Home Physical Sciences The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
Article Open Access

The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO

  • Jingxiao Zhang ORCID logo EMAIL logo and Xuezhen Huang
Published/Copyright: March 24, 2022

Abstract

C21H18FeO, monoclinic, P21/c (no. 14), a = 5.8577(3) Å, b = 11.2160(5) Å, c = 24.1507(11) Å, β = 92.803(2)°, V = 1584.80(13) Å3, Z = 4, R gt (F) = 0.0383, wRref(F2) = 0.0755, T = 170 K.

CCDC no.: 2065555

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.15 × 0.08 × 0.05 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.95 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 26.4°, 98%
N(hkl)measured, N(hkl)unique, Rint: 13,035, 3155, 0.057
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2442
N(param)refined: 208
Programs: Bruker [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.6092 (5) 0.6450 (2) 0.45378 (11) 0.0250 (6)
C2 0.3890 (5) 0.6563 (2) 0.42937 (11) 0.0286 (7)
H2 0.333735 0.598064 0.403471 0.034*
C3 0.2509 (5) 0.7509 (2) 0.44242 (12) 0.0327 (7)
H3 0.101505 0.757029 0.425504 0.039*
C4 0.3283 (6) 0.8369 (3) 0.47996 (13) 0.0371 (8)
H4 0.232148 0.901581 0.488960 0.045*
C5 0.5456 (5) 0.8280 (3) 0.50419 (13) 0.0373 (8)
H5 0.599545 0.886808 0.529961 0.045*
C6 0.6858 (5) 0.7336 (2) 0.49103 (12) 0.0307 (7)
H6 0.836035 0.728935 0.507564 0.037*
C7 0.7622 (5) 0.5475 (2) 0.43969 (11) 0.0282 (6)
H7 0.920384 0.558360 0.448883 0.034*
C8 0.7011 (5) 0.4443 (2) 0.41511 (11) 0.0263 (6)
H8 0.543198 0.430383 0.406796 0.032*
C9 0.8609 (5) 0.3537 (2) 0.40062 (11) 0.0264 (6)
H9 1.019145 0.370907 0.406179 0.032*
C10 0.8029 (5) 0.2470 (2) 0.37992 (11) 0.0270 (6)
H10 0.645524 0.229196 0.373107 0.032*
C11 0.9738 (5) 0.1558 (2) 0.36722 (11) 0.0245 (6)
C12 0.8907 (4) 0.0331 (2) 0.35751 (11) 0.0233 (6)
C13 0.6656 (4) −0.0129 (2) 0.36558 (10) 0.0247 (6)
H13 0.543226 0.029005 0.381142 0.030*
C14 0.6592 (5) −0.1318 (2) 0.34619 (11) 0.0272 (6)
H14 0.531747 −0.184131 0.346898 0.033*
C15 0.8753 (5) −0.1599 (2) 0.32549 (11) 0.0271 (6)
H15 0.916686 −0.234024 0.309825 0.033*
C16 1.0185 (5) −0.0591 (2) 0.33209 (11) 0.0254 (6)
H16 1.172299 −0.053496 0.321543 0.031*
C17 0.7128 (5) 0.1310 (2) 0.23405 (11) 0.0272 (6)
H17 0.768398 0.208418 0.243295 0.033*
C18 0.4905 (5) 0.0871 (2) 0.24370 (12) 0.0290 (7)
H18 0.371710 0.129506 0.260508 0.035*
C19 0.6922 (5) −0.0610 (2) 0.20186 (11) 0.0278 (6)
H19 0.731279 −0.135130 0.185808 0.033*
C20 0.8372 (5) 0.0399 (2) 0.20834 (11) 0.0279 (6)
H20 0.990438 0.045424 0.197386 0.034*
C21 0.4790 (5) −0.0317 (2) 0.22356 (11) 0.0281 (6)
H21 0.350085 −0.082952 0.224483 0.034*
Fe1 0.73454 (6) −0.01599 (3) 0.28395 (2) 0.02055 (11)
O1 1.1785 (3) 0.17972 (16) 0.36518 (8) 0.0331 (5)

Source of material

First, 10 mmol cinnamaldehyde and 10 mmol acetylferrocene were mixed and put into a round-bottomed flask. Fifty milliliters ethanol was added to mixture, and stirred to dissolve the solid at room temperature. Subsequently, 10 mL KOH (20%) was added. After all staring material had vanished (monitored by thin layer chromatography), the reactants were poured into 50 mL water, and then separate out the solids. The solid product was treated through vacuum filtering, and washed by water and 30% ethanol aqueous solution respectively. The single crystal of the title molecule was acquired by recrystallization at the room temperature for one week.

Experimental details

All H atoms from C atoms were placed in idealized geometry and treated as riding on their parent C atoms, with d(C–H) = 0.95 Å, and Uiso(H) = 1.2 Ueq(C).

Comment

Cinnamaldehyde derivatives are feature the cinnamoyl moiety, which serve as electrophiles to react with some enzymes and receptors [5]. With the highly reactive α, β-unsaturated carbonyl pharmacophore, these derivatives exhibit excellent biological activities [6], like antifungal [5], anti-bacterial [7], anti-tubercular, anti-oxidant [8], insecticidal, anti-cancer, anti-inflammatory [9], anti-microbial [10], anti-angiogenic [11], and immunomodulatory properties [12]. Therefore, cinnamaldehyde derivatives attracted significant interest to design and synthesize more effective therapeutic agents [13, 14]. It is worth noting that the stable sandwich-like structure of ferrocene significantly changes the properties of its derivatives [15]. The incorporation of a ferrocenyl group in an existing bioactive compound is an effective strategy to develop novel therapeutic agent with innovative bioactive activity [16, 17].

The asymmetric unit comprises one molecule of the title compound (see the figure). The structure of cinnamaldehyde has an aliphatic aldoxyl unit, which leads to undesirable functionality because of its high reactivity [1821]. The introduction of ferrocene framework makes the compound more stable than cinnamaldehyde. For the title compound, the stability of crystal mainly depends on the different intermolecular and intramolecular C–H···O interactions relating to the O atom of the aldehyde group. The two cyclopenta-1,3-dien rings of ferrocene scaffold make dihedral angles of 13.18° and 13.42° respectively with the phenyl group. All bond lengths are in the expected ranges.


Corresponding author: Jingxiao Zhang, College of Food and Medicine, Luoyang Normal University, Luoyang, China, E-mail:

Funding source: Natural Science Foundation of Hubei Province http://dx.doi.org/10.13039/501100003819

Award Identifier / Grant number: 21S067

Funding source: Open Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education http://dx.doi.org/10.13039/501100008869

Award Identifier / Grant number: LKF2021012

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the Youth project of Natural Science Foundation of Hubei Province (21S067) and the Open Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education (LKF2021012).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SMART APEX-II CCD; Bruker AXS Inc.: Madison, WI, USA, 2006.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

5. Shreaz, S., Wani, W. A., Behbehani, J. M., Raja, V., Irshad, M., Karched, M., Ali, I., Siddiqi, W. A., Hun, L. T. Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 2016, 112, 116–131; https://doi.org/10.1016/j.fitote.2016.05.016.Search in Google Scholar

6. Chen, B. J., Fu, C. S., Li, G. H., Wang, X. N., Lou, H. X., Ren, D. M., Shen, T. Cinnamaldehyde analogues as potential therapeutic agents. Mini Rev. Med. Chem. 2017, 17, 33–43; https://doi.org/10.2174/1389557516666160121120744.Search in Google Scholar

7. Doyle, A. A., Stephens, J. C. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 2019, 139, 104405; https://doi.org/10.1016/j.fitote.2019.104405.Search in Google Scholar

8. Suryanti, V., Wibowo, F., Khotijah, S., Andalucki, N. Antioxidant activities of cinnamaldehyde derivatives. IOP Conf. Ser. Mater. Sci. Eng. 2018, 333, 012077; https://doi.org/10.1088/1757-899x/333/1/012077.Search in Google Scholar

9. Ahn, S., Kim, E., Lee, K., Lee, D.-C. Cinnamaldehyde derivatives inhibit degranulation and inflammatory mediator production in rat basophilic leukemia cells. Int. Immunopharm. 2016, 38, 342–348; https://doi.org/10.1016/j.intimp.2016.06.018.Search in Google Scholar

10. Ravishankar, S., Zhu, L., Reyna-Granados, J., Law, B., Joens, L., Friedman, M. Carvacrol and cinnamaldehyde inactivate antibiotic-resistant Salmonella enterica in buffer and on celery and oysters. J. Food Protect. 2010, 73, 234–240; https://doi.org/10.4315/0362-028x-73.2.234.Search in Google Scholar

11. Kwon, B.-M., Lee, S.-H., Cho, Y.-K., Bok, S.-H., So, S.-H., Youn, M.-R., Chang, S.-I. Synthesis and biological activity of cinnamaldehydes as angiogenesis inhibitors. Bioorg. Med. Chem. Lett 1997, 7, 2473–2476; https://doi.org/10.1016/s0960-894x(97)10008-7.Search in Google Scholar

12. Koh, W. S., Yoon, S. Y., Kwon, B. M., Jeong, T. C., Nam, K. S., Han, M. Y. Cinnamaldehyde inhibits lymphocyte proliferation and modulates T-cell differentiation. Int. J. Immunopharm. 1998, 20, 643–660; https://doi.org/10.1016/s0192-0561(98)00064-2.Search in Google Scholar

13. Li, X., Sheng, J., Huang, G., Ma, R., Yin, F., Song, D., Zhao, C., Ma, S. Design, synthesis and antibacterial activity of cinnamaldehyde derivatives as inhibitors of the bacterial cell division protein FtsZ. Eur. J. Med. Chem. 2015, 97, 32–41; https://doi.org/10.1016/j.ejmech.2015.04.048.Search in Google Scholar

14. Gan, Z., Huang, J., Chen, J., Nisar, M. F., Qi, W. Synthesis and antifungal activities of cinnamaldehyde derivatives against Penicillium digitatum causing citrus green mold. J. Food Qual. 2020, 2020, 8898692; https://doi.org/10.1155/2020/8898692.Search in Google Scholar

15. Ludwig, B. S., Correia, J. D. G., Kühn, F. E. Ferrocene derivatives as anti-infective agents. Coord. Chem. Rev. 2019, 396, 22–48; https://doi.org/10.1016/j.ccr.2019.06.004.Search in Google Scholar

16. Paul, A., Borrelli, R., Bouyanfif, H., Gottis, S., Sauvage, F. Tunable redox potential, optical properties, and enhanced stability of modified ferrocene-based complexes. ACS Omega 2019, 4, 14780–14789; https://doi.org/10.1021/acsomega.9b01341.Search in Google Scholar

17. Patra, M., Gasser, G. The medicinal chemistry of ferrocene and its derivatives. Nat. Rev. Chem. 2017, 1, 0066; https://doi.org/10.1038/s41570-017-0066.Search in Google Scholar

18. LoPachin, R. M., Gavin, T. Molecular mechanisms of aldehyde toxicity: a chemical perspective. Chem. Res. Toxicol. 2014, 27, 1081–1091; https://doi.org/10.1021/tx5001046.Search in Google Scholar

19. Polaquini, C. R., Torrezan, G. S., Santos, V. R., Nazaré, A. C., Campos, D. L., Almeida, L. A., Silva, I. C., Ferreira, H., Pavan, F. R., Duque, C., Regasini, L. O. Antibacterial and antitubercular activities of cinnamylideneacetophenones. Molecules 2017, 22, 1685; https://doi.org/10.3390/molecules22101685.Search in Google Scholar

20. Yathirajan, H. S., Bindya, S., Mithun, A., Narayana, B., Bolte, M. 5-Phenyl-1-(2-thienyl)penta-2,4-dien-1-one. Acta Crystallogr. 2007, E63, o61–o62; https://doi.org/10.1107/s1600536806050860.Search in Google Scholar

21. Maynadie, J., Delavaux-Nicot, B., Lavabre, D., Donnadieu, B., Daran, J.-C., Sournia-Saquet, A. From calcium interaction to calcium electrochemical detection by [(C5H5)Fe(C5H4COCH db CHC6H4NEt2)] and its two novel structurally characterized derivatives. Inorg. Chem. 2004, 43, 2064–2077; https://doi.org/10.1021/ic0345828.Search in Google Scholar

Received: 2022-01-25
Accepted: 2022-03-14
Published Online: 2022-03-24
Published in Print: 2022-06-27

© 2022 Jingxiao Zhang and Xuezhen Huang, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-(4-imidazol-1-yl-phenyl)-(2-methoxy-benzylidene)-amine monohydrate, C17H17N3O2
  4. Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2H-chromen-2-one, C15H15N1O3
  5. Crystal structure of 4-methyl-4-nitropentanoic acid, C6H11NO4
  6. The crystal structure of (E)-3-(furan-2-yl)acrylonitrile, C7H5NO
  7. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3
  8. Crystal structure of 2-(4-bromobenzyloxy)-6-chloropyridine, C12H9BrClNO
  9. Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
  10. Crystal structure of (E)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C15H11NO3
  11. The crystal structure of (E)-3-chloro-2-(2-(4-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  12. Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
  13. Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O
  14. The crystal structure bis(dimethylsulfoxide-κ1O)-dipyridine-κ1 N-bis(m2-(Z)-3-methyl-2-oxido-N-((Z)-oxido(phenyl)methylene)benzohydrazonato-κ5)trinickel(II) - dimethylsulfoxide (1/2), C48H56N6Ni3O10S4
  15. Crystal structure of bis(bis(triphenylphosphine)iminium) tetradecacarbonyltetratelluridopentaferrate(2-), (PPN)2[Fe5Te4(CO)14]
  16. Crystal structure of 4-Hydroxy-3-(naphthalen-2-ylthio)pent-3-en-2-one, C15H14O2S
  17. The crystal structure of [(1,10-phenanthroline-κ2 N,N)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)nickel(II)] monohydrate, C36H26N4O5Ni
  18. Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5
  19. The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
  20. The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
  21. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)–water–N,N-dimethylformamide(1/2/1), C27H31N3O9Co
  22. The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
  23. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)cobalt(II)], C32H22Br2CoN4O4
  24. Crystal structure of (E)-5-propyl-4-((pyridin-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione – methanol (1/1), C11H13N5S
  25. The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5
  26. Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]
  27. Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
  28. Crystal structure of (2,2′-((naphthalen-1-ylmethyl)azanediyl)diacetato-κ3 N,O,O′)-(1,10-phenanthroline-κ2 N,N′)-copper(II) trihydrate, CuC27H27N3O7
  29. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylato-κ2N,O)-bis(1H-pyrazol-3-ylamine-κ2 N:N)dicobalt(II) dihydrate, C27H23N5O5Co
  30. The crystal structure of bis((E)-2-((tert-butylimino)methyl)-4-chlorophenolato-κ2N,O)zinc(II), C22H26Cl2N2O2Zn
  31. The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20
  32. The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
  33. The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
  34. Crystal structure of 6-hydroxy-2,2-dimethyl-4Hbenzo[d][1,3]dioxin-4-one, C10H10O4
  35. The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
  36. Crystal structure of alaninato-κ2N,O-bis(hydroxylamido-κ2N,O)-oxido-vanadium(V), C3H10N3O5V
  37. Crystal structure of catena-poly[aqua-bis[μ2-6-(1H-imidazol-1-yl)nicotinato-κ2 N,O]copper(II)], C18H14N6O5Cu
  38. Crystal structure of diethyl 4,6-diphenyl-1,9-di-p-tolylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,5(2H)-dicarboxylate, C42H42N2O4
  39. The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
  40. Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4
  41. Crystal structure of (Z)-4-(furan-2-yl((4-iodophenyl)amino)methylene)-5-methyl-2(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, C21H16I N3O2
  42. Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
  43. Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C15H10BrClO2
  44. The crystal structure of 2-(benzhydryloxy)-3-nitropyridine, C18H14N2O3
  45. The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
  46. Crystal structure of 3,6-di-tert-butyl-1-iodo-9-methyl-8-(pyren-1-ylethynyl)-9H-carbazole, C39H34IN
  47. The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
  48. Crystal structure of 5-nitroquinazolin-4(3H)-one, C8H5N3O3
Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0048/html
Scroll to top button