Home The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
Article Open Access

The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO

  • Jingxiao Zhang ORCID logo EMAIL logo , Xiangjie Hu , Xianghui Liu and Yifan He
Published/Copyright: March 23, 2022

Abstract

C22H22FeO, monoclinic, P21 (no. 4), a = 10.204(3) Å, b = 5.7956(16) Å, c = 14.591(4) Å, β = 97.876(10)°, V = 854.7(4) Å3, Z = 2, R gt (F) = 0.0676, wR ref (F2) = 0.1647, T = 170 K.

CCDC no.: 2065552

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Red needle
Size: 0.12 × 0.08 × 0.03 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.89 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 26.4°, 99%
N(hkl)measured, N(hkl)unique, Rint: 4779, 3020, 0.074
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2006
N(param)refined: 189
Programs: Bruker [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.8412 (7) 0.3029 (12) 0.4418 (3) 0.025 (2)
C2 0.8293 (7) 0.1697 (10) 0.3594 (4) 0.027 (2)
H2 0.801942 0.013134 0.353334 0.033*
C3 0.8654 (7) 0.3117 (13) 0.2876 (3) 0.031 (3)
H3 0.866538 0.266769 0.225079 0.037*
C4 0.8997 (7) 0.5326 (11) 0.3256 (5) 0.035 (3)
H4 0.927701 0.661446 0.293038 0.042*
C5 0.8847 (8) 0.5272 (10) 0.4209 (4) 0.028 (3)
H5 0.900906 0.651735 0.463294 0.033*
C6 0.5870 (8) 0.6932 (12) 0.2765 (5) 0.036 (3)
H6 0.614039 0.817307 0.240885 0.043*
C7 0.5483 (8) 0.4701 (14) 0.2428 (4) 0.054 (3)
H7 0.544871 0.418723 0.180717 0.065*
C8 0.5157 (8) 0.3373 (11) 0.3183 (6) 0.047 (3)
H8 0.486557 0.181432 0.315528 0.057*
C9 0.5342 (7) 0.4783 (14) 0.3986 (5) 0.047 (3)
H9 0.519686 0.433362 0.459013 0.057*
C10 0.5783 (7) 0.6983 (12) 0.3728 (5) 0.033 (3)
H10 0.598473 0.826355 0.412881 0.040*
C11 0.8016 (10) 0.2197 (19) 0.5311 (6) 0.028 (2)
C12 0.8015 (10) 0.3941 (17) 0.6042 (6) 0.032 (3)
H12 0.831308 0.546075 0.594138 0.039*
C13 0.7602 (10) 0.3417 (17) 0.6848 (6) 0.027 (2)
H13 0.725369 0.191130 0.690636 0.033*
C14 0.7636 (6) 0.4963 (9) 0.7658 (3) 0.023 (2)
C15 0.7090 (6) 0.4192 (9) 0.8425 (4) 0.027 (2)
H15 0.666868 0.272772 0.841092 0.032*
C16 0.7159 (6) 0.5563 (11) 0.9211 (3) 0.033 (3)
H16 0.678587 0.503617 0.973539 0.040*
C17 0.7775 (7) 0.7705 (10) 0.9232 (3) 0.026 (2)
C18 0.8321 (6) 0.8476 (8) 0.8465 (4) 0.029 (2)
H18 0.874224 0.994027 0.847904 0.035*
C19 0.8252 (6) 0.7105 (10) 0.7678 (3) 0.031 (3)
H19 0.862507 0.763186 0.715456 0.037*
C20 0.7887 (10) 0.924 (3) 1.0111 (6) 0.035 (3)
H20 0.826183 1.075273 0.994796 0.042*
C21 0.6571 (10) 0.973 (3) 1.0426 (7) 0.048 (3)
H21A 0.598545 1.047266 0.992381 0.072*
H21B 0.669905 1.075368 1.096489 0.072*
H21C 0.617178 0.827768 1.059448 0.072*
C22 0.8871 (14) 0.818 (2) 1.0870 (8) 0.055 (4)
H22A 0.851598 0.672062 1.107247 0.083*
H22B 0.902200 0.924403 1.139566 0.083*
H22C 0.970835 0.788607 1.063321 0.083*
Fe1 0.70803 (13) 0.4484 (3) 0.34352 (8) 0.0253 (4)
O1 0.7700 (7) 0.0189 (11) 0.5397 (4) 0.0334 (19)

Source of material

A mixture of 10 mmol acetylferrocene and 10 mmol cuminaldehyde was added to 25 mL of ethanol, and kept stirring to make mixture completely soluble at the room temperature. Then 10 mL of KOH (20%) was added to the above solution. Until all starting materials disappeared on the thin layer chromatography, the solution was added to 50 mL water, and the precipitated solids were filtered off. The solid was obtained by vacuum filtering, and washing with water and 30% ethanol respectively. Crystals were acquired by slow evaporation at the room temperature for one week.

Experimental details

Hydrogen atoms were placed in their geometrically idealized positions and treated as riding on their parent C atoms with d(C–H) = 0.95 Å and Uiso (H) = 1.2 Ueq(C).

Comment

Cuminaldehyde, i.e., 4-isopropylbenzaldehyde, is an oxidized aldehyde monoterpene compound, and is a major essential oil of green cumin seeds, eucalyptus, myrrh, and cassia [56]. Due to its characteristic aroma, this compound has been used as a fragrance chemical in cosmetic. Additionally, cuminaldehyde has been reported to exhibit various therapeutic properties, such as anti-oxidant, anti-helminthic [7], anti-inflammatory [6], anti-nociceptive, anti-neuropathic [8], antibacterial [9], antidiabetic [10], anti-cancer [11], and antifungal effects [12, 13]. However, there is limit research on its carbonyl derivatives [14], [15], [16]. As mentioned in our previous works [17], [18], ferrocene has a stable sandwich structure. The incorporation of ferrocenyl into biological molecules offers the potential to develop better and more efficacious therapeutic drugs.

The optimized molecular structure of the title compound is displayed in the figure, and it adopts an E configuration about the C12–C13 double bond. There is a slight twist between the two cyclopentadienyl rings of ferrocenyl moiety forming a dihedral angle of 2.61°. The dihedral angle between the phenyl ring (C14/C15/C16/C17/C18/C19) and the cyclopentadienyl ring (C1/C2/C3/C4/C5) is 14.85°, and the dihedral angle between the phenyl ring (C14/C15/C16/C17/C18/C19) and the other cyclopentadienyl ring (C6/C7/C8/C9/C10) is 17.12°. The intramolecular hydrogen bonding interactions between the acyl O atoms and C–H atoms stabilize the crystal packing. Parameters are similar to related structures [17], [18], [19].


Corresponding author: Jingxiao Zhang, College of Food and Medicine, Luoyang Normal University, Luoyang, China, E-mail:

Funding source: Beijing Technology and Business University http://dx.doi.org/10.13039/501100005706

Award Identifier / Grant number: CRS-2021-04

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by Open Research Fund Program of Institute of Cosmetic Regulatory Science, Beijing Technology and Business University (No. CRS-2021-04).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SMART APEX-II CCD; Bruker AXS Inc.: Madison, WI, USA, 2006.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

5. Singh, R. P., Gangadharappa, H., Mruthunjaya, K. Cuminum cyminum – a popular spice: an updated review. Phcog. J. 2017, 9, 292–301; https://doi.org/10.5530/pj.2017.3.51.Search in Google Scholar

6. Tomy, M. J., Dileep, K. V., Prasanth, S., Preethidan, D. S., Sabu, A., Sadasivan, C., Haridas, M. Cuminaldehyde as a lipoxygenase inhibitor: in vitro and in silico validation. Appl. Biochem. Biotechnol. 2014, 174, 388–397; https://doi.org/10.1007/s12010-014-1066-0.Search in Google Scholar

7. Goel, V., Singla, L. D., Choudhury, D. Cuminaldehyde induces oxidative stress-mediated physical damage and death of Haemonchus contortus. Biomed. Pharmacother. 2020, 130, 110411; https://doi.org/10.1016/j.biopha.2020.110411.Search in Google Scholar

8. Koohsari, S., Sheikholeslami, M. A., Parvardeh, S., Ghafghazi, S., Samadi, S., Poul, Y. K., Pouriran, R., Amiri, S. Antinociceptive and antineuropathic effects of cuminaldehyde, the major constituent of Cuminum cyminum seeds: possible mechanisms of action. J. Ethnopharmacol. 2020, 255, 112786; https://doi.org/10.1016/j.jep.2020.112786.Search in Google Scholar

9. Wongkattiya, N., Sanguansermsri, P., Fraser, I. H., Sanguansermsri, D. Antibacterial activity of cuminaldehyde on food-borne pathogens, the bioactive component of essential oil from Cuminum cyminum L. collected in Thailand. J. Compl. Integr. Med. 2019, 16. 20180195; https://doi.org/10.1515/jcim-2018-0195.Search in Google Scholar

10. Lee, H.-S. Cuminaldehyde: aldose reductase and α-glucosidase inhibitor derived from cuminum cyminum L. seeds. J. Agric. Food Chem. 2005, 53, 2446–2450; https://doi.org/10.1021/jf048451g.Search in Google Scholar

11. Tsai, K.-D., Liu, Y.-H., Chen, T.-W., Yang, S.-M., Wong, H.-Y., Cherng, J., Chou, K.-S., Cherng, J.-M. Cuminaldehyde from Cinnamomum verum induces cell death through targeting topoisomerase 1 and 2 in human colorectal adenocarcinoma COLO 205 cells. Nutrients 2016, 8, 318; https://doi.org/10.3390/nu8060318.Search in Google Scholar

12. Hajlaoui, H., Mighri, H., Noumi, E., Snoussi, M., Trabelsi, N., Ksouri, R., Bakhrouf, A. Chemical composition and biological activities of Tunisian Cuminum cyminum L. essential oil: a high effectiveness against Vibrio spp. strains. Food Chem. Toxicol. 2010, 48, 2186–2192; https://doi.org/10.1016/j.fct.2010.05.044.Search in Google Scholar

13. Ebada, M. E. Cuminaldehyde: a potential drug candidate. J. Pharmacol. Clin. Res. 2017, 2, 555585.10.19080/JPCR.2017.02.555585Search in Google Scholar

14. Kaur, P., Sharma, S., Gaba, J. Preparation and biological activities of novel cuminaldehyde derivatives. Org. Prep. Proced. Int. 2021, 53, 240–253; https://doi.org/10.1080/00304948.2020.1871574.Search in Google Scholar

15. Bennie, R. B., David, S. T., Sivasakthi, M., Mary, S. A. J., Seethalakshmi, M., Abraham, S. D., Joel, C., Antony, R. Synthesis, spectral characterization and antimicrobial studies of Schiff base transition metal complexes derived from cuminaldehyde and 4-aminoantipyrine. Chem. Sci. Trans. 2014, 3, 937–944.Search in Google Scholar

16. Kaushik, P. K., Varshney, V., Kumar, P., Bhatia, P., Shukla, S. Microwave-assisted synthesis, characterization, and antimicrobial activity of some odorant Schiff bases derived from naturally occurring carbonyl compounds and anthranilic acid. Synth. Commun. 2016, 46, 2053–2062; https://doi.org/10.1080/00397911.2016.1245749.Search in Google Scholar

17. Zhang, J., Huang, X. The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C19H15ClFeO. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 445–447, https://doi.org/10.1515/NCRS-2022-0048.Search in Google Scholar

18. Zhang, L., Xie, M. The crystal structure of (E)-3-(2-chlorophenyl)-1-ferrocenylprop-2-en-1-one, C19H15ClFeO. Z. Kristallogr. N. Cryst. Struct. 2022, https://doi.org/10.1515/NCRS-2022-0042.Search in Google Scholar

19. Muller, T. J., Conradie, J., Erasmus, E. A spectroscopic, electrochemical and DFT study of para-substituted ferrocene-containing chalcone derivatives: structure of FcCOCHCH(p-tBuC6H4). Polyhedron 2012, 33, 257–266; https://doi.org/10.1016/j.poly.2011.11.034.Search in Google Scholar

Received: 2022-01-30
Accepted: 2022-03-14
Published Online: 2022-03-23
Published in Print: 2022-06-27

© 2022 Jingxiao Zhang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-(4-imidazol-1-yl-phenyl)-(2-methoxy-benzylidene)-amine monohydrate, C17H17N3O2
  4. Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2H-chromen-2-one, C15H15N1O3
  5. Crystal structure of 4-methyl-4-nitropentanoic acid, C6H11NO4
  6. The crystal structure of (E)-3-(furan-2-yl)acrylonitrile, C7H5NO
  7. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3
  8. Crystal structure of 2-(4-bromobenzyloxy)-6-chloropyridine, C12H9BrClNO
  9. Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
  10. Crystal structure of (E)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C15H11NO3
  11. The crystal structure of (E)-3-chloro-2-(2-(4-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  12. Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
  13. Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O
  14. The crystal structure bis(dimethylsulfoxide-κ1O)-dipyridine-κ1 N-bis(m2-(Z)-3-methyl-2-oxido-N-((Z)-oxido(phenyl)methylene)benzohydrazonato-κ5)trinickel(II) - dimethylsulfoxide (1/2), C48H56N6Ni3O10S4
  15. Crystal structure of bis(bis(triphenylphosphine)iminium) tetradecacarbonyltetratelluridopentaferrate(2-), (PPN)2[Fe5Te4(CO)14]
  16. Crystal structure of 4-Hydroxy-3-(naphthalen-2-ylthio)pent-3-en-2-one, C15H14O2S
  17. The crystal structure of [(1,10-phenanthroline-κ2 N,N)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)nickel(II)] monohydrate, C36H26N4O5Ni
  18. Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5
  19. The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
  20. The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
  21. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)–water–N,N-dimethylformamide(1/2/1), C27H31N3O9Co
  22. The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
  23. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)cobalt(II)], C32H22Br2CoN4O4
  24. Crystal structure of (E)-5-propyl-4-((pyridin-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione – methanol (1/1), C11H13N5S
  25. The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5
  26. Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]
  27. Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
  28. Crystal structure of (2,2′-((naphthalen-1-ylmethyl)azanediyl)diacetato-κ3 N,O,O′)-(1,10-phenanthroline-κ2 N,N′)-copper(II) trihydrate, CuC27H27N3O7
  29. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylato-κ2N,O)-bis(1H-pyrazol-3-ylamine-κ2 N:N)dicobalt(II) dihydrate, C27H23N5O5Co
  30. The crystal structure of bis((E)-2-((tert-butylimino)methyl)-4-chlorophenolato-κ2N,O)zinc(II), C22H26Cl2N2O2Zn
  31. The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20
  32. The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
  33. The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
  34. Crystal structure of 6-hydroxy-2,2-dimethyl-4Hbenzo[d][1,3]dioxin-4-one, C10H10O4
  35. The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
  36. Crystal structure of alaninato-κ2N,O-bis(hydroxylamido-κ2N,O)-oxido-vanadium(V), C3H10N3O5V
  37. Crystal structure of catena-poly[aqua-bis[μ2-6-(1H-imidazol-1-yl)nicotinato-κ2 N,O]copper(II)], C18H14N6O5Cu
  38. Crystal structure of diethyl 4,6-diphenyl-1,9-di-p-tolylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,5(2H)-dicarboxylate, C42H42N2O4
  39. The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
  40. Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4
  41. Crystal structure of (Z)-4-(furan-2-yl((4-iodophenyl)amino)methylene)-5-methyl-2(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, C21H16I N3O2
  42. Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
  43. Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C15H10BrClO2
  44. The crystal structure of 2-(benzhydryloxy)-3-nitropyridine, C18H14N2O3
  45. The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
  46. Crystal structure of 3,6-di-tert-butyl-1-iodo-9-methyl-8-(pyren-1-ylethynyl)-9H-carbazole, C39H34IN
  47. The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
  48. Crystal structure of 5-nitroquinazolin-4(3H)-one, C8H5N3O3
Downloaded on 5.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0063/html
Scroll to top button