Home Physical Sciences Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
Article Open Access

Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2

  • Ze-Sen Jin ORCID logo , E. Liu , Xiao-jing Liu ORCID logo , Zhuang-yu Li , Fang-fang Jian EMAIL logo and Tongling Liang
Published/Copyright: March 7, 2022

Abstract

C10H16N12O6S2, triclinic, P 1 (no. 2), a = 7.6977(2) Å, b = 11.5353(3) Å, c = 11.7533(3) Å, α = 67.973(2)°, β = 87.916(2)°, γ = 88.347(2)°, V = 966.69(5) Å3, Z = 2, R gt (F) = 0.0290, wR ref (F 2) = 0.0818, T = 170K.

CCDC no.: 2150119

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.35 × 0.25 × 0.22 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.34 mm−1
Diffractometer, scan mode: XtaLAB AFC10 (RCD3), ω
θ max, completeness: 30.9°, >99%
N(hkl)measured, N(hkl)unique, R int: 14,660, 5143, 0.014
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 4688
N(param)refined: 271
Programs: CrysAlisPRO [1], SHELX [2], Olex2 [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
S1 −0.02938 (4) 1.14231 (2) 0.24276 (3) 0.02553 (8)
N1 −0.08184 (12) 0.92768 (9) 0.41287 (8) 0.02321 (18)
N2 0.31167 (11) 1.00396 (8) 0.23385 (8) 0.02025 (17)
N3 0.46678 (11) 0.94566 (8) 0.22837 (8) 0.02179 (18)
H3 0.489769 0.872227 0.281252 0.026*
N4 0.54896 (12) 1.11884 (9) 0.06023 (9) 0.02497 (19)
H4A 0.623089 1.156278 0.002427 0.030*
H4B 0.452541 1.155728 0.066689 0.030*
N5 0.72923 (12) 0.94579 (10) 0.13173 (9) 0.0273 (2)
H5A 0.805461 0.981200 0.074764 0.033*
H5B 0.748427 0.871488 0.184202 0.033*
C1 −0.22320 (15) 1.11768 (12) 0.32364 (12) 0.0284 (2)
H1 −0.312389 1.176945 0.311035 0.034*
C2 −0.22817 (14) 0.99984 (11) 0.40844 (11) 0.0266 (2)
H2 −0.324413 0.969667 0.460351 0.032*
C3 0.03466 (13) 0.99220 (9) 0.33083 (9) 0.01957 (19)
C4 0.20394 (14) 0.93955 (10) 0.31734 (10) 0.0211 (2)
H4 0.234070 0.858913 0.369479 0.025*
C5 0.58299 (13) 1.00537 (10) 0.13861 (9) 0.01993 (19)
S1A 1.22478 (4) 0.55622 (3) 1.00624 (3) 0.02790 (8)
N1A 1.32956 (13) 0.32877 (9) 1.06870 (9) 0.0256 (2)
N2A 1.19702 (12) 0.51244 (8) 0.76713 (8) 0.02126 (18)
N3A 1.20609 (12) 0.50465 (8) 0.65399 (8) 0.02169 (18)
H3A 1.260960 0.443648 0.642744 0.026*
N4A 1.01502 (13) 0.67214 (9) 0.58345 (9) 0.02411 (19)
H4AA 0.962792 0.728763 0.523990 0.029*
H4AB 0.994036 0.666128 0.657812 0.029*
N5A 1.16450 (13) 0.59928 (9) 0.44882 (8) 0.02395 (19)
H5AA 1.114858 0.654655 0.387025 0.029*
H5AB 1.238466 0.547044 0.437522 0.029*
C1A 1.27698 (16) 0.47576 (12) 1.15541 (10) 0.0286 (2)
H1A 1.270341 0.508253 1.216909 0.034*
C2A 1.32931 (16) 0.35815 (11) 1.17141 (10) 0.0279 (2)
H2A 1.363031 0.300708 1.247257 0.033*
C3A 1.27680 (14) 0.42520 (10) 0.97454 (10) 0.0208 (2)
C4A 1.27005 (15) 0.42237 (10) 0.85270 (10) 0.0234 (2)
H4AC 1.318780 0.355105 0.836762 0.028*
C5A 1.12731 (13) 0.59449 (9) 0.56061 (9) 0.01926 (19)
O1 0.98220 (10) 0.74665 (8) 0.23715 (7) 0.02680 (17)
O2 1.24634 (11) 0.74315 (8) 0.16780 (8) 0.03120 (19)
O3 1.05183 (13) 0.86196 (10) 0.05015 (8) 0.0437 (3)
N6 1.09389 (12) 0.78448 (8) 0.15090 (8) 0.02186 (18)
O1A 1.39236 (12) 0.29907 (8) 0.61837 (7) 0.0319 (2)
O2A 1.40854 (13) 0.41839 (8) 0.42539 (8) 0.0350 (2)
O3A 1.51643 (12) 0.23101 (8) 0.48687 (9) 0.0339 (2)
N6A 1.43877 (12) 0.31603 (9) 0.50890 (9) 0.02292 (18)

Source of material

2-Thiazolecarboxaldehyde (1.13 g, 0.01 mol) was placed in 15 ml ethanol at room temperature, added into aminoguanidine nitrate (1.37 g, 0.01 mol) solution containing 10 ml water and 8 ml ethanol. The mixture was heated and stirred for 8 h, cooled to room temperature. Then the precipitate was removed, and the filtrate was left standing to precipitate colorless block crystal.

Experimental details

Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms.

Comment

Schiff Base compounds have attracted many researchers due to their catalysis [4], simulation of biological enzymes and antibodies, molecular recognition [5] and other aspects. This is mainly due to the C=N group interaction. In recent decades, the preparation, physical and chemical properties of Schiff bases and their complexes have been extensively reported. They can be used as chelating agents [6], stabilizers [7] and bioactive agents [8]. The thiazole ring exists in many kinds of bioactive heterocycles and natural products, and is considered as the main component of many bioactive compounds. It is reported that Schiff bases containing thiazole may show a wide range of applications in medicine [9], as an antioxidant [10], or in catalysis [11]. Therefore, the synthesis and properties of thiazoles Schiff bases have become a very active topic in heterocyclic chemistry and coordination chemistry. According to previous studies [12, 13], we synthesized the title compound.

The structure of the title compound contains a pair of independent cations and anions (see the figure). Moreover, all bond lengths and bond angles of the title compound are in the normal range [14].


Corresponding author: Fang-Fang Jian, School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang Hekeda Recycling Energy Co. LTD, Luoyang, Henan 471003, P. R. China, E-mail:

Funding source: Henan University of Science and Technology Distinguished Professor Open Fund http://dx.doi.org/10.13039/501100003172

Award Identifier / Grant number: 135100001

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was funded by the Henan University of Science and Technology Distinguished Professor Open Fund (Grant No. 135100001).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Agilent Technologies. CRYSALISPRO; Agilent Technologies: Santa Clara, CA, USA, 2017.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

4. Gayen, F. R., Ali, A. A., Bora, D., Roy, S., Saha, S., Saikia, L., Goswamee, R. L., Saha, B. A ferrocene functionalized Schiff base containing Cu(II) complex: synthesis, characterization and parts-per- million level catalysis for azide alkyne cycloaddition. Dalton Trans. 2021, 50, 6735; https://doi.org/10.1039/d1dt90072b.Search in Google Scholar

5. Daniel, S. Colorimetric molecular receptors for the sensing of acetate, fluoride and mercury based on Schiff’s bases. Bull. Mater. Sci. 2020, 43, 157; https://doi.org/10.1007/s12034-020-02143-1.Search in Google Scholar

6. Ismael, M., Abdel-Mawgoud, A. M. M., Rabia, M. K., Abdou, A. Ni(II) mixed-ligand chelates based on 2-hydroxy-1-naphthaldehyde as antimicrobial agents: synthesis, characterization, and molecular modeling. J. Mol. Liq. 2021, 330, 115611; https://doi.org/10.1016/j.molliq.2021.115611.Search in Google Scholar

7. Elmehbad, N. Y., Mohamed, N. A. Evaluation of poly(N-benzoyl-4-(N-itaconimido)benzhydrazide) and its metal complexes as microbial inhibitors and thermal stabilizers for poly(vinyl chloride). Polym. Bull. 2021, 1–26; https://doi.org/10.1080/00914037.2021.1963724.Search in Google Scholar

8. Uddin, M. N., Ahmed, S. S., Alam, S. M. R. REVIEW: biomedical applications of Schiff base metal complexes. J. Coord. Chem. 2020, 73, 3109–3149; https://doi.org/10.1080/00958972.2020.1854745.Search in Google Scholar

9. Cordeiro, R., Kachroo, M. Synthesis and biological evaluation of anti-tubercular activity of Schiff bases of 2-amino thiazoles. Bioorg. Med. Chem. Lett 2020, 30, 127655; https://doi.org/10.1016/j.bmcl.2020.127655.Search in Google Scholar

10. Lemilemu, F., Bitew, M., Demissie, T. B., Eswaramoorthy, R., Endale, M. Synthesis, antibacterial and antioxidant activities of thiazole-based Schiff base derivatives: a combined experimental and computational study. BMC Chem. 2021, 15, 67; https://doi.org/10.1186/s13065-021-00791-w.Search in Google Scholar

11. Kumar, P., Lymperopoulou, S., Loukopoulos, E., Matsuda, W., Kourkoumelis, N., Seki, S., Kostakis, G. E. Catalytic and conductivity studies in two dimensional coordination polymers built with a thiazole based ligand. Polyhedron 2018, 150, 21–27; https://doi.org/10.1016/j.poly.2018.04.040.Search in Google Scholar

12. Jin, Z.-S., Liu, X.-J., Li, Z.-Y., Liu, E., Jian, F.-F., Liang, T. Crystal structure of (E)-(2-((1H-pyrrol-2-yl)methylene) hydrazineyl)(amino)methaniminium nitrate monohydrate, C6H12N6O4. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 143–145; https://doi.org/10.1515/ncrs-2021-0419.Search in Google Scholar

13. Wang, B., Zhang, P.-Z., Chen, X., Jia, A.-Q., Zhang, Q.-F. Syntheses and crystal structures of guanidine hydrochlorides with two Schiff base functions as efficient colorimetric and selective sensors for fluoride. Z. Naturforsch., B 2018, 150, 601–609; https://doi.org/10.1515/znb-2018-0102.Search in Google Scholar

14. Laverick, R. J., Carter, A. B., Klein, H. A., Fitzpatrick, A. J., Keene, T. D., Morgan, G. G., Kitchen, J. A. Synthesis and characterisation of Fe(III) and Co(III) complexes of thiazole- containing thiosemicarbazone ligands. Inorg. Chim. Acta 2017, 463, 126–133; https://doi.org/10.1016/j.ica.2017.04.008.Search in Google Scholar

Received: 2022-01-10
Accepted: 2022-02-04
Published Online: 2022-03-07
Published in Print: 2022-06-27

© 2022 Ze-Sen Jin et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-(4-imidazol-1-yl-phenyl)-(2-methoxy-benzylidene)-amine monohydrate, C17H17N3O2
  4. Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2H-chromen-2-one, C15H15N1O3
  5. Crystal structure of 4-methyl-4-nitropentanoic acid, C6H11NO4
  6. The crystal structure of (E)-3-(furan-2-yl)acrylonitrile, C7H5NO
  7. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3
  8. Crystal structure of 2-(4-bromobenzyloxy)-6-chloropyridine, C12H9BrClNO
  9. Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
  10. Crystal structure of (E)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C15H11NO3
  11. The crystal structure of (E)-3-chloro-2-(2-(4-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  12. Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
  13. Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O
  14. The crystal structure bis(dimethylsulfoxide-κ1O)-dipyridine-κ1 N-bis(m2-(Z)-3-methyl-2-oxido-N-((Z)-oxido(phenyl)methylene)benzohydrazonato-κ5)trinickel(II) - dimethylsulfoxide (1/2), C48H56N6Ni3O10S4
  15. Crystal structure of bis(bis(triphenylphosphine)iminium) tetradecacarbonyltetratelluridopentaferrate(2-), (PPN)2[Fe5Te4(CO)14]
  16. Crystal structure of 4-Hydroxy-3-(naphthalen-2-ylthio)pent-3-en-2-one, C15H14O2S
  17. The crystal structure of [(1,10-phenanthroline-κ2 N,N)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)nickel(II)] monohydrate, C36H26N4O5Ni
  18. Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5
  19. The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
  20. The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
  21. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)–water–N,N-dimethylformamide(1/2/1), C27H31N3O9Co
  22. The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
  23. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)cobalt(II)], C32H22Br2CoN4O4
  24. Crystal structure of (E)-5-propyl-4-((pyridin-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione – methanol (1/1), C11H13N5S
  25. The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5
  26. Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]
  27. Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
  28. Crystal structure of (2,2′-((naphthalen-1-ylmethyl)azanediyl)diacetato-κ3 N,O,O′)-(1,10-phenanthroline-κ2 N,N′)-copper(II) trihydrate, CuC27H27N3O7
  29. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylato-κ2N,O)-bis(1H-pyrazol-3-ylamine-κ2 N:N)dicobalt(II) dihydrate, C27H23N5O5Co
  30. The crystal structure of bis((E)-2-((tert-butylimino)methyl)-4-chlorophenolato-κ2N,O)zinc(II), C22H26Cl2N2O2Zn
  31. The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20
  32. The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
  33. The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
  34. Crystal structure of 6-hydroxy-2,2-dimethyl-4Hbenzo[d][1,3]dioxin-4-one, C10H10O4
  35. The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
  36. Crystal structure of alaninato-κ2N,O-bis(hydroxylamido-κ2N,O)-oxido-vanadium(V), C3H10N3O5V
  37. Crystal structure of catena-poly[aqua-bis[μ2-6-(1H-imidazol-1-yl)nicotinato-κ2 N,O]copper(II)], C18H14N6O5Cu
  38. Crystal structure of diethyl 4,6-diphenyl-1,9-di-p-tolylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,5(2H)-dicarboxylate, C42H42N2O4
  39. The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
  40. Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4
  41. Crystal structure of (Z)-4-(furan-2-yl((4-iodophenyl)amino)methylene)-5-methyl-2(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, C21H16I N3O2
  42. Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
  43. Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C15H10BrClO2
  44. The crystal structure of 2-(benzhydryloxy)-3-nitropyridine, C18H14N2O3
  45. The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
  46. Crystal structure of 3,6-di-tert-butyl-1-iodo-9-methyl-8-(pyren-1-ylethynyl)-9H-carbazole, C39H34IN
  47. The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
  48. Crystal structure of 5-nitroquinazolin-4(3H)-one, C8H5N3O3
Downloaded on 2.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0007/html
Scroll to top button