Home The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
Article Open Access

The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2

  • Devin J. Angevine ORCID logo and Jason B. Benedict ORCID logo EMAIL logo
Published/Copyright: March 16, 2022

Abstract

C8H8O4·C10H8N2, monoclinic, P21/c (no. 14), a = 13.427(4) Å, b = 10.069(3) Å, c = 12.751(4) Å, β = 116.124(7)°, V = 1547.7(8) Å3, Z = 4, R gt (F) = 0.0426, wR ref (F2) = 0.1152, T = 90 K.

CCDC no.: 2156828

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless plate
Size: 0.35 × 0.12 × 0.02 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.10 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 29.0°, >99%
N(hkl)measured, N(hkl)unique, Rint: 24407, 4098, 0.060
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3215
N(param)refined: 226
Programs: Bruker [1], Olex2 [2], SHELX [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 1.09607 (10) 0.45834 (13) 0.80850 (11) 0.0167 (3)
C2 0.99142 (10) 0.46545 (12) 0.82183 (11) 0.0154 (2)
C3 0.97455 (10) 0.37150 (12) 0.89381 (11) 0.0159 (2)
H3 1.029132 0.305530 0.932321 0.019*
C4 0.87823 (10) 0.37483 (12) 0.90882 (11) 0.0153 (2)
C5 0.92922 (11) 0.18543 (13) 1.03420 (12) 0.0205 (3)
H5A 0.946260 0.136130 0.977827 0.031*
H5B 0.897505 0.124807 1.071614 0.031*
H5C 0.997416 0.224875 1.093751 0.031*
C6 0.79791 (10) 0.47377 (12) 0.85243 (11) 0.0158 (2)
C7 0.81397 (11) 0.56382 (12) 0.77869 (11) 0.0176 (3)
H7 0.758598 0.628350 0.738390 0.021*
C8 0.91054 (11) 0.56047 (12) 0.76321 (11) 0.0169 (3)
H8 0.921056 0.622671 0.712961 0.020*
C9 0.66153 (11) 0.25859 (13) 0.57113 (12) 0.0201 (3)
H9 0.738985 0.275912 0.608242 0.024*
C10 0.59381 (10) 0.32881 (13) 0.60809 (11) 0.0182 (3)
H10 0.624593 0.393448 0.668170 0.022*
C11 0.47967 (10) 0.30336 (12) 0.55590 (11) 0.0155 (2)
C12 0.43914 (11) 0.20780 (13) 0.46776 (12) 0.0193 (3)
H12 0.362390 0.186513 0.430581 0.023*
C13 0.51320 (11) 0.14449 (13) 0.43552 (12) 0.0208 (3)
H13 0.484632 0.080936 0.374279 0.025*
C14 0.40541 (10) 0.37396 (12) 0.59617 (11) 0.0157 (2)
C15 0.42670 (11) 0.50417 (13) 0.63812 (11) 0.0180 (3)
H15 0.488739 0.551079 0.639722 0.022*
C16 0.35639 (11) 0.56438 (13) 0.67743 (12) 0.0193 (3)
H16 0.371066 0.653584 0.704153 0.023*
C17 0.24845 (11) 0.37797 (14) 0.63836 (13) 0.0224 (3)
H17 0.186313 0.333192 0.638701 0.027*
C18 0.31262 (11) 0.31054 (13) 0.59541 (13) 0.0213 (3)
H18 0.293845 0.222744 0.565984 0.026*
N1 0.62331 (9) 0.16781 (11) 0.48594 (10) 0.0201 (2)
N2 0.26870 (9) 0.50268 (11) 0.67950 (10) 0.0198 (2)
O1 1.10629 (8) 0.55635 (9) 0.74365 (9) 0.0222 (2)
H1 1.172 (2) 0.541 (2) 0.730 (2) 0.061 (7)*
O2 1.16489 (8) 0.37046 (10) 0.85106 (9) 0.0224 (2)
O3 0.85112 (7) 0.28829 (9) 0.97499 (8) 0.0195 (2)
O4 0.70308 (7) 0.48247 (9) 0.86544 (8) 0.0189 (2)
H4 0.6996 (18) 0.421 (2) 0.917 (2) 0.053 (6)*

Source of material

4,4′–Bipyridine (156.2 mg, 1.0 mmol) and p-vanillic acid (168.1 mg, 1.0 mmol) were dissolved in methanol in a 200 mL beaker. The beaker was left open to allow for crystal formation upon slow evaporation. Coformers were sourced from Combi–Blocks (p-vanillic acid, 98% and 4,4′-bipyridine, 97%). Methanol was purchased from Fischer Chemical (99.9%). No further material refinement was necessary.

Experimental details

X-ray diffraction data was collected using a Bruker APEX2 diffractometer installed at a rotating anode source (MoKα radiation, λ = 0.71073 Å) and equipped with an Oxford Cryosystems (Cryostream700) nitrogen gas-flow apparatus at 90 K. Five sets of data (290 frames each) were collected by the rotation method with 0.5° frame-width (ω scan). Using Olex2, the structure was solved with intrinsic phasing via the ShelXT structure solution program and refined with the ShelXL software suite using least squares minimization [23]. The atomic coordinates and isotropic thermal parameters of H atoms attached to heteroatoms were freely refined. H atoms connected to carbon atoms were placed geometrically (C–H = 0.95 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Comment

4-Hydroxy-3-methoxybenzoic acid, known commonly as p-vanillic acid, is found in great abundance in many fruits and vegetables that we consume [4]. p-Vanillic acid is also being investigated for medicinal properties such as its anti-inflammatory response [5]. Despite the wide consumption of the molecule and its growing potential for pharmaceutical use, solid-state structures of the compound and its interactions remain scant. As such its beneficial to synthesize co-crystals and/or salts of p-vanillic acid so as to study its interactions in the solid-state. For this purpose (4,4′-BIPY) was selected due to its dynamic composite structure making capabilities [6, 7].

p-Vanillic acid co-crystallizes with 4,4′-BIPY in a 1:1 ratio with the resulting co-crystal possessing monoclinic (P21/c) symmetry at 90 K. As observed in the figure, within the resulting co-crystal the p-vanillic acid has two distinct O–H⋯N type hydrogen bonding interactions; with one of these interactions being between a 4,4′-BIPY and the para-position hydroxyl group resulting in a 2.6919(15) Å distance between heteroatoms. The other O–H⋯N type hydrogen bonding interaction occurs between the hydroxyl group of the carboxyl group and the nearest pyridine of a 4,4′-BIPY molecule resulting in a 2.6996(15) Å distance between heteroatoms. Dimolecular assemblies consisting of one acid molecule and one 4,4′-BIPY bind together to form C 2 2 (17) chain motifs. These chains form twisting wires that run approximately orthognal to (−403). The wires stack along (−403) through a series of weak C–H⋯O interactions to form sheets. These sheets stack along [010] with every other sheet being rotated 180° about [010].


Corresponding author: Jason B. Benedict, Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY, 14260–3000, USA, E-mail:

Award Identifier / Grant number: DMR-2003932

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The work was supported by the National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. DMR-2003932).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. BRUKER. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

4. Ingole, A., Kadam, M., Dalu, A., Kute, S., Mange, P., Theng, V., Lahane, R., Nikas, A., Kawal, Y., Nagrik, S., Patil, P. A review of the pharmacological characteristics of vanillic acid. J. Drug Deliv. Therapeut. 2021, 11, 200–204; https://doi.org/10.22270/jddt.v11i2-s.4823.Search in Google Scholar

5. Kim, M. C., Kim, S. J., Kim, D. S., Jeon, Y. D., Park, S. J., Lee, H. S., Um, J. Y., Hong, S. H. Vanillic acid inhibits inflammatory mediators by suppressing NF-κB in lipopolysaccharide-stimulated mouse peritoneal macrophages. Immunopharmacol. Immunotoxicol. 2011, 33, 525–532; https://doi.org/10.3109/08923973.2010.547500.Search in Google Scholar

6. Walton, I. M., Cox, J. M., Myers, S. D., Benson, C. A., Mitchell, T. B., Bateman, G. S., Sylvester, E. D., Chen, Y.-S., Benedict, J. B. Determination of the dehydration pathway in a flexible metal–organic framework by dynamic in situ x-ray diffraction. Struct. Dynam. 2020, 7, 034305; https://doi.org/10.1063/4.0000015.Search in Google Scholar

7. Sylvester, E., McGovern, M., Young Lee, A., Nguyen, P., Park, J., Benedict, J. B. Partial charge transfer in the salt co-crystal of L-ascorbic acid and 4,4′-bi-pyridine. Acta Crystallogr. 2019, E75, 728–731; https://doi.org/10.1107/s2056989019005334.Search in Google Scholar

Received: 2022-02-22
Accepted: 2022-03-07
Published Online: 2022-03-16
Published in Print: 2022-06-27

© 2022 Devin J. Angevine and Jason B. Benedict, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-(4-imidazol-1-yl-phenyl)-(2-methoxy-benzylidene)-amine monohydrate, C17H17N3O2
  4. Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2H-chromen-2-one, C15H15N1O3
  5. Crystal structure of 4-methyl-4-nitropentanoic acid, C6H11NO4
  6. The crystal structure of (E)-3-(furan-2-yl)acrylonitrile, C7H5NO
  7. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3
  8. Crystal structure of 2-(4-bromobenzyloxy)-6-chloropyridine, C12H9BrClNO
  9. Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
  10. Crystal structure of (E)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C15H11NO3
  11. The crystal structure of (E)-3-chloro-2-(2-(4-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  12. Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
  13. Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O
  14. The crystal structure bis(dimethylsulfoxide-κ1O)-dipyridine-κ1 N-bis(m2-(Z)-3-methyl-2-oxido-N-((Z)-oxido(phenyl)methylene)benzohydrazonato-κ5)trinickel(II) - dimethylsulfoxide (1/2), C48H56N6Ni3O10S4
  15. Crystal structure of bis(bis(triphenylphosphine)iminium) tetradecacarbonyltetratelluridopentaferrate(2-), (PPN)2[Fe5Te4(CO)14]
  16. Crystal structure of 4-Hydroxy-3-(naphthalen-2-ylthio)pent-3-en-2-one, C15H14O2S
  17. The crystal structure of [(1,10-phenanthroline-κ2 N,N)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)nickel(II)] monohydrate, C36H26N4O5Ni
  18. Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5
  19. The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
  20. The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
  21. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)–water–N,N-dimethylformamide(1/2/1), C27H31N3O9Co
  22. The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
  23. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)cobalt(II)], C32H22Br2CoN4O4
  24. Crystal structure of (E)-5-propyl-4-((pyridin-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione – methanol (1/1), C11H13N5S
  25. The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5
  26. Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]
  27. Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
  28. Crystal structure of (2,2′-((naphthalen-1-ylmethyl)azanediyl)diacetato-κ3 N,O,O′)-(1,10-phenanthroline-κ2 N,N′)-copper(II) trihydrate, CuC27H27N3O7
  29. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylato-κ2N,O)-bis(1H-pyrazol-3-ylamine-κ2 N:N)dicobalt(II) dihydrate, C27H23N5O5Co
  30. The crystal structure of bis((E)-2-((tert-butylimino)methyl)-4-chlorophenolato-κ2N,O)zinc(II), C22H26Cl2N2O2Zn
  31. The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20
  32. The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
  33. The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
  34. Crystal structure of 6-hydroxy-2,2-dimethyl-4Hbenzo[d][1,3]dioxin-4-one, C10H10O4
  35. The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
  36. Crystal structure of alaninato-κ2N,O-bis(hydroxylamido-κ2N,O)-oxido-vanadium(V), C3H10N3O5V
  37. Crystal structure of catena-poly[aqua-bis[μ2-6-(1H-imidazol-1-yl)nicotinato-κ2 N,O]copper(II)], C18H14N6O5Cu
  38. Crystal structure of diethyl 4,6-diphenyl-1,9-di-p-tolylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,5(2H)-dicarboxylate, C42H42N2O4
  39. The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
  40. Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4
  41. Crystal structure of (Z)-4-(furan-2-yl((4-iodophenyl)amino)methylene)-5-methyl-2(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, C21H16I N3O2
  42. Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
  43. Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C15H10BrClO2
  44. The crystal structure of 2-(benzhydryloxy)-3-nitropyridine, C18H14N2O3
  45. The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
  46. Crystal structure of 3,6-di-tert-butyl-1-iodo-9-methyl-8-(pyren-1-ylethynyl)-9H-carbazole, C39H34IN
  47. The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
  48. Crystal structure of 5-nitroquinazolin-4(3H)-one, C8H5N3O3
Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0088/html
Scroll to top button