-yl)but-2-ene-κ2N:N′)-bis(μ2-4-nitro-phthalate-κ2O,O′)dinickel(II)], C26H23N5O8Ni
  45. Crystal structure of 3-[methyl(phenyl)amino]-1-phenylthiourea, C14H15N3S
  46. Crystal structure of 1-(4-chlorophenyl)-3-[methyl(phenyl)amino]thiourea, C14H14ClN3S
  47. Crystal structure of 2-tert-butyl-1H-imidazo[4,5-b]pyridine, C10H13N3
  48. Crystal structure of 5-carboxy-2-(2-carboxyphenyl)-1H-imidazol-3-ium-4-carboxylate dihydrate, C12H8N2O6⋅2(H2O)
  49. The crystal structure of dichlorido-μ2-dichlorido-(η2-1,4-bis(4-vinylbenzyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium)dicopper(I), C24H30N2Cu2Cl4
  50. Crystal structure of 4-bromobenzyl (Z)-N-(adamantan-1-yl)morpholine-4-carbothioimidate, C22H29BrN2OS
  51. Crystal structure of (4S,4aS,6aR,6bR,12aS,12bR,14aS,14bR)-3,3,6a,6b,9,9,12a-heptamethyloctadecahydro-1H,3H-4,14b-ethanophenanthro[1,2-h]isochromene-1(6bH)-one, C30H48O2
  52. Crystal structure of 3,5-bis(trifluoromethyl)benzyl (Z)-N′-(adamantan-1-yl)-4-phenylpiperazine-1-carbothioimidate, C30H33F6N3S
  53. The crystal structure of 3-methoxyphenanthridin-6(5H)-one, C14H11NO2
  54. Crystal structure of 4-(5,5-difluoro-1,3,7,9-tetramethyl-3H,5H-5λ4-dipyrrolo[1,2-c:2′,1′-f][1,3,2]diazaborinin-10-yl)pyridin-1-ium tetraiodidoferrate(III), C18H19BF2FeI4N3
  55. Crystal structure of 2-(3-methoxyphenyl)-3-((phenylsulfonyl)methyl)imidazo[1,2-a]pyridine, C21H18N2O3S
  56. Crystal structure of [(2-(2-chlorophenyl)-5-ethyl-1,3-dioxane-5-carboxylato-κ2O,O′) (5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)]nickel(II) perchlorate, C29H50Cl2N4NiO8
  57. Crystal structure of (Z)-6-(dimethylamino)-3,3-bis(4-(dimethylamino)phenyl)-2-(2-(quinoxalin-2-ylmethylene)hydrazinyl)-2,3-dihydroinden-1-one, C35H35N7O
  58. 5-Methyl-N′-[5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazole-4-carbonyl]-1-(4-methylphenyl)-1H-1,2,3-triazole-4-carbohydrazide, C22H22N8O2
  59. Crystal structure of 2,3-dichloro-6-methoxyquinoxaline, C9H6Cl2N2O
  60. Synthesis and crystal structure of 7-chloro-2-(ethylsulfinyl)-6-fluoro-3-(1H-pyrazole-1-yl)-4H-thiochromen-4-one, C13H10FN3OS2
  61. Crystal structure of 4-ethylpiperazine-1-carbothioic dithioperoxyanhydride, C14H26N4S4
  62. Crystal structure of 2-(2-(6-methylpyridin-2-yl)naphthalen-1-yl)pyrimidine, C20H15N3
  63. The crystal structure of N′-((1E,2E)-4-(7-methoxy-2-oxo-2H-chromen-8-yl)-2-methylbut-2-en-1-ylidene)-3-methylbenzohydrazide, C23H22N2O4
  64. Crystal structure of catena-poly[(μ2-isophthalato-κ2O:O′)-(2,5-di(pyrazin-2-yl)-4,4′-bipyridine-κ3N,N′,N′′)zinc(II)] — water (2/5), C26H21N6O6.5Zn
  65. Crystal structure of (3E,5E)-3,5-bis(3-nitrobenzylidene)-1-((4-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-one — dichloromethane (2/1), C53H38Cl2F6N6O14S2
  66. Crystal structure of (μ2-oxido)-bis(N,N′-o-phenylenebis(salicylideneiminato))diiron(III) — N,N′-dimethylformamide, C47H43Fe2N4O9
  67. Crystal structure of N1,N3-bis(2-hydroxyethyl)-N1, N1,N3,N3-tetramethylpropane-1,3-diaminium dibromide, C11H28Br2N2O2
  68. Crystal structure of (E)-N-(4-chlorophenyl)-1-(pyridin-2-yl)methanimine, C12H9ClN2
  69. Crystal structure of 8-bromo-6-oxo-2-phenyl-6H-pyrrolo[3,2,1-ij]quinoline-5-carbaldehyde, C18H11BrNO2
  70. Crystal structure of 1,4-bis(2-azidoethyl)piperazine-1,4-diium dichloride trihydrate, C8H18N8Cl2 ⋅ 3 H2O
  71. Crystal structure of (E)-4-bromo-N-(pyridin-2-ylmethylene)aniline, C12H9BrN2
  72. Crystal structure of bis[(2-(3-bromophenyl)-5-methyl-1,3-dioxane-5-carboxylato-κ-O)-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)]nickel(II), C40H60Br2N4NiO8
  73. The crystal structure of (1E,2E)-2-methyl-4-((7-oxo-7H-furo[3,2-g]chromen-9-yl)oxy)but-2-enal O-isonicotinoyl oxime–trichloromethane (3/1), C67H49Cl3N6O18
  74. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-methyl-1H-imidazol-3-ium hexafluoridophosphate(V), C8H13F6N2O2P
  75. Crystal structure of bis[(2-(2-bromophenyl)-5-ethyl-1,3-dioxane-5-carboxylato-κO)-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)]nickel(II) hemihydrate C42H65Br2N4NiO8.5
  76. The crystal structure of N-(7-(4-fluorobenzylidene)-3-(4-fluorophenyl)-3,3a,4,5,6,7-hexahydro-2H-indazole-2-carbonothioyl)benzamide, C28H23F2N3OS
  77. The crystal structure of N1,N4-bis(pyridin-3-yl)cyclohexane-1,4-dicarboxamide, C18H20N4O2
  78. Crystal structure of (E)-2-(3,6-bis(ethylamino)-2,7-dimethyl-9H-xanthen-9-yl)-N′-((6-methylpyridin-2-yl)methylene)benzohydrazide – methanol (1/1), C34H37N5O3
  79. Crystal structure of 2-oxo-1-(pyrimidin-5-ylmethyl)-3-(3-(trifluoromethyl)phenyl)-1,2-dihydro-5l4-pyrido[1,2-a]pyrimidin-4-olate, C20H13F3N4O2
  80. Crystal structure of poly[(μ3-9H-carbazole-3,6-dicarboxylato-κ3O1: O2: O3)(μ2-4-(pyridin-4-yl)pyridine-κ2N1:N1′)zinc(II)], C19H11N2O4Zn
  81. Crystal structure of (E)-N′-((1,8-dihydropyren-1-yl)-methylene)picolinohydrazide, C23H15N3O
  82. Crystal structure of catena-poly{[μ2-1,2-bis(diphenylphosphino)ethane]dichloridocadmium(II)}, C26H24CdCl2P2
  83. Crystal structure of the 1:2 co-crystal between N,N′-bis(4-pyridylmethyl)oxalamide and acetic acid as a dihydrate, C14H14N4O2⋅2 C2H4O2⋅2 H2O
  84. Crystal structure of the co-crystal N,N′-bis(3-pyridylmethyl)oxalamide acetic acid (1/2), C14H14N4O2⋅2C2H4O2
  85. Crystal structure of the co-crystal N,N′-bis(4-pyridylmethyl)oxalamide and 2,3,5,6-tetrafluoro-1,4-di-iodobenzene (1/1), C14H14N4O2⋅C6F4I2
  86. Crystal structure of the co-crystal 4-[(4-carboxyphenyl)disulfanyl]benzoic acid–(1E,4E)-1-N,4-N-bis(pyridin-4-ylmethylidene)cyclohexane-1,4-diamine (1/1), C14H10O4S2⋅C18H20N4
  87. Crystal structure of hexacarbonyl-bis(μ2-di-n-propyldithiocarbamato-κ3S,S′:S3S:S:S′)-di-rhenium(I), C20H28N2O6Re2S4
  88. Crystal structure of fac-tricarbonyl-morpholine-κN-(morpholinocarbamodithioato-κ2S,S′)rhenium(I), C12H17N2O5ReS2
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2019-0064/html?srsltid=AfmBOoopsISazQtZ-_IxI4RlPnPr_wW_8YZ-GPq8Bxp66C-qE6Pamho9
Button zum nach oben scrollen