Abstract
C25H30O6, orthorhombic, Pna21 (no. 33), a = 7.556(2) Å, b = 37.198(12) Å, c = 8.113(2) Å, V = 2280.2(11) Å3, Z = 4, R gt (F) = 0.0610, wR ref (F2) = 0.1634, T = 170 K.
The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Data collection and handling.
| Crystal: | Colorless block |
| Size: | 0.11 × 0.08 × 0.05 mm |
| Wavelength: | Mo Kα radiation (0.71073 Å) |
| μ: | 0.09 mm−1 |
| Diffractometer, scan mode: | Bruker APEX-II, φ and ω |
| θmax, completeness: | 26.4°, 99% |
| N(hkl)measured, N(hkl)unique, Rint: | 11,367, 4039, 0.081 |
| Criterion for Iobs, N(hkl)gt: | Iobs > 2 σ(Iobs), 3087 |
| N(param)refined: | 301 |
| Programs: | Bruker [1], Olex2 [2], SHELX [3, 4] |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).
| Atom | x | y | z | Uiso*/Ueq |
|---|---|---|---|---|
| C1 | 1.7461 (7) | 0.72290 (14) | 0.3544 (8) | 0.0627 (13) |
| H1A | 1.797222 | 0.714591 | 0.458672 | 0.094* |
| H1B | 1.700900 | 0.747408 | 0.367999 | 0.094* |
| H1C | 1.837442 | 0.722679 | 0.268588 | 0.094* |
| C2 | 1.4581 (6) | 0.71269 (12) | 0.5685 (6) | 0.0452 (10) |
| H2 | 1.552688 | 0.727419 | 0.605779 | 0.054* |
| C3 | 1.4661 (6) | 0.69610 (12) | 0.4158 (6) | 0.0509 (12) |
| C4 | 1.3260 (7) | 0.67413 (12) | 0.3632 (8) | 0.0611 (14) |
| H4 | 1.332431 | 0.662941 | 0.258148 | 0.073* |
| C5 | 1.1798 (7) | 0.66845 (13) | 0.4603 (9) | 0.0681 (16) |
| C6 | 1.1710 (6) | 0.68540 (13) | 0.6148 (8) | 0.0609 (13) |
| H6 | 1.070914 | 0.681825 | 0.683816 | 0.073* |
| C7 | 1.3086 (6) | 0.70736 (11) | 0.6665 (6) | 0.0481 (11) |
| C8 | 1.1682 (7) | 0.72043 (17) | 0.9266 (8) | 0.0724 (16) |
| H8A | 1.194120 | 0.732924 | 1.030194 | 0.109* |
| H8B | 1.153132 | 0.694690 | 0.948209 | 0.109* |
| H8C | 1.059079 | 0.730138 | 0.878769 | 0.109* |
| C9a | 1.0037 (15) | 0.6470 (3) | 0.4531 (15) | 0.044 (2) |
| H9a | 0.913318 | 0.649313 | 0.533836 | 0.053* |
| C10a | 1.0663 (12) | 0.6432 (2) | 0.3626 (15) | 0.0372 (18) |
| H10a | 1.102255 | 0.635584 | 0.255850 | 0.045* |
| C11a | 0.9905 (14) | 0.6253 (3) | 0.3251 (13) | 0.0440 (19) |
| H11a | 1.081149 | 0.621986 | 0.245440 | 0.053* |
| C12a | 0.9118 (11) | 0.6312 (2) | 0.4280 (11) | 0.0336 (17) |
| H12a | 0.872784 | 0.638413 | 0.534267 | 0.040* |
| C13 | 0.8037 (8) | 0.60526 (13) | 0.3205 (10) | 0.0799 (19) |
| C14 | 0.8315 (6) | 0.58506 (15) | 0.1778 (9) | 0.0743 (16) |
| H14 | 0.943526 | 0.585908 | 0.124841 | 0.089* |
| C15 | 0.6971 (6) | 0.56355 (13) | 0.1114 (7) | 0.0553 (12) |
| H15 | 0.717265 | 0.549595 | 0.015149 | 0.066* |
| C16 | 0.5363 (5) | 0.56311 (11) | 0.1883 (6) | 0.0398 (9) |
| C17 | 0.5081 (7) | 0.58220 (12) | 0.3289 (6) | 0.0531 (11) |
| H17 | 0.396460 | 0.581219 | 0.382664 | 0.064* |
| C18 | 0.6420 (9) | 0.60287 (14) | 0.3925 (8) | 0.0713 (15) |
| H18 | 0.620692 | 0.616038 | 0.490824 | 0.086* |
| C19 | 0.3807 (6) | 0.50887 (13) | 0.1450 (8) | 0.0618 (14) |
| C20 | 0.2143 (7) | 0.49314 (13) | 0.0738 (8) | 0.0636 (14) |
| H20A | 0.241611 | 0.481212 | −0.032258 | 0.076* |
| H20B | 0.128039 | 0.512609 | 0.052119 | 0.076* |
| C21 | 0.1346 (6) | 0.46629 (13) | 0.1908 (6) | 0.0561 (12) |
| H21A | 0.126468 | 0.477475 | 0.301275 | 0.067* |
| H21B | 0.215776 | 0.445491 | 0.199724 | 0.067* |
| C22 | −0.0493 (6) | 0.45240 (14) | 0.1425 (6) | 0.0525 (11) |
| H22A | −0.134321 | 0.472634 | 0.139064 | 0.063* |
| H22B | −0.044514 | 0.441363 | 0.031555 | 0.063* |
| C23 | −0.1093 (6) | 0.42500 (14) | 0.2666 (6) | 0.0526 (12) |
| H23A | −0.109022 | 0.436320 | 0.377010 | 0.063* |
| H23B | −0.022160 | 0.405129 | 0.268635 | 0.063* |
| C24 | −0.2915 (5) | 0.40923 (12) | 0.2353 (6) | 0.0455 (10) |
| H24A | −0.378787 | 0.429036 | 0.229379 | 0.055* |
| H24B | −0.291094 | 0.396857 | 0.127275 | 0.055* |
| C25 | −0.3485 (6) | 0.38318 (11) | 0.3654 (6) | 0.0433 (10) |
| C26 | −0.5792 (6) | 0.34568 (13) | 0.4621 (6) | 0.0483 (11) |
| H26A | −0.586025 | 0.357113 | 0.572077 | 0.058* |
| H26B | −0.499205 | 0.324658 | 0.469229 | 0.058* |
| C27 | −0.7599 (6) | 0.33413 (14) | 0.4063 (7) | 0.0626 (14) |
| H27A | −0.809539 | 0.317147 | 0.486276 | 0.094* |
| H27B | −0.750989 | 0.322494 | 0.298297 | 0.094* |
| H27C | −0.837141 | 0.355220 | 0.398089 | 0.094* |
| O1 | 1.6038 (5) | 0.69947 (9) | 0.3073 (5) | 0.0648 (10) |
| O2 | 1.3123 (4) | 0.72564 (9) | 0.8131 (5) | 0.0599 (9) |
| O3 | 0.4910 (6) | 0.49306 (11) | 0.2226 (9) | 0.121 (2) |
| O4 | 0.3922 (4) | 0.54432 (7) | 0.1182 (4) | 0.0463 (8) |
| O5 | −0.2567 (4) | 0.37333 (8) | 0.4797 (4) | 0.0529 (8) |
| O6 | −0.5132 (4) | 0.37134 (8) | 0.3401 (4) | 0.0467 (7) |
-
aOccupancy: 0.5.
Source of material
The compound (E)-4-(3,5-dimethoxystyryl)phenol (2 mmol) was dissolved in dichloromethane (10 mL), and then 7-ethoxy-7-oxoheptanoic acid (2 mmol), 2-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU, 2 mmol), and N,N-diisopropylethylamine (DIEA, 4 mmol) were added to the mixture successively with stirring. The reaction was maintained for 4 h at room temperature and monitored by thin-layer chromatography. The mixture was concentrated under reduced pressure after the reaction was completed. The crude product was separated and purified by silica gel column chromatography with petroleum ether and ethyl acetate (v/v = 10/1) as eluent. We obtained a white solid with a yield of 82.1%. Subsequently, the title compound crystallized at ambient and room temperature in four days by evaporation.
Experimental details
All hydrogen atoms were positioned geometrically and fixed in the riding model with a C–H bond distance of 0.95 Å in the riding-model approximation. Their Uiso values were set to be 1.2 Ueq of the parent atoms.
Comment
As a natural polyphenol, resveratrol was found in many plants such as pumpkin, knotweed, grapes, and peanuts [5]. It has anti-cancer, antibacterial, and antifatigue properties and has essential applications in the nutrition and food fields [6, 7]. Due to the C=C double bond having cis and trans configurations and can be interconverted under certain conditions. The hydroxyl group [8], [9], [10], [11], [12], benzene ring [13], [14], [15], [16], and C=C double bond [17], [18], [19], [20] of resveratrol can be modified to improve its biological activity and stability. Resveratrol and its derivatives have preventive effects against cancer, cardiovascular disease, neurodegenerative diseases, and inflammation. Due to their biological activities, there is growing attention to the promise of resveratrol and its derivatives as anti-aging molecules [21]. Some similar compound were synthesized and their activities were studied [22–27]. We here report a new resveratrol derivative for potential applications in food additive fields.
The figure shows the title compound. There were no significant differences observed between the two ester groups. The C=O bond lengths are 1.199(8) Å (C19=O3) and 1.215(6) Å (C25=O5), and the C–O bond lengths are 1.339(6) Å (C19–O4) and 1.336(6) Å (C25–O6), and the O=C–O band angles are 121.5(5)° (O3=C19–O4) and 123.4(5)° (O5=C25–O6), respectively. The two aryl rings are almost in the same plane, and the dihedral angle between the C2⃛C7 ring and the C13⃛C18 ring is 6.9°. All molecules are staggered head-to-tail in the crystal, and no hydrogen bonds and π–π interactions between molecules are observed. All geometric parameters are in the expected ranges.
Funding source: Key Scientific Research Projects of Colleges and Universities in Henan Province http://dx.doi.org/10.13039/501100013066
Award Identifier / Grant number: 22A430032
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was financially supported by the Key Scientific Research Projects of Colleges and Universities in Henan Province (22A430032).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Bruker. SMART APEX-II; Bruker AXS Inc.: Madison, WI, USA, 2006.Suche in Google Scholar
2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar
3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar
4. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar
5. Tian, B., Liu, J. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric. 2020, 100, 1392–1404; https://doi.org/10.1002/jsfa.10152.Suche in Google Scholar
6. Singh, A. P., Singh, R., Verma, S. S., Rai, V., Kaschula, C. H., Maiti, P., Gupta, S. C. Health benefits of resveratrol: evidence from clinical studies. Med. Res. Rev. 2019, 39, 1851–1891; https://doi.org/10.1002/med.21565.Suche in Google Scholar
7. Salehi, B., Mishra, A. P., Nigam, M., Sener, B., Kilic, M., Sharifi-Rad, M., Fokou, P. V. T., Martins, N., Sharifi-Rad, J. Resveratrol: a double-edged sword in health benefits. Biomedicines 2018, 6, 91; https://doi.org/10.3390/biomedicines6030091.Suche in Google Scholar
8. Singh, D., Mendonsa, R., Koli, M., Subramanian, M., Nayak, S. K. Antibacterial activity of resveratrol structural analogues: a mechanistic evaluation of the structure-activity relationship. Toxicol. Appl. Pharmacol. 2019, 367, 23–32; https://doi.org/10.1016/j.taap.2019.01.025.Suche in Google Scholar
9. Botella, L., Nájera, C. Synthesis of methylated resveratrol and analogues by Heck reactions in organic and aqueous solvents. Tetrahedron 2004, 60, 5563–5570; https://doi.org/10.1016/j.tet.2004.04.076.Suche in Google Scholar
10. Chalal, M., Vervandier-Fasseur, D., Meunier, P., Cattey, H., Hierso, J.-C. Syntheses of polyfunctionalized resveratrol derivatives using Wittig and Heck protocols. Tetrahedron 2012, 68, 3899–3907; https://doi.org/10.1016/j.tet.2012.03.025.Suche in Google Scholar
11. Pettit, G. R., Melody, N., Thornhill, A., Knight, J. C., Groy, T. L., Herald, C. L. Antineoplastic agents. 579. Synthesis and cancer cell growth evaluation of E-stilstatin 3: a resveratrol structural modification. J. Nat. Prod. 2009, 72, 1637–1642; https://doi.org/10.1021/np9002146.Suche in Google Scholar
12. Szekeres, T., Fritzer-Szekeres, M., Saiko, P., Jäger, W. Resveratrol and resveratrol analogues-structure-activity relationship. Pharm. Res. 2010, 27, 1042–1048; https://doi.org/10.1007/s11095-010-0090-1.Suche in Google Scholar
13. Szaefer, H., Cichocki, M., Krajka-Kuźniak, V., Stefański, T., Sobiak, S., Licznerska, B., Baer-Dubowska, W. The effect of resveratrol and its methylthio-derivatives on NF-κB and AP-1 signaling pathways in HaCaT keratinocytes. Pharmacol. Rep. 2014, 66, 732–740; https://doi.org/10.1016/j.pharep.2014.03.012.Suche in Google Scholar
14. Cichocki, M., Szaefer, H., Krajka-Kuźniak, V., Baer-Dubowska, W. The effect of resveratrol and its methylthio-derivatives on EGFR and Stat3 activation in human HaCaT and A431 cells. Mol. Cell. Biochem. 2014, 396, 221–228; https://doi.org/10.1007/s11010-014-2157-5.Suche in Google Scholar
15. Krajka-Kuźniak, V., Szaefer, H., Stefański, T., Sobiak, S., Cichocki, M., Baer-Dubowska, W. The effect of resveratrol and its methylthio-derivatives on the Nrf2-ARE pathway in mouse epidermis and HaCaT keratinocytes. Cell. Mol. Biol. Lett. 2014, 19, 500–516.10.2478/s11658-014-0209-1Suche in Google Scholar PubMed PubMed Central
16. Xiao, Y., Chen, H., Song, C., Zeng, X., Zheng, Q., Zhang, Y., Lei, X., Zheng, X. Pharmacological activities and structure-modification of resveratrol analogues. Pharmazie 2015, 70, 765–771.Suche in Google Scholar
17. Antus, C., Radnai, B., Dombovari, P., Fonai, F., Avar, P., Matyus, P., Racz, B., Sumegi, B., Veres, B. Anti-inflammatory effects of a triple-bond resveratrol analog: structure and function relationship. Eur. J. Pharmacol. 2015, 748, 61–67; https://doi.org/10.1016/j.ejphar.2014.12.009.Suche in Google Scholar
18. Ding, D.-J., Cao, X.-Y., Dai, F., Li, X.-Z., Liu, G.-Y., Lin, D., Fu, X., Jin, X.-L., Zhou, B. Synthesis and antioxidant activity of hydroxylated phenanthrenes as cis-restricted resveratrol analogues. Food Chem. 2012, 135, 1011–1019; https://doi.org/10.1016/j.foodchem.2012.05.074.Suche in Google Scholar
19. Vergara, D., De Domenico, S., Tinelli, A., Stanca, E., Del Mercato, L. L., Giudetti, A. M., Simeone, P., Guazzelli, N., Lessi, M., Manzini, C. Anticancer effects of novel resveratrol analogues on human ovarian cancer cells. Mol. BioSyst. 2017, 13, 1131–1141; https://doi.org/10.1039/c7mb00128b.Suche in Google Scholar
20. Thompson, C. M., Orellana, M. D., Lloyd, S. E., Wu, W. Stereospecific synthesis of cis-stilbenes from benzaldehydes and phenylacetic acids via sequential Perkin condensation and decarboxylation. Tetrahedron Lett. 2016, 57, 4866–4868; https://doi.org/10.1016/j.tetlet.2016.09.069.Suche in Google Scholar
21. Wang, N., Luo, Z., Jin, M., Sheng, W., Wang, H.-T., Long, X., Wu, Y., Hu, P., Xu, H., Zhang, X. Exploration of age-related mitochondrial dysfunction and the anti-aging effects of resveratrol in zebrafish retina. Aging 2019, 11, 3117–3137; https://doi.org/10.18632/aging.101966.Suche in Google Scholar
22. Madan Kumar, S. 3D energy frameworks of dimethylbenzophenone tetramorphs. Heliyon 2019, 5, e01209; https://doi.org/10.1016/j.heliyon.2019.e01209.Suche in Google Scholar
23. Ni, H.-J., Cheng, H.-J., Ge, W.-W., Lin, M.-X., Li, Q.-S., Ruan, B.-F. Formamide derivatives of resveratrol: synthesis, characterization and cytotoxicity. Lett. Drug Des. Discov. 2016, 13, 495–504; https://doi.org/10.2174/157018081306160618153304.Suche in Google Scholar
24. Ge, X.-L., Guan, Q.-X., Deng, S.-S., Ruan, B.-F. 2,4-Dimethoxy-6-[(E)-2-(4-methoxyphenyl)ethenyl]benzaldehyde. Acta Crystallogr. 2013, E69, o629; https://doi.org/10.1107/s1600536813007964.Suche in Google Scholar
25. Tang, Q., Li, H.-Y., Wu, Z.-N., Yan, M., Zhang, Y.-B., Li, Y.-L., Wang, G.-C. Crystal structure of (E)-resveratrol 3-O-β-D-xylopyranoside, C19H22O8. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 367–368; https://doi.org/10.1515/ncrs-2020-0554.Suche in Google Scholar
26. Xia, C., Xie, Q., Ruan, B.-F., Zhou, B.-G. Crystal structure of (E)-2-(4-((3,4-difluorobenzyl)oxy)styryl)-4,6-dimethoxybenzaldehyde, C24H20F2O4. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 545–546; https://doi.org/10.1515/ncrs-2019-0787.Suche in Google Scholar
27. Nakamura, N., Setodoi, S. Syntheses and physical properties of ferrocene derivatives (XII) crystal structure of a liquid crystalline ferrocene derivative, ω-[4-(4-methoxy-phenoxycarbonyl)phenoxycarbonyl] hexyl 4-ferrocenylbenzoate. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1999, 333, 151–163; https://doi.org/10.1080/10587259908026002.Suche in Google Scholar
© 2022 Lilei Zhang et al., published by De Gruyter, Berlin/Boston
This work is licensed under the Creative Commons Attribution 4.0 International License.
Artikel in diesem Heft
- Frontmatter
- New Crystal Structures
- Crystal structure of (E)-(4-imidazol-1-yl-phenyl)-(2-methoxy-benzylidene)-amine monohydrate, C17H17N3O2
- Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2H-chromen-2-one, C15H15N1O3
- Crystal structure of 4-methyl-4-nitropentanoic acid, C6H11NO4
- The crystal structure of (E)-3-(furan-2-yl)acrylonitrile, C7H5NO
- Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3
- Crystal structure of 2-(4-bromobenzyloxy)-6-chloropyridine, C12H9BrClNO
- Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
- Crystal structure of (E)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C15H11NO3
- The crystal structure of (E)-3-chloro-2-(2-(4-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
- Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
- Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O
- The crystal structure bis(dimethylsulfoxide-κ1O)-dipyridine-κ1 N-bis(m2-(Z)-3-methyl-2-oxido-N-((Z)-oxido(phenyl)methylene)benzohydrazonato-κ5)trinickel(II) - dimethylsulfoxide (1/2), C48H56N6Ni3O10S4
- Crystal structure of bis(bis(triphenylphosphine)iminium) tetradecacarbonyltetratelluridopentaferrate(2-), (PPN)2[Fe5Te4(CO)14]
- Crystal structure of 4-Hydroxy-3-(naphthalen-2-ylthio)pent-3-en-2-one, C15H14O2S
- The crystal structure of [(1,10-phenanthroline-κ2 N,N)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)nickel(II)] monohydrate, C36H26N4O5Ni
- Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5
- The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
- The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
- The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)–water–N,N-dimethylformamide(1/2/1), C27H31N3O9Co
- The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
- Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)cobalt(II)], C32H22Br2CoN4O4
- Crystal structure of (E)-5-propyl-4-((pyridin-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione – methanol (1/1), C11H13N5S
- The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5
- Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]
- Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
- Crystal structure of (2,2′-((naphthalen-1-ylmethyl)azanediyl)diacetato-κ3 N,O,O′)-(1,10-phenanthroline-κ2 N,N′)-copper(II) trihydrate, CuC27H27N3O7
- The crystal structure of tetrakis(6-phenylpyridine-2-carboxylato-κ2N,O)-bis(1H-pyrazol-3-ylamine-κ2 N:N)dicobalt(II) dihydrate, C27H23N5O5Co
- The crystal structure of bis((E)-2-((tert-butylimino)methyl)-4-chlorophenolato-κ2N,O)zinc(II), C22H26Cl2N2O2Zn
- The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20
- The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
- The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
- Crystal structure of 6-hydroxy-2,2-dimethyl-4Hbenzo[d][1,3]dioxin-4-one, C10H10O4
- The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
- Crystal structure of alaninato-κ2N,O-bis(hydroxylamido-κ2N,O)-oxido-vanadium(V), C3H10N3O5V
- Crystal structure of catena-poly[aqua-bis[μ2-6-(1H-imidazol-1-yl)nicotinato-κ2 N,O]copper(II)], C18H14N6O5Cu
- Crystal structure of diethyl 4,6-diphenyl-1,9-di-p-tolylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,5(2H)-dicarboxylate, C42H42N2O4
- The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
- Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4
- Crystal structure of (Z)-4-(furan-2-yl((4-iodophenyl)amino)methylene)-5-methyl-2(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, C21H16I N3O2
- Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
- Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C15H10BrClO2
- The crystal structure of 2-(benzhydryloxy)-3-nitropyridine, C18H14N2O3
- The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
- Crystal structure of 3,6-di-tert-butyl-1-iodo-9-methyl-8-(pyren-1-ylethynyl)-9H-carbazole, C39H34IN
- The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
- Crystal structure of 5-nitroquinazolin-4(3H)-one, C8H5N3O3
Artikel in diesem Heft
- Frontmatter
- New Crystal Structures
- Crystal structure of (E)-(4-imidazol-1-yl-phenyl)-(2-methoxy-benzylidene)-amine monohydrate, C17H17N3O2
- Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2H-chromen-2-one, C15H15N1O3
- Crystal structure of 4-methyl-4-nitropentanoic acid, C6H11NO4
- The crystal structure of (E)-3-(furan-2-yl)acrylonitrile, C7H5NO
- Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3
- Crystal structure of 2-(4-bromobenzyloxy)-6-chloropyridine, C12H9BrClNO
- Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
- Crystal structure of (E)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C15H11NO3
- The crystal structure of (E)-3-chloro-2-(2-(4-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
- Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
- Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O
- The crystal structure bis(dimethylsulfoxide-κ1O)-dipyridine-κ1 N-bis(m2-(Z)-3-methyl-2-oxido-N-((Z)-oxido(phenyl)methylene)benzohydrazonato-κ5)trinickel(II) - dimethylsulfoxide (1/2), C48H56N6Ni3O10S4
- Crystal structure of bis(bis(triphenylphosphine)iminium) tetradecacarbonyltetratelluridopentaferrate(2-), (PPN)2[Fe5Te4(CO)14]
- Crystal structure of 4-Hydroxy-3-(naphthalen-2-ylthio)pent-3-en-2-one, C15H14O2S
- The crystal structure of [(1,10-phenanthroline-κ2 N,N)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)nickel(II)] monohydrate, C36H26N4O5Ni
- Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5
- The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
- The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
- The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)–water–N,N-dimethylformamide(1/2/1), C27H31N3O9Co
- The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
- Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)cobalt(II)], C32H22Br2CoN4O4
- Crystal structure of (E)-5-propyl-4-((pyridin-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione – methanol (1/1), C11H13N5S
- The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5
- Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]
- Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
- Crystal structure of (2,2′-((naphthalen-1-ylmethyl)azanediyl)diacetato-κ3 N,O,O′)-(1,10-phenanthroline-κ2 N,N′)-copper(II) trihydrate, CuC27H27N3O7
- The crystal structure of tetrakis(6-phenylpyridine-2-carboxylato-κ2N,O)-bis(1H-pyrazol-3-ylamine-κ2 N:N)dicobalt(II) dihydrate, C27H23N5O5Co
- The crystal structure of bis((E)-2-((tert-butylimino)methyl)-4-chlorophenolato-κ2N,O)zinc(II), C22H26Cl2N2O2Zn
- The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20
- The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
- The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
- Crystal structure of 6-hydroxy-2,2-dimethyl-4Hbenzo[d][1,3]dioxin-4-one, C10H10O4
- The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
- Crystal structure of alaninato-κ2N,O-bis(hydroxylamido-κ2N,O)-oxido-vanadium(V), C3H10N3O5V
- Crystal structure of catena-poly[aqua-bis[μ2-6-(1H-imidazol-1-yl)nicotinato-κ2 N,O]copper(II)], C18H14N6O5Cu
- Crystal structure of diethyl 4,6-diphenyl-1,9-di-p-tolylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,5(2H)-dicarboxylate, C42H42N2O4
- The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
- Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4
- Crystal structure of (Z)-4-(furan-2-yl((4-iodophenyl)amino)methylene)-5-methyl-2(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, C21H16I N3O2
- Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
- Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C15H10BrClO2
- The crystal structure of 2-(benzhydryloxy)-3-nitropyridine, C18H14N2O3
- The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
- Crystal structure of 3,6-di-tert-butyl-1-iodo-9-methyl-8-(pyren-1-ylethynyl)-9H-carbazole, C39H34IN
- The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
- Crystal structure of 5-nitroquinazolin-4(3H)-one, C8H5N3O3