Home The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
Article Open Access

The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO

  • Jingxiao Zhang ORCID logo EMAIL logo , Fengge Gao , Linyue Qi and Xia Yin
Published/Copyright: March 24, 2022

Abstract

C23H18FeO, orthorhombic, Pna21 (no. 33), a = 28.3217(11) Å, b = 5.7477(2) Å, c = 10.3071(3) Å, β = 90°, V = 1677.84(10) Å3, Z = 4, R gt (F) = 0.0372, wR ref (F2) = 0.0713, T = 150 K.

CCDC no.: 2065554

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Red block
Size: 0.19 × 0.14 × 0.11 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.91 mm−1
Diffractometer, scan mode: D8 VENTURE, φ and ω
θmax, completeness: 26.5°, >99%
N(hkl)measured, N(hkl)unique, Rint: 16,989, 3445, 0.065
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2786
N(param)refined: 226
Programs: Bruker [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.73238 (16) 0.9104 (9) 0.6859 (4) 0.0238 (11)
H1 0.726441 1.069613 0.704405 0.029*
C2 0.76457 (14) 0.7640 (7) 0.7523 (6) 0.0239 (10)
H2 0.783808 0.808656 0.823640 0.029*
C3 0.76333 (16) 0.5392 (9) 0.6946 (4) 0.0250 (11)
H3 0.781860 0.408990 0.719775 0.030*
C4 0.72957 (16) 0.5434 (9) 0.5929 (4) 0.0222 (10)
H4 0.721114 0.415953 0.539058 0.027*
C5 0.71038 (16) 0.7753 (8) 0.5858 (5) 0.0210 (10)
C6 0.67241 (15) 0.8631 (9) 0.5012 (4) 0.0217 (10)
C7 0.61331 (16) 0.7681 (9) 0.3371 (5) 0.0260 (11)
H7 0.606950 0.930326 0.336137 0.031*
C8 0.64558 (16) 0.6954 (9) 0.4223 (4) 0.0229 (11)
H8 0.651305 0.533485 0.432224 0.027*
C9 0.58666 (14) 0.6259 (9) 0.2450 (6) 0.0263 (12)
C10 0.60632 (19) 0.4278 (10) 0.1941 (5) 0.0343 (13)
H10 0.636069 0.376366 0.225519 0.041*
C11 0.5835 (2) 0.2987 (12) 0.0963 (5) 0.0478 (16)
H11 0.597319 0.159623 0.064218 0.057*
C12 0.5416 (2) 0.3741 (14) 0.0482 (6) 0.0574 (18)
H12 0.527205 0.290544 −0.020783 0.069*
C13 0.5191 (2) 0.5714 (13) 0.0976 (5) 0.0480 (16)
C14 0.54131 (18) 0.7020 (10) 0.2003 (5) 0.0345 (13)
C15 0.51718 (16) 0.8936 (10) 0.2523 (8) 0.0434 (13)
H15 0.531423 0.980643 0.320153 0.052*
C16 0.4734 (2) 0.9585 (13) 0.2073 (7) 0.066 (2)
H16 0.457546 1.087843 0.244639 0.079*
C17 0.4523 (2) 0.8327 (18) 0.1060 (8) 0.078 (2)
H17 0.422150 0.878061 0.074817 0.094*
C18 0.4741 (2) 0.6500 (17) 0.0529 (7) 0.073 (2)
H18 0.459272 0.570010 −0.016716 0.088*
C19 0.64377 (18) 0.7403 (9) 0.8801 (5) 0.0342 (13)
H19 0.634748 0.897442 0.894386 0.041*
C20 0.67762 (18) 0.6133 (10) 0.9528 (5) 0.0324 (12)
H20 0.695308 0.670881 1.024202 0.039*
C21 0.68047 (17) 0.3855 (9) 0.9004 (5) 0.0296 (11)
H21 0.700322 0.263756 0.930592 0.035*
C22 0.64869 (15) 0.3719 (9) 0.7960 (4) 0.0246 (11)
H22 0.643379 0.238783 0.743329 0.030*
C23 0.62579 (15) 0.5912 (8) 0.7822 (6) 0.0299 (12)
H23 0.602698 0.630357 0.718992 0.036*
Fe1 0.69753 (2) 0.62801 (10) 0.76204 (7) 0.02021 (15)
O1 0.66388 (11) 1.0735 (6) 0.4978 (3) 0.0286 (8)

Source of material

At the room temperature, a mixture of 1-naphthaldehyde (10 mmol) and acetylferrocene (10 mmol) was dissolved in 25 mL ethanol solution, and then 10 mL KOH (20%) was added. After all raw material disappeared (judged by thin layer chromatography), the reaction solution was poured into 50 mL water to precipitate some solids. The solid production was gained by vacuum filtering, and then used water and 30% ethanol aqueous solution to wash it in turn. The single crystal of the title compound was achieved by recrystallization at the room temperature for seven days.

Experimental details

All H atoms were placed in geometrically idealized positions and refined riding on their parent C atoms with d(C–H) = 0.95 Å and Uiso (H) = 1.2 Ueq(C).

Comment

Ferrocene, as a classical sandwich structure, embraces the iron atom between two cyclopentadienyl rings [5], which makes it relatively stable in aqueous and aerobic environments [6]. Factually, ferrocene derivatives hold inherent remarkable stability towards air, light, heat and show a rich photochemistry, at low cost, and low toxicity [7]. Thus they are widely applied in homogeneous catalysis [8], electrochemistry [9], polymer chemistry [10], and bioorganometallic chemistry [11]. Additionally, the introduction of ferrocenyl into bioactive compounds is an effective way to develop more efficacious therapeutic agents [6]. Plentiful ferrocene derivatives were proved to display a wide spectrum of biological effects like anti-cancer [12], anti-HIV [13], anti-infective, anti-oxidant [14], antimalarial [15], anticonvulsant [16], and DNA-cleaving properties [17].

The title compound crystallizes with one molecule per asymmetric unit (see the figure). The C–Fe distances are in the range 2.025(5)–2.056(5) Å. The bond length of C6=O1 is 1.234(7) Å, which is close to the standard value. Two cyclopentadienyl rings of ferrocene substituent make dihedral angles of 15.06° and 14.97° respectively with the naphthyl moiety. Some weak intramolecular C–H···O interactions related to O atom of the acyl group and H atom of the adjacent compounds help to stabilize the present molecular conformation, which are similar to several previous works [18], [19], [20].


Corresponding author: Jingxiao Zhang, College of Food and Medicine, Luoyang Normal University, Luoyang, China, E-mail:

Funding source: Natural Science Foundation of Hubei Province http://dx.doi.org/10.13039/501100003819

Award Identifier / Grant number: 21S067

Funding source: Open Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education http://dx.doi.org/10.13039/501100008869

Award Identifier / Grant number: LKF2021012

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the Youth project of Natural Science Foundation of Hubei Province (21S067) and the Open Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education (LKF2021012).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SMART APEX-II CCD; Bruker AXS Inc.: Madison, WI, USA, 2006.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

5. Takashima, H., Inagaki, Y., Momma, H., Kwon, E., Yamaguchi, K., Setaka, W. Ferrocene-diyl bridged macrocages: steric effects of the cage on the redox properties of ferrocene moiety. Organometallics 2018, 37, 1501–1506; https://doi.org/10.1021/acs.organomet.8b00154.Search in Google Scholar

6. Chaudhary, A., Poonia, K. The redox mechanism of ferrocene and its phytochemical and biochemical compounds in anticancer therapy: a mini review. Inorg. Chem. Commun. 2021, 134, 109044; https://doi.org/10.1016/j.inoche.2021.109044.Search in Google Scholar

7. Wang, R., Chen, H., Yan, W., Zheng, M., Zhang, T., Zhang, Y. Ferrocene-containing hybrids as potential anticancer agents: current developments, mechanisms of action and structure-activity relationships. Eur. J. Med. Chem. 2020, 190, 112109; https://doi.org/10.1016/j.ejmech.2020.112109.Search in Google Scholar

8. Atkinson, R. C., Gibson, V. C., Long, N. J. The syntheses and catalytic applications of unsymmetrical ferrocene ligands. Chem. Soc. Rev. 2004, 33, 313–328; https://doi.org/10.1039/b316819k.Search in Google Scholar

9. Sahoo, S. K. Fluorescent chemosensors containing redox-active ferrocene: a review. Dalton Trans. 2021, 50, 11681–11700; https://doi.org/10.1039/d1dt02077c.Search in Google Scholar

10. Saleem, M., Yu, H., Wang, L., Zain ul, A., Khalid, H., Akram, M., Abbasi, N. M., Huang, J. Review on synthesis of ferrocene-based redox polymers and derivatives and their application in glucose sensing. Anal. Chim. Acta 2015, 876, 9–25; https://doi.org/10.1016/j.aca.2015.01.012.Search in Google Scholar

11. van Staveren, D. R., Metzler-Nolte, N. Bioorganometallic chemistry of ferrocene. Chem. Rev. 2004, 104, 5931–5986; https://doi.org/10.1021/cr0101510.Search in Google Scholar

12. Ornelas, C. Application of ferrocene and its derivatives in cancer research. New J. Chem. 2011, 35, 1973–1985; https://doi.org/10.1039/c1nj20172g.Search in Google Scholar

13. Kondapi, A. K., Satyanarayana, N., Saikrishna, A. D. A study of the Topoisomerase II activity in HIV-1 replication using the ferrocene derivatives as probes. Arch. Biochem. Biophys. 2006, 450, 123–132; https://doi.org/10.1016/j.abb.2006.04.003.Search in Google Scholar

14. Liu, Z. Q. Potential applications of ferrocene as a structural feature in antioxidants. Mini Rev. Med. Chem. 2011, 11, 345–358; https://doi.org/10.2174/138955711795305326.Search in Google Scholar

15. Peter, S., Aderibigbe, B. A. Ferrocene-based compounds with antimalaria/anticancer activity. Molecules 2019, 24, 3604; https://doi.org/10.3390/molecules24193604.Search in Google Scholar

16. Adil, S., Khan, A.-U., Badshah, H., Asghar, F., Usman, M., Badshah, A., Ali, S. In silico and in vivo investigation of ferrocene-incorporated acyl ureas and homoleptic cadmium carboxylate derivatives for anticonvulsant, anxiolytic, and sedative potential. Drug Dev. Res. 2018, 79, 184–197; https://doi.org/10.1002/ddr.21435.Search in Google Scholar

17. Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A., Labib, A. A. On the medicinal chemistry of ferrocene. Appl. Organomet. Chem. 2007, 21, 613–625; https://doi.org/10.1002/aoc.1202.Search in Google Scholar

18. Zhang, J., Huang, X. The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 445–447. https://doi.org/10.1515/NCRS-2022-0048.Search in Google Scholar

19. Zhang, L., Xie, M. The crystal structure of (E)-3-(2-chlorophenyl)-1-ferrocenylprop-2-en-1-one, C19H15ClFeO. Z. Kristallogr. N. Cryst. Struct. 2022; https://doi.org/10.1515/NCRS-2022-0042.Search in Google Scholar

20. Imhof, W. 3-Ferrocenyl-prop-2-enal. Acta Crystallogr. 2004, E60, m1234–m1236; https://doi.org/10.1107/s1600536804019129.Search in Google Scholar

Received: 2022-01-28
Accepted: 2022-03-14
Published Online: 2022-03-24
Published in Print: 2022-06-27

© 2022 Jingxiao Zhang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-(4-imidazol-1-yl-phenyl)-(2-methoxy-benzylidene)-amine monohydrate, C17H17N3O2
  4. Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2H-chromen-2-one, C15H15N1O3
  5. Crystal structure of 4-methyl-4-nitropentanoic acid, C6H11NO4
  6. The crystal structure of (E)-3-(furan-2-yl)acrylonitrile, C7H5NO
  7. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3
  8. Crystal structure of 2-(4-bromobenzyloxy)-6-chloropyridine, C12H9BrClNO
  9. Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
  10. Crystal structure of (E)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C15H11NO3
  11. The crystal structure of (E)-3-chloro-2-(2-(4-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  12. Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
  13. Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O
  14. The crystal structure bis(dimethylsulfoxide-κ1O)-dipyridine-κ1 N-bis(m2-(Z)-3-methyl-2-oxido-N-((Z)-oxido(phenyl)methylene)benzohydrazonato-κ5)trinickel(II) - dimethylsulfoxide (1/2), C48H56N6Ni3O10S4
  15. Crystal structure of bis(bis(triphenylphosphine)iminium) tetradecacarbonyltetratelluridopentaferrate(2-), (PPN)2[Fe5Te4(CO)14]
  16. Crystal structure of 4-Hydroxy-3-(naphthalen-2-ylthio)pent-3-en-2-one, C15H14O2S
  17. The crystal structure of [(1,10-phenanthroline-κ2 N,N)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)nickel(II)] monohydrate, C36H26N4O5Ni
  18. Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5
  19. The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
  20. The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
  21. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)–water–N,N-dimethylformamide(1/2/1), C27H31N3O9Co
  22. The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
  23. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)cobalt(II)], C32H22Br2CoN4O4
  24. Crystal structure of (E)-5-propyl-4-((pyridin-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione – methanol (1/1), C11H13N5S
  25. The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5
  26. Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]
  27. Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
  28. Crystal structure of (2,2′-((naphthalen-1-ylmethyl)azanediyl)diacetato-κ3 N,O,O′)-(1,10-phenanthroline-κ2 N,N′)-copper(II) trihydrate, CuC27H27N3O7
  29. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylato-κ2N,O)-bis(1H-pyrazol-3-ylamine-κ2 N:N)dicobalt(II) dihydrate, C27H23N5O5Co
  30. The crystal structure of bis((E)-2-((tert-butylimino)methyl)-4-chlorophenolato-κ2N,O)zinc(II), C22H26Cl2N2O2Zn
  31. The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20
  32. The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
  33. The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
  34. Crystal structure of 6-hydroxy-2,2-dimethyl-4Hbenzo[d][1,3]dioxin-4-one, C10H10O4
  35. The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
  36. Crystal structure of alaninato-κ2N,O-bis(hydroxylamido-κ2N,O)-oxido-vanadium(V), C3H10N3O5V
  37. Crystal structure of catena-poly[aqua-bis[μ2-6-(1H-imidazol-1-yl)nicotinato-κ2 N,O]copper(II)], C18H14N6O5Cu
  38. Crystal structure of diethyl 4,6-diphenyl-1,9-di-p-tolylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,5(2H)-dicarboxylate, C42H42N2O4
  39. The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
  40. Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4
  41. Crystal structure of (Z)-4-(furan-2-yl((4-iodophenyl)amino)methylene)-5-methyl-2(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, C21H16I N3O2
  42. Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
  43. Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C15H10BrClO2
  44. The crystal structure of 2-(benzhydryloxy)-3-nitropyridine, C18H14N2O3
  45. The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
  46. Crystal structure of 3,6-di-tert-butyl-1-iodo-9-methyl-8-(pyren-1-ylethynyl)-9H-carbazole, C39H34IN
  47. The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
  48. Crystal structure of 5-nitroquinazolin-4(3H)-one, C8H5N3O3
Downloaded on 5.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0058/html
Scroll to top button