Home The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
Article Open Access

The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86

  • Xiu-Hua Zhang , Jin-Xiao Mi , Zhi-Biao Hu , Ze-Hai Qiu and Wu-Hua Chen ORCID logo EMAIL logo
Published/Copyright: April 4, 2022

Abstract

H10O20P4Co3.14Cd1.86, monoclinic, C2/c (no. 15), a = 17.5779(6) Å, b = 9.0747(3) Å, c = 9.4946(3) Å, β = 96.636(3)°, V = 1504.38(9) Å3, Z = 1, R gt (F) = 0.0273, wR ref (F2) = 0.0646, T = 293(2) K.

CCDC no.: 2157686

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Purple needle
Size: 0.32 × 0.06 × 0.05 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 6.52 mm−1
Diffractometer, scan mode: New Xcalibur, ω
θmax, completeness: 29.1°, >99%
N(hkl)measured, N(hkl)unique, Rint: 3496, 1737, 0.022
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 1612
N(param)refined: 145
Programs: CrysAlisPRO [1], SHELX [2, 3], Olex2 [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Cd1a 0.82478 (2) 0.02895 (4) 0.63265 (3) 0.01053 (13)
Co1b 0.82478 (2) 0.02895 (4) 0.63265 (3) 0.01053 (13)
Co2c 0.68240 (3) 0.08560 (6) 0.31409 (6) 0.0104 (2)
Cd2d 0.68240 (3) 0.08560 (6) 0.31409 (6) 0.0104 (2)
Co3e 0.5000 0.60654 (6) 0.2500 0.0103 (2)
Cd3f 0.5000 0.60654 (6) 0.2500 0.0103 (2)
P1 0.83862 (6) 0.26486 (11) 0.37391 (11) 0.0094 (3)
P2 0.58188 (6) 0.31913 (11) 0.09070 (11) 0.0102 (3)
O1 0.79877 (16) 0.4095 (3) 0.3268 (3) 0.0141 (6)
O2 0.79559 (16) 0.1362 (3) 0.2952 (3) 0.0144 (6)
O3 0.83591 (17) 0.2462 (3) 0.5347 (3) 0.0158 (6)
O4 0.92300 (16) 0.2669 (3) 0.3425 (3) 0.0134 (6)
O5 0.57549 (18) 0.4356 (3) 0.2025 (3) 0.0188 (7)
O6 0.58378 (17) 0.3848 (3) −0.0565 (3) 0.0168 (7)
O7 0.65331 (17) 0.2275 (3) 0.1376 (3) 0.0162 (6)
O8 0.51077 (18) 0.2139 (4) 0.0821 (3) 0.0201 (7)
H8 0.4872 0.2184 0.0025 0.030*
O9 0.73606 (19) −0.0815 (4) 0.4633 (3) 0.0176 (7)
O10 0.57932 (18) −0.0038 (4) 0.3424 (4) 0.0228 (7)
H10A 0.5798 −0.0365 0.4280 0.034*
H10B 0.5691 −0.0766 0.2844 0.034*
H9A 0.709 (3) −0.118 (7) 0.519 (6) 0.06 (2)*
H9B 0.759 (3) −0.141 (5) 0.415 (5) 0.029 (15)*
  1. aOccupancy: 0.740 (6); bOccupancy: 0.260 (6); cOccupancy: 0.974 (5); dOccupancy: 0.026 (5); eOccupancy: 0.666 (6); fOccupancy: 0.334 (6).

Source of material

A mixture containing CoSO4·7H2O (0.840 g), Cd(NO3)·4H2O (0.680 g), H3PO4 (aq. 85%) (0.35 mL), and deionized water (H2O) (16.0 mL), with pH value 6.0, was prepared by mixing these components and sealing in a 25 mL Teflon-lined stainless steel autoclave (70% of the total volume of the autoclave). Then, the resulting slurry was heated to 458 K in an oven and maintained at the temperature for one week. Then, the dark purple purity-phase crystals of the title compound (about 31% yield based on Co) were obtained. The results of elemental analyses provided the chemical compositions: (wt.%) for the title compound: H, 1.24; P, 14.06; Co, 20.98; Cd, 25.04 (in contrast, anal. calcd. (wt.%): H, 1.18; P, 14.61; Co, 21.80; Cd, 24.70; O, 37.71).

Experimental details

The hydrogen atoms were placed at calculated positions with the SHELX program. Coordinates of hydrogen atoms were refined without any constraints or restraints.

Comment

In recent decades, transition metal phospates and phosphonates have attracted great attention for its outstanding physicochemical properties (such as heterogeneous catalysis, ion exchange, optical, magnetic, etc.) and potential real-world applications. In the phosphates the relatively high charge in (PO4)3− tetrahedra is not only favor of the formation of anionic frameworks, but also favor of the high degree of mechanical and thermal stability [5, 6]. Moreover, cobalt phosphates have received more interest owing to its feasibility for catalytic properties [7], [8], [9], [10]. The 3d transition element Co can offer a wide variety of frameworks to perform diverse redox reactions under conventional catalytic conditions [11]. Herein, we report a new hureaulite (Mn5[PO3(OH)]2(PO4)2·4H2O)-type Co/Cd phosphate, Co2.56Cd2.44[PO3(OH)]2(PO4)2·4H2O. In general, Mn element in hureaulite being replaced by diverse transition-metal elements will lead to different physicochemical properties. Although some hurealite-type compounds, e.g. Co5[PO3(OH)]2(PO4)2·4H2O [12], Mn5[PO3(OH)]2(PO4)2·4H2O [13], Cd5[PO3(OH)]2(PO4)2·4H2O [14], Mn3.75Co1.25[PO3(OH)]2(PO4)2·4H2O [15], Mn3Co2[PO3(OH)]2(PO4)2·4H2O [15], Mn2.5Co2.5[PO3(OH)]2(PO4)2·4H2O [15], Mn2Co3[PO3(OH)]2(PO4)2·4H2O [15], have been synthesized and studied, analogous isostructural compound, which Co and Cd elements collectively replace Mn element, has never been reported.

Single-crystal X-ray diffraction structure study reveals that the title compound is isostructural with hureaulite, showing a 3D-network structure. Compared to hureaulite, all the five Mn sites in Mn5[PO3(OH)]2(PO4)2·4H2O are replaced collectively by Co and Cd atoms. The title structure contains two and a half Co/Cd sharing sites, with the total Co/Cd atom occupancy rate about 3.14:1.86, two hydrogen phospate ion [PO3(OH)]2−, two phosphate ions (PO4)3−, and four coordinated waters (H2O). The Co/Cd phosphate is constructed by penta–Co/Cd ([Co3.14Cd1.86(HPO4)2(PO4)2(H2O)4]) 0D neutral clusters as secondary building units. The five-membered Co3.14Cd1.86 clusters were terminated by water molecule O(9) (H2O), which is then connected by the O(1) from P(1) phosphate and the water molecule O(10) (H2O) to form a 2D layer. The layers are further linked by monohydrate phosphates and phosphates in ν122:μ5 and ν2221:μ7 modes to construct a 3D structure [13]. Each CoII/CdII ion possesses a distorted Co/CdO6 octahedron geometry and it is noteworthy that Co(3)/Cd(3) is on the mirror plane. The Co(1)/Cd(1)–O, Co(2)/Cd(2)–O and Co(3)/Cd(3)–O bond lengths vary in the range of 2.198(3)–2.333(3) Å, 2.031(3)–2.211(3) Å, 2.124(3)–2.235(3) Å. The P(1)–O and P(2)–O bond lengths are in the normal range of 1.530(3)–1.546(3) Å and 1.511(3)–1.568(3) Å respectively. Bond valence sum (BVS) calculations show that all P atoms have the oxidation state of +5 respectively. The angles of Co/Cd–O–Co/Cd are from 98.03(11)–110.40(14)° and the intracluster metal-metal separations through ν–O bridges are 3.384 and 3.731 Å for Co(1)/Cd(1)⋯Co(2)/Cd(2) and Co(1)/Cd(1)⋯Co(3)/Cd(3). The P(1) phosphate links seven Co/Cd ions, while the P(2) one connects five Co/Cd ions. The Co3.14Cd1.86 penta-nuclear clusters are connected through O(1) and O(9) (H2O) to form the 3D configuration.


Corresponding author: Wu-Hua Chen, Fujian Provincial Key Laboratory of Clean Energy Materials, Fujian Provincial Colleges and University Engineering Research Center of Solid Waste Resource Utilization, Longyan University, Longyan, 364012, Fujian Province, People’s Republic of China, E-mail:

Funding source: Natural Science Foundation of Fujian Province

Award Identifier / Grant number: 2020J01367

Funding source: Qimai Science and Technology Innovation Foundation of Xinluo County

Award Identifier / Grant number: 2022XLQM04

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The work was supported by the Natural Science Foundation of Fujian Province (No. 2020J01367) and the Qimai Science and Technology Innovation Foundation of Xinluo County (No. 2022XLQM04).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Oxford Diffraction Ltd CrysAlisPRO; Oxford Diffraction Ltd: Abingdon, Oxfordshire, England, 2015.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Haushalter, R. C., Mundi, L. A. Reduced molybdenum phosphates: octahedral-tetrahedral framework solids with tunnels, cages, and micropores. Chem. Mater. 1993, 4, 31–48.10.1021/cm00019a012Search in Google Scholar

6. Clearfied, A. Role of ion exchange in solid-state chemistry. Chem. Rev. 1988, 88, 125–148.10.1021/cr00083a007Search in Google Scholar

7. Hartl, A., Park, S.-H., Hoelzel, M., Paul, N., Gilles, R. Proton conductivity in a hureaulite-type compound, Mn5[(PO4)2(PO3(OH))2](HOH)4. J. Solid State Chem. 2019, 277, 290–302; https://doi.org/10.1016/j.jssc.2019.06.029.Search in Google Scholar

8. Sronsri, C., U-yen, K., Sittipol, W. Application of synthetic hureaulite as a new precursor for the synthesis of lithiophilite nanoparticles. Solid State Sci. 2020, 110, 106469; https://doi.org/10.1016/j.solidstatesciences.2020.106469.Search in Google Scholar

9. Zhao, H., Yuan, Z. Y. Design strategies of transition metal phosphate and phosphonate electrocatalysts for energy-related reactions. ChemSusChem 2021, 14, 130–149; https://doi.org/10.1002/cssc.202002103.Search in Google Scholar

10. Bhanaja, P., Kim, Y., Paul, B., Lin, J., Alshehri, S. M., Ahamad, T., Kaneti, Y. V., Bhaumik, A., Yamauch, Y. Facile synthesis of nanopporous transition metal-based phosphates for oxygen evolution reaction. ChemCatChem 2020, 12, 1–7.10.1002/cctc.201901803Search in Google Scholar

11. Chen, W.-H., Xiong, J.-H., Teng, X., Mi, J.-X., Hu, Z.-B., Wang, H., Chen, Z. A novel heterogeneous Co(II)–Fenton-like catalyst for efficient photodegradation by visible light over extended pH. Sci. China Chem. 2020, 63, 1825–1836; https://doi.org/10.1007/s11426-020-9885-3.Search in Google Scholar

12. Han, Z., Tian, A., Peng, J., Zhai, X. A new three-dimensional cobalt phosphate: Co5(OH2)4(HPO4)2(PO4)2. Solid State Chem. 2006, 179, 3209–3213; https://doi.org/10.1016/j.jssc.2006.05.014.Search in Google Scholar

13. Li, B., Jiang, N., Tian, J., Li, T., Hou, G., Zhang, J. Exploration of the slow relaxation behavior in the manganese phosphate network. Dalton Trans. 2014, 43, 9267–9270; https://doi.org/10.1039/c4dt00703d.Search in Google Scholar

14. Hideki, A., Masaru, A., lwai, S. Synthesis and crystal structure of cadmium hydrogen phosphate hydrate (author’s transl). Tokyo. Reports of the Institute for Medical and Dental Engineering, Tokyo Medical and Dental University. 1976, 10, 63–68.Search in Google Scholar

15. Larrea, E. S., Mesa, J. L., Pizarro, J. L., Arriortua, M. I., Rojo, T. Hydrothermal synthesis, thermal, structural, spectroscopic and magnetic studies of the Mn5−xCox(HPO4)2(PO4)2(H2O)4 (x = 1.25, 2, 2.5 and 3) finite solid solution. J. Solid Chem. 2007, 180, 1686–1697; https://doi.org/10.1016/j.jssc.2007.03.012.Search in Google Scholar

Received: 2022-02-09
Accepted: 2022-03-11
Published Online: 2022-04-04
Published in Print: 2022-06-27

© 2022 Xiu-Hua Zhang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-(4-imidazol-1-yl-phenyl)-(2-methoxy-benzylidene)-amine monohydrate, C17H17N3O2
  4. Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2H-chromen-2-one, C15H15N1O3
  5. Crystal structure of 4-methyl-4-nitropentanoic acid, C6H11NO4
  6. The crystal structure of (E)-3-(furan-2-yl)acrylonitrile, C7H5NO
  7. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3
  8. Crystal structure of 2-(4-bromobenzyloxy)-6-chloropyridine, C12H9BrClNO
  9. Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
  10. Crystal structure of (E)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C15H11NO3
  11. The crystal structure of (E)-3-chloro-2-(2-(4-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  12. Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
  13. Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O
  14. The crystal structure bis(dimethylsulfoxide-κ1O)-dipyridine-κ1 N-bis(m2-(Z)-3-methyl-2-oxido-N-((Z)-oxido(phenyl)methylene)benzohydrazonato-κ5)trinickel(II) - dimethylsulfoxide (1/2), C48H56N6Ni3O10S4
  15. Crystal structure of bis(bis(triphenylphosphine)iminium) tetradecacarbonyltetratelluridopentaferrate(2-), (PPN)2[Fe5Te4(CO)14]
  16. Crystal structure of 4-Hydroxy-3-(naphthalen-2-ylthio)pent-3-en-2-one, C15H14O2S
  17. The crystal structure of [(1,10-phenanthroline-κ2 N,N)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)nickel(II)] monohydrate, C36H26N4O5Ni
  18. Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5
  19. The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
  20. The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
  21. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)–water–N,N-dimethylformamide(1/2/1), C27H31N3O9Co
  22. The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
  23. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)cobalt(II)], C32H22Br2CoN4O4
  24. Crystal structure of (E)-5-propyl-4-((pyridin-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione – methanol (1/1), C11H13N5S
  25. The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5
  26. Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]
  27. Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
  28. Crystal structure of (2,2′-((naphthalen-1-ylmethyl)azanediyl)diacetato-κ3 N,O,O′)-(1,10-phenanthroline-κ2 N,N′)-copper(II) trihydrate, CuC27H27N3O7
  29. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylato-κ2N,O)-bis(1H-pyrazol-3-ylamine-κ2 N:N)dicobalt(II) dihydrate, C27H23N5O5Co
  30. The crystal structure of bis((E)-2-((tert-butylimino)methyl)-4-chlorophenolato-κ2N,O)zinc(II), C22H26Cl2N2O2Zn
  31. The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20
  32. The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
  33. The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
  34. Crystal structure of 6-hydroxy-2,2-dimethyl-4Hbenzo[d][1,3]dioxin-4-one, C10H10O4
  35. The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
  36. Crystal structure of alaninato-κ2N,O-bis(hydroxylamido-κ2N,O)-oxido-vanadium(V), C3H10N3O5V
  37. Crystal structure of catena-poly[aqua-bis[μ2-6-(1H-imidazol-1-yl)nicotinato-κ2 N,O]copper(II)], C18H14N6O5Cu
  38. Crystal structure of diethyl 4,6-diphenyl-1,9-di-p-tolylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,5(2H)-dicarboxylate, C42H42N2O4
  39. The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
  40. Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4
  41. Crystal structure of (Z)-4-(furan-2-yl((4-iodophenyl)amino)methylene)-5-methyl-2(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, C21H16I N3O2
  42. Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
  43. Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C15H10BrClO2
  44. The crystal structure of 2-(benzhydryloxy)-3-nitropyridine, C18H14N2O3
  45. The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
  46. Crystal structure of 3,6-di-tert-butyl-1-iodo-9-methyl-8-(pyren-1-ylethynyl)-9H-carbazole, C39H34IN
  47. The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
  48. Crystal structure of 5-nitroquinazolin-4(3H)-one, C8H5N3O3
Downloaded on 5.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0068/html
Scroll to top button