Startseite Crystal structure of 1-nonylpyridazin-1-ium iodide, C13H23N2I
Artikel Open Access

Crystal structure of 1-nonylpyridazin-1-ium iodide, C13H23N2I

  • Musa A. Said EMAIL logo , David L. Hughes EMAIL logo , Saud M. Almutairi , Mohamed Reda Aouad und Mouslim Messali EMAIL logo
Veröffentlicht/Copyright: 17. Mai 2019

Abstract

C13H23N2I, triclinic, P1̄ (no. 2), a = 5.6693(3) Å, b = 8.9457(4) Å, c = 16.2919(7) Å, α = 83.341(4)°, β = 89.534(4)°, γ = 82.491(4)°, V = 813.63(7) Å3, Z = 2, Rgt(F) = 0.0446, wRref(F2) = 0.0873, T = 295(2) K.

CCDC no.: 1885499

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Yellow prism
Size:0.22 × 0.06 × 0.04 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:1.95 mm−1
Diffractometer, scan mode:Oxford Diffraction Xcalibur-3 Sapphire-3, φ and ω
θmax, completeness:25.0°, >99%
N(hkl)measured, N(hkl)unique, Rint:10743, 2866, 0.059
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2345
N(param)refined:145
Programs:CrysAlisPRO [1], SHELX [2], [3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
I0.11316(6)0.74147(3)0.42796(2)0.06645(16)
N10.3798(7)0.6652(4)0.6368(2)0.0559(10)
N20.2229(7)0.7671(4)0.6679(3)0.0639(11)
C30.2714(10)0.9060(6)0.6580(3)0.0751(15)
H30.16510.98030.67890.090*
C40.4726(10)0.9501(6)0.6180(3)0.0725(15)
H40.50051.05090.61240.087*
C50.6252(9)0.8435(7)0.5878(3)0.0702(14)
H50.76350.86760.56130.084*
C60.5710(9)0.6964(6)0.5972(3)0.0651(13)
H60.67060.62000.57540.078*
C110.3125(10)0.5107(5)0.6461(3)0.0749(15)
H11A0.43140.44410.61990.090*
H11B0.16180.51190.61800.090*
C120.2904(11)0.4490(7)0.7349(4)0.0850(17)
H12A0.23600.35020.73760.102*
H12B0.17080.51560.76080.102*
C130.5189(11)0.4337(7)0.7827(4)0.0915(18)
H13A0.56160.53420.78640.110*
H13B0.64360.37910.75250.110*
C140.5080(12)0.3514(8)0.8698(4)0.101(2)
H14A0.38660.40740.90070.121*
H14B0.46160.25160.86640.121*
C150.7394(13)0.3337(8)0.9156(4)0.111(2)
H15A0.78110.43380.92140.133*
H15B0.86230.28300.88290.133*
C160.7371(13)0.2453(9)1.0001(4)0.115(2)
H16A0.69020.14650.99450.138*
H16B0.61830.29791.03350.138*
C170.9766(14)0.2234(9)1.0449(4)0.120(2)
H17A1.09630.17471.01030.144*
H17B1.02010.32241.05220.144*
C180.9802(14)0.1309(11)1.1273(4)0.140(3)
H18A0.93680.03191.12000.168*
H18B0.86040.17951.16190.168*
C191.2147(15)0.1097(11)1.1712(5)0.159(4)
H19A1.20320.04941.22340.238*
H19B1.33400.05911.13820.238*
H19C1.25750.20691.18010.238*

Source of material

All chemicals were used without further purification. The title ionic liquid was prepared by a method reported earlier [5], [6]. To a solution of pyridazine (1.00 g, 12.5 mmol in 10 mL of toluene) was added dropwise 1-iodononane (3.18 g, 12.5 mmol) and the mixture was placed in a closed container and exposed to irradiation for 5 h at room temperature using a sonication bath. Completion of the reaction was marked by the precipitation of a solid from the initially clear and homogenous mixture in toluene. The pyridazinium-based ionic liquid was isolated by filtration and washed three times with ethyl acetate to remove any unreacted starting materials and solvent. Finally the 1-nonylpyridazin-1-ium iodide was dried at a reduced pressure to remove all volatile organic compounds. (Yield 75%, yellow powder, m.p. 94−95 °C). Crystals were obtained from a mixture of dichloromethane and n-hexane (1:2). Elemental analysis: Anal. Calc. For C13H23IN2: C, 46.72%; H, 6.94%; N, 8.38%; Found: C, 46.80%; H, 6.99%; N, 8.32%. 1H-NMR (DMSO, 400 MHz): δ [p.p.m.] = 0.85 (t, 3H), 1.29 (m, 12H), 1.99 (quin, 2H), 4.82 (t, 2H), 8.63 (t, 1H), 8.76 (t, 1H), 9.65 (d, 1H), 9.99 (d, 1H); 13C-NMR (DMSO, 100 MHz): δ [p.p.m.] = 14.1 (CH3), 22.6 (CH2), 26.1 (CH2), 28.9 (CH2), 29.1 (CH2), 29.2 (CH2), 30.3 (CH2), 31.7 (CH2), 66.1 (CH2), 136.8 (CH), 136.9 (CH), 149.9 (CH), 154.3 (CH).

Experimental details

The non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were included in idealised positions and their Uiso values were set to ride on the parent carbon atoms. In the final difference map, the highest peaks (to ca 0.6 e Å−3) were close to the iodide ion.

Scattering factors for neutral atoms were taken from ‘International Tables’ [7]. Computer programs used in this analysis have been noted above, and were run through WinGX [4] on a Dell Optiplex 780 PC at the University of East Anglia.

Comment

In recent decades, ionic liquids (ILs) appeared as an emerging class of ecofriendly compounds alternative to volatile organic compounds (VOCs) due to their outstanding physical and chemical properties such as negligible vapor pressure, excellent thermal and chemical stability, outstanding dissolving capacity, excellent ionic conductivity, non-flammability, and recyclability [8].

These characteristics make ILs strongly attractive for applications in a myriad different fields and these compounds have, therefore, been investigated for a broad range of applications including as potential corrosion inhibitors [9], as liquid crystals [10], in separation technology [11], in electrochemistry [12], [13], in pharmacology [14], and bio-catalysis [15].

The synthesis of the title IL took place through the nucleophilic attack of the sp2-nitrogen pyridazine atom, which acts as a nucleophile in the nucleophilic displacement of halogen on the nonyl iodide to afford the corresponding 1-nonylpyridazin-1-ium iodide in 75% yield as solid material.

The structure of this newly synthesized IL was confirmed by 1H-NMR, 13C-NMR, single-crystal X-ray diffraction methods and elemental analysis. The 1H-NMR spectrum showed a triplet around δ H 0.85 p.p.m. corresponding to three protons of the methyl group (CH3). The protons of the various methylene groups (CH2) were observed at their usual chemical shifts. The signals of the pyridazinium protons appeared as two doublets and two triplets, respectively, around δ H 8 and 9 p.p.m.. The 13C-NMR spectrum showed CH2 and CH3 at their usual chemical shifts, and all the aromatic carbons and C=N gave the signals between δ C 136–154 p.p.m.

There are many similarities between this nonyl derivative and the smaller heptyl compound recently reported [16]. The two structure are essentially isostructural even though a different choice of the unit cell is reported. The nonyl group, too, has an all-trans arrangement and is aligned about C(11) with a cis N(2)—N(1)—C(11)—C(12) torsion angle of −61.4(6)°; the N(2)—N(1)—C(11)—H(11a) angle is trans at 177.5°. The iodide ion lies over the pyridazinium ring, 3.688 Å from N(1). There are five short H⋯I contacts in the range 3.03−3.14 Å, to neighboring cations, forming weak C—H⋯I hydrogen bonds. All the short inter-ion distances involve the iodide ion. As observed for the heptyl structure, the long alkyl chains are arranged in parallel/antiparallel stacks.

Acknowledgements

Musa A. Said thanks the Alexander von Humboldt foundation for the valuable and continuous support.

References

1. Oxford Diffraction: CrysAlis PRO. Oxford Diffraction Ltd., Oxford, UK (2014).Suche in Google Scholar

2. Sheldrick, G. M.: SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. A71 (2015) 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central

4. Farrugia, L. J.: WinGX and ORTEP for Windows : an update. J. Appl. Crystallogr. 45 (2012) 849–854.10.1107/S0021889812029111Suche in Google Scholar

5. Messali, M.; Aouad, M. R.; Ali, A. A.-S.; Rezki, N.; Ben Hadda, T.; Hammouti, B.: Synthesis, characterization, and POM analysis of novel bioactive imidazolium-based ionic liquids. Med. Chem. Res. 24 (2015) 1387–1395.10.1007/s00044-014-1211-xSuche in Google Scholar

6. Messali, M.: Eco-friendly synthesis of a new class of pyridinium-based ionic liquids with attractive antimicrobial activity. Molecules 20 (2015) 14936–14949.10.3390/molecules200814936Suche in Google Scholar PubMed PubMed Central

7. Prince, E. (Ed.): International tables for crystallography, Vol. C. The International Union of Crystallography, Kluwer Academic Publishers (1992).Suche in Google Scholar

8. Earle, M. J.; Esperança, J. M. S. S.; Gilea, M. A.; Canongia Lopes, J. N.; Rebelo, L. P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A.: The distillation and volatility of ionic liquids. Nature 439 (2006) 831–834.10.1038/nature04451Suche in Google Scholar PubMed

9. Lgaz, H.; Benali, O.; Salghi, R.; Jodeh, S.; Larouj, M.; Hamed, O.; Messali, M.; Samhan, S.; Zougagh, M.; Oudda, H.: Pyridinium derivatives as corrosion inhibitors for mild steel in 1 M HCl: electrochemical, surface and quantum chemical studies. Der Pharma Chem. 8 (2016) 172–190.Suche in Google Scholar

10. Levillain, J.; Dubant, G.; Abrunhosa, I.; Gulea, M.; Gaumont, A.-C.: Synthesis and properties of thiazoline based ionic liquids derived from the chiral pool. Chem. Commun. 0 (2003) 2914–2915.10.1039/b308814fSuche in Google Scholar PubMed

11. Qiu, H.; Jiang, S.; Liu, X.; Zhao, L.: Novel imidazolium stationary phase for high-performance liquid chromatography. J. Chromatogr. A. 1116 (2006) 46–50.10.1016/j.chroma.2006.03.016Suche in Google Scholar PubMed

12. Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8 (2009) 621–629.10.1038/nmat2448Suche in Google Scholar PubMed

13. Al-Ghamdi, A. F.; Messali, M.; Ahmed, S. A.: Electrochemical studies of new pyridazinium-based ionic liquid and its determination in different detergents. J. Mater. Environ. Sci. 2 (2011) 215–224.Suche in Google Scholar

14. Smiglak, M.; Pringle, J. M.; Lu, X.; Han, L.; Zhang, S.; Gao, H.; MacFarlane, D. R.; Rogers, R. D.: Ionic liquids for energy, materials, and medicine. Chem. Commun. 50 (2014) 9228–9250.10.1039/C4CC02021ASuche in Google Scholar

15. Sheldon, R. A.: Biocatalysis and biomass conversion in alternative reaction media. Chem. Eur. J. 22 (2016) 12984–12999.10.1002/chem.201601940Suche in Google Scholar PubMed

16. Said, M. A.; Aouad, M. R.; Almutairi, S. M.; Hughes, D. L.; Messali, M.: Crystal structure of 1-heptylpyridazin-1-ium iodide, C11H19N2I. Z. Kristallogr. NCS 233 (2018) 739–741.10.1515/ncrs-2018-0090Suche in Google Scholar

Received: 2019-01-08
Accepted: 2019-03-06
Published Online: 2019-05-17
Published in Print: 2019-09-25

©2019 Musa A. Said et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Artikel in diesem Heft

  1. Frontmatter
  2. Crystal structure of poly[diaqua-(μ8-1,1′:2′,1′′-terphenyl-3,3′′,4′,5′-tetracarboxylato-κ8O1:O2:O3:O4:O5:O6:O7:O8)dicopper(II)], C22H14Cu2O10
  3. Crystal structure of 2-((1H-benzo[d]imidazol-2-ylimino)methyl)-4,6-di-tert-butylphenol, C22H27N3O
  4. Crystal structure of (4-ethoxynaphthalen-1-yl)(furan-2-yl)methanone, C17H14O3
  5. Crystal structure of 1-nonylpyridazin-1-ium iodide, C13H23N2I
  6. Crystal structure of bis[diaqua(1,10-phenanthroline-κ2N, N′)-copper(II)]diphenylphosphopentamolybdate dihydrate, C36H38Cu2Mo5N4O27P2
  7. The crystal structure of tetrakis(imidazole)-copper(I) hexafluorophosphate, C12H16CuF6PN8
  8. The crystal structure of dimethyl ((3,5-di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)phosphonate, C23H33O4P
  9. Crystal structure of diaqua-bis(1,10-phenanthroline κ2N,N′)nickel(II) trifluoroacetate- trifluoroacetic acid (1/1), C30H21F9N4NiO8
  10. Crystal structure of 2-(naphthalen-2-yl)-1,8-naphthyridine, C18H12N2
  11. Synthesis and crystal structure of a new polymorph of diisopropylammonium trichloroacetate, C8H16Cl3NO2
  12. Crystal structure of dimethanol-bis(1-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κN)-bis(thiocyanato-κN)cadmium(II) C34H34CdN12O2S2
  13. Crystal structure of ethyl 2,2-difluoro-2-(7-methoxy-2-oxo-2H-chromen-3-yl)acetate, C14H12F2O5
  14. The crystal structure of bis[μ2-(N,N-diethylcarbamodithioato-κSSS′)] bis[1′-(diphenylphosphino-κP)-1-cyanoferrocene]disilver(I), C56H56Ag2Fe2N4P2S4
  15. Crystal structure of bis(di-n-butylammonium) tetrachloridodiphenylstannate(IV), C28H50Cl4N2Sn
  16. The crystal structure of poly[(μ5-2-((5-bromo-3-formyl-2-hydroxybenzylidene)amino)benzenesulfonato-κ6O:O:O,O′:O′:O′′)sodium(I)], C13H9O4NSBrNa
  17. Crystal structure of catena-{poly[bis(O,O′-diethyldithiophosphato-S)-(μ2-1,2-bis(4-pyridylmethylene)hydrazine-N,N′)-zinc(II)] di-acetonitrile solvate}, {C20H30N4O4P2S4Zn ⋅ 2 C2H3N}n
  18. Halogen and hydrogen bonding in the layered crystal structure of 2-iodoanilinium triiodide, C6H7I4N
  19. Crystal structure of cyclohexane-1,4-diammonium 2-[(2-carboxylatophenyl)disulfanyl]benzoate — dimethylformamide — monohydrate (1/1/1), [C6H16N2][C14H8O4S2] ⋅ C3H7NO⋅H2O
  20. The synthesis and crystal structure of isobutyl 5-amino-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)sulfinyl)-1H-pyrazole-3-carboxylate, C16H13Cl2F6N3O3S
  21. Isolation and crystal structure of bufotalinin — methanol (1/1), C25H34O7
  22. Crystal structure of benzylbis(1,3-diphenylpropane-1,3-dionato-κ2O,O′) chloridotin(IV), C37H29ClO4Sn
  23. Crystal structure of Bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-methyl-imidazol)}diiodidocadmium(II), [Cd(C11H11N5)2I2], C22H22N10I2Cd
  24. Crystal structure of 4-isobutoxybenzaldehyde oxime, C11H15NO2
  25. The crystal structure of bis(acetato-κ1O)-bis(N′-hydroxypyrimidine-2-carboximidamide-κ2N,N′)manganese(II) — methanol (1/2), C14H18MnN8O6, 2(CH3OH)′
  26. Crystal structure of poly[bis(μ2-bis(4-(1H-imidazol-1-yl)phenyl)amine-κ2N:N′)-bis(nitrato-κO)cadmium(II)], C36H30CdN12O6
  27. Crystal structure and optical properties of 1,6-bis(methylthio)pyrene, C18H14S2
  28. The crystal structure of hexaquamagnesium(II) bis(3,4-dinitropyrazol-1-ide), C6H14MgN8O14
  29. Halogen bonds in the crystal structure of 4,3:5,4-terpyridine – 1,4-diiodotetrafluorobenzene (1/1), C21H11F4I2N3
  30. Crystal structure and photochromic properties of a novel photochromic perfluordiarylethene containing a triazole bridged pyridine group moiety, C24H18F6N4S2
  31. Crystal structure of bis[(μ3-oxido)-(μ2-(N,N-diisopropylthiocarbamoylthio) acetato-κ2O,O′)-((N,N-diisopropylthiocarbamoylthio)acetato-κO)-bis(di-4-methylbenzyl-tin(IV))], C100H136N4O10S8Sn4
  32. Crystal structure of dibromidobis(4-bromobenzyl)tin(IV), C14H12Br4Sn
  33. The crystal structure of (4Z)-2-[(E)-(1-ethyl-3,3-dimethyl-1,3-dihydro-2H-indol-2-ylidene)methyl]-4-[(1-ethyl-3,3-dimethyl-3H-indolium-2-yl)methylidene]-3-oxocyclobut-1-en-1-olate, C30H32N2O2
  34. The crystal structure of (E)-3-(4-(dimethylamino)styryl)-5,5-dimethylcyclohex-2-en-1-one, C18H23NO
  35. Crystal structure of dihydrazinium 1H-pyrazole-3,5-dicarboxylate, C5H12N6O4
  36. Crystal structure of poly[μ2-1,4-bis((1H-imidazol-1-yl)methyl)benzene-κ2N:N′)-(μ2-4-sulfidobenzoate-κ2O:S)cobalt(II)] dihydrate, C42H44Co2N8O7S2
  37. Crystal structure of 8-(3,4-dimethylbenzylidene)-6,10-dioxaspiro[4.5]decane-7,9-dione, C17H18O4
  38. Crystal structure of 4-(2-bromo-4-(6-morpholino-3-phenyl-3H-benzo[f]chromen-3-yl) cyclohexa-2,5-dien-1-yl)morpholine, C33H31BrN2O
  39. Synthesis and crystal structure of 2-((1-phenyl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)methylene)-2,3-dihydro-1H-inden-1-one, C23H16N2OS
  40. Crystal structure of poly[(μ2-1,1′-(oxybis(4,1-phenylene)bis(1H-imidazole)-κ2N,N′)(μ2-1,3-benzenecarboxylato-κ3O,O′:O′′)zinc(II)] dihydrate, C26H22N4O7Zn
  41. Crystal structure of diaqua-bis(cinnamato-κ2O,O′)zinc(II), C18H18ZnO6
  42. Crystal structure of 2-(prop-2-yn-1-yloxy)-1-naphthaldehyde, C14H10O2
  43. Crystal structure and photochromic properties of 1-(2-methyl-5-phenyl-3-thienyl)-2-{2-methyl-5-[4-(9-fluorenone hydrazone)-phenyl]-3-thienyl}perfluorocyclopentene, C41H26F6N2S2
  44. Hydrothermal synthesis and crystal structure of cylo[tetraaqua-bis(μ2-1,4-bis(1H-benzo[d]imidazol-1-yl)but-2-ene-κ2N:N′)-bis(μ2-4-nitro-phthalate-κ2O,O′)dinickel(II)], C26H23N5O8Ni
  45. Crystal structure of 3-[methyl(phenyl)amino]-1-phenylthiourea, C14H15N3S
  46. Crystal structure of 1-(4-chlorophenyl)-3-[methyl(phenyl)amino]thiourea, C14H14ClN3S
  47. Crystal structure of 2-tert-butyl-1H-imidazo[4,5-b]pyridine, C10H13N3
  48. Crystal structure of 5-carboxy-2-(2-carboxyphenyl)-1H-imidazol-3-ium-4-carboxylate dihydrate, C12H8N2O6⋅2(H2O)
  49. The crystal structure of dichlorido-μ2-dichlorido-(η2-1,4-bis(4-vinylbenzyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium)dicopper(I), C24H30N2Cu2Cl4
  50. Crystal structure of 4-bromobenzyl (Z)-N-(adamantan-1-yl)morpholine-4-carbothioimidate, C22H29BrN2OS
  51. Crystal structure of (4S,4aS,6aR,6bR,12aS,12bR,14aS,14bR)-3,3,6a,6b,9,9,12a-heptamethyloctadecahydro-1H,3H-4,14b-ethanophenanthro[1,2-h]isochromene-1(6bH)-one, C30H48O2
  52. Crystal structure of 3,5-bis(trifluoromethyl)benzyl (Z)-N′-(adamantan-1-yl)-4-phenylpiperazine-1-carbothioimidate, C30H33F6N3S
  53. The crystal structure of 3-methoxyphenanthridin-6(5H)-one, C14H11NO2
  54. Crystal structure of 4-(5,5-difluoro-1,3,7,9-tetramethyl-3H,5H-5λ4-dipyrrolo[1,2-c:2′,1′-f][1,3,2]diazaborinin-10-yl)pyridin-1-ium tetraiodidoferrate(III), C18H19BF2FeI4N3
  55. Crystal structure of 2-(3-methoxyphenyl)-3-((phenylsulfonyl)methyl)imidazo[1,2-a]pyridine, C21H18N2O3S
  56. Crystal structure of [(2-(2-chlorophenyl)-5-ethyl-1,3-dioxane-5-carboxylato-κ2O,O′) (5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)]nickel(II) perchlorate, C29H50Cl2N4NiO8
  57. Crystal structure of (Z)-6-(dimethylamino)-3,3-bis(4-(dimethylamino)phenyl)-2-(2-(quinoxalin-2-ylmethylene)hydrazinyl)-2,3-dihydroinden-1-one, C35H35N7O
  58. 5-Methyl-N′-[5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazole-4-carbonyl]-1-(4-methylphenyl)-1H-1,2,3-triazole-4-carbohydrazide, C22H22N8O2
  59. Crystal structure of 2,3-dichloro-6-methoxyquinoxaline, C9H6Cl2N2O
  60. Synthesis and crystal structure of 7-chloro-2-(ethylsulfinyl)-6-fluoro-3-(1H-pyrazole-1-yl)-4H-thiochromen-4-one, C13H10FN3OS2
  61. Crystal structure of 4-ethylpiperazine-1-carbothioic dithioperoxyanhydride, C14H26N4S4
  62. Crystal structure of 2-(2-(6-methylpyridin-2-yl)naphthalen-1-yl)pyrimidine, C20H15N3
  63. The crystal structure of N′-((1E,2E)-4-(7-methoxy-2-oxo-2H-chromen-8-yl)-2-methylbut-2-en-1-ylidene)-3-methylbenzohydrazide, C23H22N2O4
  64. Crystal structure of catena-poly[(μ2-isophthalato-κ2O:O′)-(2,5-di(pyrazin-2-yl)-4,4′-bipyridine-κ3N,N′,N′′)zinc(II)] — water (2/5), C26H21N6O6.5Zn
  65. Crystal structure of (3E,5E)-3,5-bis(3-nitrobenzylidene)-1-((4-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-one — dichloromethane (2/1), C53H38Cl2F6N6O14S2
  66. Crystal structure of (μ2-oxido)-bis(N,N′-o-phenylenebis(salicylideneiminato))diiron(III) — N,N′-dimethylformamide, C47H43Fe2N4O9
  67. Crystal structure of N1,N3-bis(2-hydroxyethyl)-N1, N1,N3,N3-tetramethylpropane-1,3-diaminium dibromide, C11H28Br2N2O2
  68. Crystal structure of (E)-N-(4-chlorophenyl)-1-(pyridin-2-yl)methanimine, C12H9ClN2
  69. Crystal structure of 8-bromo-6-oxo-2-phenyl-6H-pyrrolo[3,2,1-ij]quinoline-5-carbaldehyde, C18H11BrNO2
  70. Crystal structure of 1,4-bis(2-azidoethyl)piperazine-1,4-diium dichloride trihydrate, C8H18N8Cl2 ⋅ 3 H2O
  71. Crystal structure of (E)-4-bromo-N-(pyridin-2-ylmethylene)aniline, C12H9BrN2
  72. Crystal structure of bis[(2-(3-bromophenyl)-5-methyl-1,3-dioxane-5-carboxylato-κ-O)-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)]nickel(II), C40H60Br2N4NiO8
  73. The crystal structure of (1E,2E)-2-methyl-4-((7-oxo-7H-furo[3,2-g]chromen-9-yl)oxy)but-2-enal O-isonicotinoyl oxime–trichloromethane (3/1), C67H49Cl3N6O18
  74. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-methyl-1H-imidazol-3-ium hexafluoridophosphate(V), C8H13F6N2O2P
  75. Crystal structure of bis[(2-(2-bromophenyl)-5-ethyl-1,3-dioxane-5-carboxylato-κO)-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)]nickel(II) hemihydrate C42H65Br2N4NiO8.5
  76. The crystal structure of N-(7-(4-fluorobenzylidene)-3-(4-fluorophenyl)-3,3a,4,5,6,7-hexahydro-2H-indazole-2-carbonothioyl)benzamide, C28H23F2N3OS
  77. The crystal structure of N1,N4-bis(pyridin-3-yl)cyclohexane-1,4-dicarboxamide, C18H20N4O2
  78. Crystal structure of (E)-2-(3,6-bis(ethylamino)-2,7-dimethyl-9H-xanthen-9-yl)-N′-((6-methylpyridin-2-yl)methylene)benzohydrazide – methanol (1/1), C34H37N5O3
  79. Crystal structure of 2-oxo-1-(pyrimidin-5-ylmethyl)-3-(3-(trifluoromethyl)phenyl)-1,2-dihydro-5l4-pyrido[1,2-a]pyrimidin-4-olate, C20H13F3N4O2
  80. Crystal structure of poly[(μ3-9H-carbazole-3,6-dicarboxylato-κ3O1: O2: O3)(μ2-4-(pyridin-4-yl)pyridine-κ2N1:N1′)zinc(II)], C19H11N2O4Zn
  81. Crystal structure of (E)-N′-((1,8-dihydropyren-1-yl)-methylene)picolinohydrazide, C23H15N3O
  82. Crystal structure of catena-poly{[μ2-1,2-bis(diphenylphosphino)ethane]dichloridocadmium(II)}, C26H24CdCl2P2
  83. Crystal structure of the 1:2 co-crystal between N,N′-bis(4-pyridylmethyl)oxalamide and acetic acid as a dihydrate, C14H14N4O2⋅2 C2H4O2⋅2 H2O
  84. Crystal structure of the co-crystal N,N′-bis(3-pyridylmethyl)oxalamide acetic acid (1/2), C14H14N4O2⋅2C2H4O2
  85. Crystal structure of the co-crystal N,N′-bis(4-pyridylmethyl)oxalamide and 2,3,5,6-tetrafluoro-1,4-di-iodobenzene (1/1), C14H14N4O2⋅C6F4I2
  86. Crystal structure of the co-crystal 4-[(4-carboxyphenyl)disulfanyl]benzoic acid–(1E,4E)-1-N,4-N-bis(pyridin-4-ylmethylidene)cyclohexane-1,4-diamine (1/1), C14H10O4S2⋅C18H20N4
  87. Crystal structure of hexacarbonyl-bis(μ2-di-n-propyldithiocarbamato-κ3S,S′:S3S:S:S′)-di-rhenium(I), C20H28N2O6Re2S4
  88. Crystal structure of fac-tricarbonyl-morpholine-κN-(morpholinocarbamodithioato-κ2S,S′)rhenium(I), C12H17N2O5ReS2
Heruntergeladen am 18.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2019-0024/html
Button zum nach oben scrollen