Startseite Naturwissenschaften Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
Artikel Open Access

Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6

  • Lilei Zhang ORCID logo EMAIL logo , Jiamin Hu und Yumeng Qiao
Veröffentlicht/Copyright: 4. April 2022

Abstract

C25H30O6, orthorhombic, Pna21 (no. 33), a = 7.556(2) Å, b = 37.198(12) Å, c = 8.113(2) Å, V = 2280.2(11) Å3, Z = 4, R gt (F) = 0.0610, wR ref (F2) = 0.1634, T = 170 K.

CCDC no.: 2161245

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.11 × 0.08 × 0.05 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.09 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 26.4°, 99%
N(hkl)measured, N(hkl)unique, Rint: 11,367, 4039, 0.081
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3087
N(param)refined: 301
Programs: Bruker [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 1.7461 (7) 0.72290 (14) 0.3544 (8) 0.0627 (13)
H1A 1.797222 0.714591 0.458672 0.094*
H1B 1.700900 0.747408 0.367999 0.094*
H1C 1.837442 0.722679 0.268588 0.094*
C2 1.4581 (6) 0.71269 (12) 0.5685 (6) 0.0452 (10)
H2 1.552688 0.727419 0.605779 0.054*
C3 1.4661 (6) 0.69610 (12) 0.4158 (6) 0.0509 (12)
C4 1.3260 (7) 0.67413 (12) 0.3632 (8) 0.0611 (14)
H4 1.332431 0.662941 0.258148 0.073*
C5 1.1798 (7) 0.66845 (13) 0.4603 (9) 0.0681 (16)
C6 1.1710 (6) 0.68540 (13) 0.6148 (8) 0.0609 (13)
H6 1.070914 0.681825 0.683816 0.073*
C7 1.3086 (6) 0.70736 (11) 0.6665 (6) 0.0481 (11)
C8 1.1682 (7) 0.72043 (17) 0.9266 (8) 0.0724 (16)
H8A 1.194120 0.732924 1.030194 0.109*
H8B 1.153132 0.694690 0.948209 0.109*
H8C 1.059079 0.730138 0.878769 0.109*
C9a 1.0037 (15) 0.6470 (3) 0.4531 (15) 0.044 (2)
H9a 0.913318 0.649313 0.533836 0.053*
C10a 1.0663 (12) 0.6432 (2) 0.3626 (15) 0.0372 (18)
H10a 1.102255 0.635584 0.255850 0.045*
C11a 0.9905 (14) 0.6253 (3) 0.3251 (13) 0.0440 (19)
H11a 1.081149 0.621986 0.245440 0.053*
C12a 0.9118 (11) 0.6312 (2) 0.4280 (11) 0.0336 (17)
H12a 0.872784 0.638413 0.534267 0.040*
C13 0.8037 (8) 0.60526 (13) 0.3205 (10) 0.0799 (19)
C14 0.8315 (6) 0.58506 (15) 0.1778 (9) 0.0743 (16)
H14 0.943526 0.585908 0.124841 0.089*
C15 0.6971 (6) 0.56355 (13) 0.1114 (7) 0.0553 (12)
H15 0.717265 0.549595 0.015149 0.066*
C16 0.5363 (5) 0.56311 (11) 0.1883 (6) 0.0398 (9)
C17 0.5081 (7) 0.58220 (12) 0.3289 (6) 0.0531 (11)
H17 0.396460 0.581219 0.382664 0.064*
C18 0.6420 (9) 0.60287 (14) 0.3925 (8) 0.0713 (15)
H18 0.620692 0.616038 0.490824 0.086*
C19 0.3807 (6) 0.50887 (13) 0.1450 (8) 0.0618 (14)
C20 0.2143 (7) 0.49314 (13) 0.0738 (8) 0.0636 (14)
H20A 0.241611 0.481212 −0.032258 0.076*
H20B 0.128039 0.512609 0.052119 0.076*
C21 0.1346 (6) 0.46629 (13) 0.1908 (6) 0.0561 (12)
H21A 0.126468 0.477475 0.301275 0.067*
H21B 0.215776 0.445491 0.199724 0.067*
C22 −0.0493 (6) 0.45240 (14) 0.1425 (6) 0.0525 (11)
H22A −0.134321 0.472634 0.139064 0.063*
H22B −0.044514 0.441363 0.031555 0.063*
C23 −0.1093 (6) 0.42500 (14) 0.2666 (6) 0.0526 (12)
H23A −0.109022 0.436320 0.377010 0.063*
H23B −0.022160 0.405129 0.268635 0.063*
C24 −0.2915 (5) 0.40923 (12) 0.2353 (6) 0.0455 (10)
H24A −0.378787 0.429036 0.229379 0.055*
H24B −0.291094 0.396857 0.127275 0.055*
C25 −0.3485 (6) 0.38318 (11) 0.3654 (6) 0.0433 (10)
C26 −0.5792 (6) 0.34568 (13) 0.4621 (6) 0.0483 (11)
H26A −0.586025 0.357113 0.572077 0.058*
H26B −0.499205 0.324658 0.469229 0.058*
C27 −0.7599 (6) 0.33413 (14) 0.4063 (7) 0.0626 (14)
H27A −0.809539 0.317147 0.486276 0.094*
H27B −0.750989 0.322494 0.298297 0.094*
H27C −0.837141 0.355220 0.398089 0.094*
O1 1.6038 (5) 0.69947 (9) 0.3073 (5) 0.0648 (10)
O2 1.3123 (4) 0.72564 (9) 0.8131 (5) 0.0599 (9)
O3 0.4910 (6) 0.49306 (11) 0.2226 (9) 0.121 (2)
O4 0.3922 (4) 0.54432 (7) 0.1182 (4) 0.0463 (8)
O5 −0.2567 (4) 0.37333 (8) 0.4797 (4) 0.0529 (8)
O6 −0.5132 (4) 0.37134 (8) 0.3401 (4) 0.0467 (7)
  1. aOccupancy: 0.5.

Source of material

The compound (E)-4-(3,5-dimethoxystyryl)phenol (2 mmol) was dissolved in dichloromethane (10 mL), and then 7-ethoxy-7-oxoheptanoic acid (2 mmol), 2-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU, 2 mmol), and N,N-diisopropylethylamine (DIEA, 4 mmol) were added to the mixture successively with stirring. The reaction was maintained for 4 h at room temperature and monitored by thin-layer chromatography. The mixture was concentrated under reduced pressure after the reaction was completed. The crude product was separated and purified by silica gel column chromatography with petroleum ether and ethyl acetate (v/v = 10/1) as eluent. We obtained a white solid with a yield of 82.1%. Subsequently, the title compound crystallized at ambient and room temperature in four days by evaporation.

Experimental details

All hydrogen atoms were positioned geometrically and fixed in the riding model with a C–H bond distance of 0.95 Å in the riding-model approximation. Their Uiso values were set to be 1.2 Ueq of the parent atoms.

Comment

As a natural polyphenol, resveratrol was found in many plants such as pumpkin, knotweed, grapes, and peanuts [5]. It has anti-cancer, antibacterial, and antifatigue properties and has essential applications in the nutrition and food fields [6, 7]. Due to the C=C double bond having cis and trans configurations and can be interconverted under certain conditions. The hydroxyl group [8], [9], [10], [11], [12], benzene ring [13], [14], [15], [16], and C=C double bond [17], [18], [19], [20] of resveratrol can be modified to improve its biological activity and stability. Resveratrol and its derivatives have preventive effects against cancer, cardiovascular disease, neurodegenerative diseases, and inflammation. Due to their biological activities, there is growing attention to the promise of resveratrol and its derivatives as anti-aging molecules [21]. Some similar compound were synthesized and their activities were studied [2227]. We here report a new resveratrol derivative for potential applications in food additive fields.

The figure shows the title compound. There were no significant differences observed between the two ester groups. The C=O bond lengths are 1.199(8) Å (C19=O3) and 1.215(6) Å (C25=O5), and the C–O bond lengths are 1.339(6) Å (C19–O4) and 1.336(6) Å (C25–O6), and the O=C–O band angles are 121.5(5)° (O3=C19–O4) and 123.4(5)° (O5=C25–O6), respectively. The two aryl rings are almost in the same plane, and the dihedral angle between the C2⃛C7 ring and the C13⃛C18 ring is 6.9°. All molecules are staggered head-to-tail in the crystal, and no hydrogen bonds and π–π interactions between molecules are observed. All geometric parameters are in the expected ranges.


Corresponding author: Lilei Zhang, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China, E-mail:

Funding source: Key Scientific Research Projects of Colleges and Universities in Henan Province http://dx.doi.org/10.13039/501100013066

Award Identifier / Grant number: 22A430032

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the Key Scientific Research Projects of Colleges and Universities in Henan Province (22A430032).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SMART APEX-II; Bruker AXS Inc.: Madison, WI, USA, 2006.Suche in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

5. Tian, B., Liu, J. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric. 2020, 100, 1392–1404; https://doi.org/10.1002/jsfa.10152.Suche in Google Scholar

6. Singh, A. P., Singh, R., Verma, S. S., Rai, V., Kaschula, C. H., Maiti, P., Gupta, S. C. Health benefits of resveratrol: evidence from clinical studies. Med. Res. Rev. 2019, 39, 1851–1891; https://doi.org/10.1002/med.21565.Suche in Google Scholar

7. Salehi, B., Mishra, A. P., Nigam, M., Sener, B., Kilic, M., Sharifi-Rad, M., Fokou, P. V. T., Martins, N., Sharifi-Rad, J. Resveratrol: a double-edged sword in health benefits. Biomedicines 2018, 6, 91; https://doi.org/10.3390/biomedicines6030091.Suche in Google Scholar

8. Singh, D., Mendonsa, R., Koli, M., Subramanian, M., Nayak, S. K. Antibacterial activity of resveratrol structural analogues: a mechanistic evaluation of the structure-activity relationship. Toxicol. Appl. Pharmacol. 2019, 367, 23–32; https://doi.org/10.1016/j.taap.2019.01.025.Suche in Google Scholar

9. Botella, L., Nájera, C. Synthesis of methylated resveratrol and analogues by Heck reactions in organic and aqueous solvents. Tetrahedron 2004, 60, 5563–5570; https://doi.org/10.1016/j.tet.2004.04.076.Suche in Google Scholar

10. Chalal, M., Vervandier-Fasseur, D., Meunier, P., Cattey, H., Hierso, J.-C. Syntheses of polyfunctionalized resveratrol derivatives using Wittig and Heck protocols. Tetrahedron 2012, 68, 3899–3907; https://doi.org/10.1016/j.tet.2012.03.025.Suche in Google Scholar

11. Pettit, G. R., Melody, N., Thornhill, A., Knight, J. C., Groy, T. L., Herald, C. L. Antineoplastic agents. 579. Synthesis and cancer cell growth evaluation of E-stilstatin 3: a resveratrol structural modification. J. Nat. Prod. 2009, 72, 1637–1642; https://doi.org/10.1021/np9002146.Suche in Google Scholar

12. Szekeres, T., Fritzer-Szekeres, M., Saiko, P., Jäger, W. Resveratrol and resveratrol analogues-structure-activity relationship. Pharm. Res. 2010, 27, 1042–1048; https://doi.org/10.1007/s11095-010-0090-1.Suche in Google Scholar

13. Szaefer, H., Cichocki, M., Krajka-Kuźniak, V., Stefański, T., Sobiak, S., Licznerska, B., Baer-Dubowska, W. The effect of resveratrol and its methylthio-derivatives on NF-κB and AP-1 signaling pathways in HaCaT keratinocytes. Pharmacol. Rep. 2014, 66, 732–740; https://doi.org/10.1016/j.pharep.2014.03.012.Suche in Google Scholar

14. Cichocki, M., Szaefer, H., Krajka-Kuźniak, V., Baer-Dubowska, W. The effect of resveratrol and its methylthio-derivatives on EGFR and Stat3 activation in human HaCaT and A431 cells. Mol. Cell. Biochem. 2014, 396, 221–228; https://doi.org/10.1007/s11010-014-2157-5.Suche in Google Scholar

15. Krajka-Kuźniak, V., Szaefer, H., Stefański, T., Sobiak, S., Cichocki, M., Baer-Dubowska, W. The effect of resveratrol and its methylthio-derivatives on the Nrf2-ARE pathway in mouse epidermis and HaCaT keratinocytes. Cell. Mol. Biol. Lett. 2014, 19, 500–516.10.2478/s11658-014-0209-1Suche in Google Scholar PubMed PubMed Central

16. Xiao, Y., Chen, H., Song, C., Zeng, X., Zheng, Q., Zhang, Y., Lei, X., Zheng, X. Pharmacological activities and structure-modification of resveratrol analogues. Pharmazie 2015, 70, 765–771.Suche in Google Scholar

17. Antus, C., Radnai, B., Dombovari, P., Fonai, F., Avar, P., Matyus, P., Racz, B., Sumegi, B., Veres, B. Anti-inflammatory effects of a triple-bond resveratrol analog: structure and function relationship. Eur. J. Pharmacol. 2015, 748, 61–67; https://doi.org/10.1016/j.ejphar.2014.12.009.Suche in Google Scholar

18. Ding, D.-J., Cao, X.-Y., Dai, F., Li, X.-Z., Liu, G.-Y., Lin, D., Fu, X., Jin, X.-L., Zhou, B. Synthesis and antioxidant activity of hydroxylated phenanthrenes as cis-restricted resveratrol analogues. Food Chem. 2012, 135, 1011–1019; https://doi.org/10.1016/j.foodchem.2012.05.074.Suche in Google Scholar

19. Vergara, D., De Domenico, S., Tinelli, A., Stanca, E., Del Mercato, L. L., Giudetti, A. M., Simeone, P., Guazzelli, N., Lessi, M., Manzini, C. Anticancer effects of novel resveratrol analogues on human ovarian cancer cells. Mol. BioSyst. 2017, 13, 1131–1141; https://doi.org/10.1039/c7mb00128b.Suche in Google Scholar

20. Thompson, C. M., Orellana, M. D., Lloyd, S. E., Wu, W. Stereospecific synthesis of cis-stilbenes from benzaldehydes and phenylacetic acids via sequential Perkin condensation and decarboxylation. Tetrahedron Lett. 2016, 57, 4866–4868; https://doi.org/10.1016/j.tetlet.2016.09.069.Suche in Google Scholar

21. Wang, N., Luo, Z., Jin, M., Sheng, W., Wang, H.-T., Long, X., Wu, Y., Hu, P., Xu, H., Zhang, X. Exploration of age-related mitochondrial dysfunction and the anti-aging effects of resveratrol in zebrafish retina. Aging 2019, 11, 3117–3137; https://doi.org/10.18632/aging.101966.Suche in Google Scholar

22. Madan Kumar, S. 3D energy frameworks of dimethylbenzophenone tetramorphs. Heliyon 2019, 5, e01209; https://doi.org/10.1016/j.heliyon.2019.e01209.Suche in Google Scholar

23. Ni, H.-J., Cheng, H.-J., Ge, W.-W., Lin, M.-X., Li, Q.-S., Ruan, B.-F. Formamide derivatives of resveratrol: synthesis, characterization and cytotoxicity. Lett. Drug Des. Discov. 2016, 13, 495–504; https://doi.org/10.2174/157018081306160618153304.Suche in Google Scholar

24. Ge, X.-L., Guan, Q.-X., Deng, S.-S., Ruan, B.-F. 2,4-Dimethoxy-6-[(E)-2-(4-methoxyphenyl)ethenyl]benzaldehyde. Acta Crystallogr. 2013, E69, o629; https://doi.org/10.1107/s1600536813007964.Suche in Google Scholar

25. Tang, Q., Li, H.-Y., Wu, Z.-N., Yan, M., Zhang, Y.-B., Li, Y.-L., Wang, G.-C. Crystal structure of (E)-resveratrol 3-O-β-D-xylopyranoside, C19H22O8. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 367–368; https://doi.org/10.1515/ncrs-2020-0554.Suche in Google Scholar

26. Xia, C., Xie, Q., Ruan, B.-F., Zhou, B.-G. Crystal structure of (E)-2-(4-((3,4-difluorobenzyl)oxy)styryl)-4,6-dimethoxybenzaldehyde, C24H20F2O4. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 545–546; https://doi.org/10.1515/ncrs-2019-0787.Suche in Google Scholar

27. Nakamura, N., Setodoi, S. Syntheses and physical properties of ferrocene derivatives (XII) crystal structure of a liquid crystalline ferrocene derivative, ω-[4-(4-methoxy-phenoxycarbonyl)phenoxycarbonyl] hexyl 4-ferrocenylbenzoate. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1999, 333, 151–163; https://doi.org/10.1080/10587259908026002.Suche in Google Scholar

Received: 2022-02-18
Accepted: 2022-03-23
Published Online: 2022-04-04
Published in Print: 2022-06-27

© 2022 Lilei Zhang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-(4-imidazol-1-yl-phenyl)-(2-methoxy-benzylidene)-amine monohydrate, C17H17N3O2
  4. Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2H-chromen-2-one, C15H15N1O3
  5. Crystal structure of 4-methyl-4-nitropentanoic acid, C6H11NO4
  6. The crystal structure of (E)-3-(furan-2-yl)acrylonitrile, C7H5NO
  7. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3
  8. Crystal structure of 2-(4-bromobenzyloxy)-6-chloropyridine, C12H9BrClNO
  9. Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
  10. Crystal structure of (E)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C15H11NO3
  11. The crystal structure of (E)-3-chloro-2-(2-(4-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  12. Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
  13. Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O
  14. The crystal structure bis(dimethylsulfoxide-κ1O)-dipyridine-κ1 N-bis(m2-(Z)-3-methyl-2-oxido-N-((Z)-oxido(phenyl)methylene)benzohydrazonato-κ5)trinickel(II) - dimethylsulfoxide (1/2), C48H56N6Ni3O10S4
  15. Crystal structure of bis(bis(triphenylphosphine)iminium) tetradecacarbonyltetratelluridopentaferrate(2-), (PPN)2[Fe5Te4(CO)14]
  16. Crystal structure of 4-Hydroxy-3-(naphthalen-2-ylthio)pent-3-en-2-one, C15H14O2S
  17. The crystal structure of [(1,10-phenanthroline-κ2 N,N)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)nickel(II)] monohydrate, C36H26N4O5Ni
  18. Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5
  19. The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
  20. The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
  21. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)–water–N,N-dimethylformamide(1/2/1), C27H31N3O9Co
  22. The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
  23. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)cobalt(II)], C32H22Br2CoN4O4
  24. Crystal structure of (E)-5-propyl-4-((pyridin-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione – methanol (1/1), C11H13N5S
  25. The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5
  26. Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]
  27. Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
  28. Crystal structure of (2,2′-((naphthalen-1-ylmethyl)azanediyl)diacetato-κ3 N,O,O′)-(1,10-phenanthroline-κ2 N,N′)-copper(II) trihydrate, CuC27H27N3O7
  29. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylato-κ2N,O)-bis(1H-pyrazol-3-ylamine-κ2 N:N)dicobalt(II) dihydrate, C27H23N5O5Co
  30. The crystal structure of bis((E)-2-((tert-butylimino)methyl)-4-chlorophenolato-κ2N,O)zinc(II), C22H26Cl2N2O2Zn
  31. The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20
  32. The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
  33. The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
  34. Crystal structure of 6-hydroxy-2,2-dimethyl-4Hbenzo[d][1,3]dioxin-4-one, C10H10O4
  35. The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
  36. Crystal structure of alaninato-κ2N,O-bis(hydroxylamido-κ2N,O)-oxido-vanadium(V), C3H10N3O5V
  37. Crystal structure of catena-poly[aqua-bis[μ2-6-(1H-imidazol-1-yl)nicotinato-κ2 N,O]copper(II)], C18H14N6O5Cu
  38. Crystal structure of diethyl 4,6-diphenyl-1,9-di-p-tolylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,5(2H)-dicarboxylate, C42H42N2O4
  39. The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
  40. Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4
  41. Crystal structure of (Z)-4-(furan-2-yl((4-iodophenyl)amino)methylene)-5-methyl-2(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, C21H16I N3O2
  42. Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
  43. Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C15H10BrClO2
  44. The crystal structure of 2-(benzhydryloxy)-3-nitropyridine, C18H14N2O3
  45. The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
  46. Crystal structure of 3,6-di-tert-butyl-1-iodo-9-methyl-8-(pyren-1-ylethynyl)-9H-carbazole, C39H34IN
  47. The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
  48. Crystal structure of 5-nitroquinazolin-4(3H)-one, C8H5N3O3
Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0079/html
Button zum nach oben scrollen