Startseite The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
Artikel Open Access

The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2

  • Hua-Rui Wang ORCID logo EMAIL logo
Veröffentlicht/Copyright: 16. März 2022

Abstract

C38H36N14O10Cd2, triclinic, P 1 (no. 2), a = 10.220(2) Å, b = 10.685(2) Å, c = 10.777(2) Å, α = 84.18(3)°, β = 72.02(3)°, γ = 75.28(3)°, V = 1082.3(4) Å3, Z = 1, R gt (F) = 0.0268, wR ref (F2) = 0.0732, T = 293(2) K.

CCDC no.: 2156770

A part of the title crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.29 × 0.25 × 0.24 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.06 mm−1
Diffractometer, scan mode: Rigaku Saturn 724, ω
θmax, completeness: 27.9°, 99%
N(hkl)measured, N(hkl)unique, Rint: 13,220, 5081, 0.021
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 4850
N(param)refined: 317
Programs: CrysAlisPRO [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Cd1 0.10338 (2) 0.36516 (2) 0.85953 (2) 0.02185 (6)
O1 −0.12044 (19) 0.3947 (2) 0.8383 (2) 0.0413 (5)
O2 0.3438 (2) 0.2290 (2) 0.7716 (2) 0.0455 (5)
O3 0.1755 (2) 0.2144 (2) 0.6919 (2) 0.0405 (5)
O4 0.1455 (2) 0.4721 (3) 1.0112 (2) 0.0525 (6)
N1 0.1588 (3) −0.4840 (2) 1.6969 (2) 0.0364 (5)
N2 0.2742 (4) −0.3785 (4) 1.5259 (4) 0.0703 (10)
N3 0.1365 (3) −0.3577 (2) 1.5306 (2) 0.0369 (5)
C2 −0.1965 (2) 0.4702 (3) 0.9282 (2) 0.0288 (5)
C3 −0.3544 (2) 0.4877 (2) 0.9646 (2) 0.0264 (5)
C6 0.2823 (4) −0.4554 (4) 1.6260 (4) 0.0636 (11)
H6 0.3664 −0.4881 1.6472 0.076*
C8 0.3009 (3) 0.1835 (2) 0.6921 (3) 0.0315 (5)
C9 0.4052 (3) 0.0878 (2) 0.5928 (2) 0.0309 (5)
C10 0.0006 (3) 0.0935 (2) 1.4043 (2) 0.0315 (5)
H10 0.0012 0.1572 1.3388 0.038*
C11 0.0426 (3) −0.0357 (2) 1.3695 (2) 0.0266 (5)
C13 −0.4432 (3) 0.5673 (3) 1.0662 (3) 0.0381 (6)
H13 −0.4057 0.6121 1.1111 0.046*
C14 0.0863 (3) −0.0715 (2) 1.2265 (2) 0.0355 (6)
H14Aa 0.1879 −0.1056 1.1967 0.043*
H14Ba 0.0414 −0.1390 1.2187 0.043*
H14Cb 0.1723 −0.1399 1.2083 0.043*
H14Db 0.0128 −0.1047 1.2113 0.043*
C15 0.0711 (3) −0.4213 (3) 1.6313 (3) 0.0358 (6)
H15 −0.0242 −0.4222 1.6534 0.043*
C16 0.3558 (3) 0.0119 (3) 0.5287 (3) 0.0411 (7)
H16 0.2590 0.0196 0.5477 0.049*
C17 0.0425 (3) −0.1309 (2) 1.4664 (2) 0.0293 (5)
C22 0.0792 (4) −0.2732 (3) 1.4348 (3) 0.0472 (8)
H22A −0.0052 −0.2966 1.4312 0.057*
H22B 0.1482 −0.2869 1.3493 0.057*
C24 0.5497 (3) 0.0758 (3) 0.5637 (3) 0.0414 (7)
H24 0.5836 0.1265 0.6060 0.050*
C25 −0.4119 (3) 0.4203 (3) 0.9000 (3) 0.0385 (6)
H25 −0.3524 0.3660 0.8328 0.046*
N5a 0.0472 (3) 0.0383 (2) 1.1441 (2) 0.0299 (6)
N6a −0.0911 (3) 0.0843 (3) 1.1479 (3) 0.0420 (6)
N7a 0.0426 (3) 0.2091 (2) 1.0167 (2) 0.0325 (6)
C7a −0.0883 (3) 0.1861 (3) 1.0703 (3) 0.0366 (7)
H7a −0.1690 0.2385 1.0531 0.044*
C18a 0.1242 (3) 0.1139 (3) 1.0658 (3) 0.0324 (6)
H18a 0.2215 0.1016 1.0481 0.039*
N4Ab 0.1196 (18) 0.2073 (15) 1.0188 (17) 0.0325 (6)
N5Ab 0.1094 (18) 0.0340 (16) 1.1408 (19) 0.0299 (6)
N6Ab 0.2382 (17) 0.0563 (16) 1.1208 (19) 0.0420 (6)
C7Ab 0.2374 (19) 0.1705 (17) 1.057 (2) 0.0366 (7)
H7Ab 0.3068 0.2168 1.0418 0.044*
C18Ab 0.0372 (18) 0.1271 (18) 1.0782 (19) 0.0324 (6)
H18Ab −0.0549 0.1346 1.0765 0.039*
O6 0.5457 (6) 0.0841 (5) 0.8968 (5) 0.159 (2)
H6A 0.6322 0.0571 0.8540 0.239*
H6B 0.5029 0.1357 0.8488 0.239*
N4c 0.7325 (17) −0.249 (2) 0.7327 (19) 0.151 (4)
C1c 0.6128 (19) −0.235 (2) 0.749 (2) 0.116 (4)
C19c 0.481 (3) −0.255 (4) 0.735 (4) 0.127 (6)
H19Ac 0.4810 −0.2394 0.6460 0.190*
H19Bc 0.4018 −0.1953 0.7897 0.190*
H19Cc 0.4738 −0.3418 0.7614 0.190*
N8d 0.7420 (11) −0.3494 (13) 0.6303 (12) 0.151 (4)
C4d 0.4824 (16) −0.219 (2) 0.7783 (19) 0.127 (6)
H4Ad 0.4098 −0.2354 0.7477 0.190*
H4Bd 0.4788 −0.1275 0.7699 0.190*
H4Cd 0.4676 −0.2457 0.8682 0.190*
C5d 0.6274 (12) −0.2934 (13) 0.6968 (13) 0.116 (4)
  1. aOccupancy: 0.879 (3), bOccupancy: 0.121 (3), cOccupancy: 0.384 (8), dOccupancy: 0.616 (8).

Source of material

Terephthalic acid (0.017 g, 0.1 mmol), 1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene (0.04 g, 0.1 mmol) and cadmium(II) acetate (0.023 g, 0.1 mmol) were added to the mixture of water (3 mL) and acetonitrile (7 mL) in a Teflon-lined stainless steel reactor. The mixture was heated at 413 K for three days, and then slowly cooled down to room temperature. Colorless crystals of the title compound were obtained.

Experimental details

Absorption corrections were applied by using multi-scan program [1]. Using Olex2 [2], the structure was solved with the ShelXT [3] structure solution program using Intrinsic Phasing and refined with the ShelXL [4] refinement package. The H atoms bonded to C atoms were fixed, with C–H distance of 0.93 Å; and/or positioned geometrically in the riding-model approximation, with C–H distance of 0.97 Å; Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(O).

Comment

The 1,2,4-triazole containing ligands are considered as interesting heterocycles because of their strong coordination ability to transition metal ion and effective biological importance [5], [6], [7], [8]. Complexes containing 1,2,4-triazole ligands often possess rather peculiar structures and specific properties [9], [10], [11], [12], [13]. For example, as the flexible tetra(triazole) ligand, 1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene (ttyb) has many advantages: (i) strong coordination ability; (ii) more potential coordination points and coordination modes; (iii) can rotate around the central C–C bond and adopt different conformations [14], [15], [16]. On the basis of the above considerations, we choosed the ttyb ligand as a functional ligand and employed “mix-ligand” synthetic strategy to explore the assembly with “mixed” d the ttyb and aromatic polycarboxylate ligands. In this context, we reacted ttyb with Cd2+ ions, then employed terephthalic acid (PTA) ligand as an auxiliary ligand, which features one three-dimensional pillared layered structure, namely [Cd2(PTA)2(ttyb)](H2O)2(CH3CN)2.

The most obvious structural feature of the title complex is the pillared layered structure where the layers are formed of cadmium atoms bridged by the dicarboxylate while the pillar is the ttyb ligand. The secondary building unit (SBU) node consists of a cadmium dimer in distorted octahedral geometry formed by two bidentate bridging carboxylates from two PTA2− anions, two chelating PTA2− anions, and two pairs of ttyb ligand in trans-positions pointing along the c-axis. The linear dicarboxylate extends the two-blade paddle-wheel Cd2(COO)4 unit to produce a perfect 2D square grid. The Cd···Cd distance is 4.322 Å. It is worth mentioning that PTA2− ligands in the title structure adopt two different coordination modes: one PTA2− ligand (defined as A type) adopts a (η1:η1) – (η1:η1) – μ4 coordination mode that the PTA2− ligand acts as a four connector connecting four cadmium atoms, whereas the other (defined as B type) adopts a (η1:η1) – (η1:η1) – μ2 coordination mode. Due to the different coordination modes of the carboxylate within the dimeric subunits, the (4, 4) grid deviates from being a square with sides of 8.0 and 12.5 Å. Ligand ttyb acts as μ4-bridge linking four Cd(II) ions, and connect the 2D layer to extend to a 3D structure. The Cd–O lengths are in the range of 2.286(2)–2.465(2) Å. The Cd–N lengths are in the range of 2.295(2)–2.311(2) Å. The second key feature of the structure is the interpenetration because long ttyb ligands were incorporated. Two ttyb pillars at each cadmium node connect the layers to generate one of the two identical 3D-frameworks. The motifs are mutually interdigitated to create a stable 3D assembled framework. Comparing the title structure (I) with {[Cd(PTA)(ttyb)0.5(H2O)]} (II) [15], both of which prepared from the same starting reactants, some important similarities and differences can be found as follows: (i) The structure. The title structure is three-dimensional pillared layered structure, while II is two-dimensional structure. (ii) The composition. There are free molecules of acetonitrile molecules in I, but absence in II. This is because of the use of the mixed H2O-acetonitrile solvent for synthesis of I, while mixed H2O-1,4-dioxane solvent for that of II. (iii) The coordination mode of ttyb ligand. In I, ligand ttyb function as a tetradentate ligand to coordinate with four Cd atoms. In II, ligand ttyb function as a bidentate ligand to bind with two Cd atoms, another two 1,2,4-triazol groups do not take part in the coordination. (iv) The coordination geometry of Cd(II) ion. It is in octahedron for I, while in tetragonal pyramid for II.


Corresponding author: Hua-Rui Wang, College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, LuoYang Normal University, Luoyang, Henan 471934, P. R. China, E-mail:

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by LuoYang Normal University.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Rigaku, Oxford Diffraction Ltd. CrysAlispro. Rigaku: Abingdon, Oxfordshire, England, 2006.Suche in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Chang, X.-H., Yang, X.-G., Zhai, Z.-M., Chen, J.-Y., Li, F.-F. Synthesis, structure and highly enhanced phosphorescence of a cadmium(II) coordination polymer assembled with 1,4-naphthalenedicarboxylic acid and 2-propylimidazole. Chin. J. Struct. Chem. 2021, 40, 187–192.Suche in Google Scholar

6. Yang, X. G., Ma, L. F., Yan, D. P. Facile synthesis of 1D organic–inorganic perovskite micro-belts with high water stability for sensing and photonic applications. Chem. Sci. 2019, 10, 4567–4572; https://doi.org/10.1039/c9sc00162j.Suche in Google Scholar

7. Yang, X. G., Zhai, Z. M., Lu, X. M., Zhao, Y., Chang, X. H., Ma, L. F. Room temperature phosphorescence of Mn(II) and Zn(II) coordination polymers for photoelectron response applications. Dalton Trans. 2019, 48, 10785–10789; https://doi.org/10.1039/c9dt02178g.Suche in Google Scholar

8. Chang, X.-H., Qin, J.-H., Han, M.-L., Ma, L.-F., Wang, L.-Y. Exploring the structural diversities and magnetic properties of copper(II) and manganese(II) complexes based on 5-methoxyisophthalate and flexible bis(imidazole) ligands. CrystEngComm 2014, 16, 870–882; https://doi.org/10.1039/c3ce41641k.Suche in Google Scholar

9. Xu, G.-C., Hua, Q., Okamura, T., Bai, Z.-S., Ding, Y.-J., Huang, Y.-Q., Liu, G.-X., Sun, W.-Y., Ueyama, N. Cadmium(ii) coordination polymers with flexible tetradentate ligand 1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene: anion effect and reversible anion exchange property. CrystEngComm 2009, 11, 261–270; https://doi.org/10.1039/b813220h.Suche in Google Scholar

10. Hua, Q., Zhao, Y., Xu, G.-C., Chen, M.-S., Su, Z., Cai, K., Sun, W.-Y. Synthesis, structures, and properties of zinc(II) and cadmium(II) complexes with 1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene and multicarboxylate ligands. Cryst. Growth Des. 2010, 10, 2553–2562; https://doi.org/10.1021/cg901480y.Suche in Google Scholar

11. Fenton, H., Tidmarsh, I. S., Ward, M. D. Homonuclear and heteronuclear complexes of a four-armed octadentate ligand: synthetic control based on matching ligand denticity with metal ion coordination preferences. Dalton Trans. 2009, 21, 4199–4207; https://doi.org/10.1039/b901891c.Suche in Google Scholar

12. Hua, Q., Su, Z., Zhao, Y., Okamura, T., Xu, G. C., Sun, W.-Y., Ueyama, N. Synthesis, structure and property of manganese(II) complexes with mixed tetradentate imidazole-containing ligand and benzenedicarboxylate. Inorg. Chim. Acta. 2010, 363, 3550–3557; https://doi.org/10.1016/j.ica.2010.07.012.Suche in Google Scholar

13. Dang, L.-L., Li, T.-T., Cui, Z., Sui, D., Ma, L.-F., Jin, G.-X. Selective construction and stability studies of molecular trefoil knot and Solomon link. Dalton Trans. 2021, 50, 16984–16989; https://doi.org/10.1039/d1dt02755g.Suche in Google Scholar

14. Qin, J.-H., Xu, P., Huang, Y.-D., Xiao, L.-Y., Lu, W., Yang, X.-G., Ma, L., Zang, S.-Q. High loading of Mn(II)-metalated porphyrin in MOF for photocatalytic CO2 reduction in gas-solid condition. Chem. Commun. 2021, 57, 8468–8471; https://doi.org/10.1039/d1cc02847b.Suche in Google Scholar

15. Wang, H.-R. The crystal structure of poly[diaqua-(μ2–1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ2N:N′)-bis(μ3-terephthalato-κ3O:O′:O″)dicadmium(II)], C17H15N6O5Cd. Z. Kristallogr. N. Cryst. Struct., in press; https://doi.org/10.1515/ncrs-2021–0427.10.1515/ncrs-2021-0427Suche in Google Scholar

16. Qin, J. H., Zhang, H., Sun, P., Huang, Y. D., Shen, Q., Yang, X. G., Ma, L. F. Ionic liquid induced highly dense assembly of porphyrin in MOF nanosheets for photodynamic therapy. Dalton Trans. 2020, 49, 17772–17778; https://doi.org/10.1039/d0dt03031g.Suche in Google Scholar

Received: 2022-01-25
Accepted: 2022-03-07
Published Online: 2022-03-16
Published in Print: 2022-06-27

© 2022 Hua-Rui Wang, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-(4-imidazol-1-yl-phenyl)-(2-methoxy-benzylidene)-amine monohydrate, C17H17N3O2
  4. Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2H-chromen-2-one, C15H15N1O3
  5. Crystal structure of 4-methyl-4-nitropentanoic acid, C6H11NO4
  6. The crystal structure of (E)-3-(furan-2-yl)acrylonitrile, C7H5NO
  7. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3
  8. Crystal structure of 2-(4-bromobenzyloxy)-6-chloropyridine, C12H9BrClNO
  9. Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
  10. Crystal structure of (E)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C15H11NO3
  11. The crystal structure of (E)-3-chloro-2-(2-(4-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  12. Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
  13. Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O
  14. The crystal structure bis(dimethylsulfoxide-κ1O)-dipyridine-κ1 N-bis(m2-(Z)-3-methyl-2-oxido-N-((Z)-oxido(phenyl)methylene)benzohydrazonato-κ5)trinickel(II) - dimethylsulfoxide (1/2), C48H56N6Ni3O10S4
  15. Crystal structure of bis(bis(triphenylphosphine)iminium) tetradecacarbonyltetratelluridopentaferrate(2-), (PPN)2[Fe5Te4(CO)14]
  16. Crystal structure of 4-Hydroxy-3-(naphthalen-2-ylthio)pent-3-en-2-one, C15H14O2S
  17. The crystal structure of [(1,10-phenanthroline-κ2 N,N)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)nickel(II)] monohydrate, C36H26N4O5Ni
  18. Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5
  19. The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
  20. The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
  21. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)–water–N,N-dimethylformamide(1/2/1), C27H31N3O9Co
  22. The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
  23. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)cobalt(II)], C32H22Br2CoN4O4
  24. Crystal structure of (E)-5-propyl-4-((pyridin-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione – methanol (1/1), C11H13N5S
  25. The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5
  26. Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]
  27. Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
  28. Crystal structure of (2,2′-((naphthalen-1-ylmethyl)azanediyl)diacetato-κ3 N,O,O′)-(1,10-phenanthroline-κ2 N,N′)-copper(II) trihydrate, CuC27H27N3O7
  29. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylato-κ2N,O)-bis(1H-pyrazol-3-ylamine-κ2 N:N)dicobalt(II) dihydrate, C27H23N5O5Co
  30. The crystal structure of bis((E)-2-((tert-butylimino)methyl)-4-chlorophenolato-κ2N,O)zinc(II), C22H26Cl2N2O2Zn
  31. The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20
  32. The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
  33. The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
  34. Crystal structure of 6-hydroxy-2,2-dimethyl-4Hbenzo[d][1,3]dioxin-4-one, C10H10O4
  35. The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
  36. Crystal structure of alaninato-κ2N,O-bis(hydroxylamido-κ2N,O)-oxido-vanadium(V), C3H10N3O5V
  37. Crystal structure of catena-poly[aqua-bis[μ2-6-(1H-imidazol-1-yl)nicotinato-κ2 N,O]copper(II)], C18H14N6O5Cu
  38. Crystal structure of diethyl 4,6-diphenyl-1,9-di-p-tolylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,5(2H)-dicarboxylate, C42H42N2O4
  39. The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
  40. Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4
  41. Crystal structure of (Z)-4-(furan-2-yl((4-iodophenyl)amino)methylene)-5-methyl-2(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, C21H16I N3O2
  42. Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
  43. Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C15H10BrClO2
  44. The crystal structure of 2-(benzhydryloxy)-3-nitropyridine, C18H14N2O3
  45. The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
  46. Crystal structure of 3,6-di-tert-butyl-1-iodo-9-methyl-8-(pyren-1-ylethynyl)-9H-carbazole, C39H34IN
  47. The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
  48. Crystal structure of 5-nitroquinazolin-4(3H)-one, C8H5N3O3
Heruntergeladen am 5.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0053/html
Button zum nach oben scrollen