Home Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
Article Open Access

Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3

  • Zhoujing Zhu , Bin Liu ORCID logo EMAIL logo and Xiaona Xu
Published/Copyright: March 7, 2022

Abstract

C10H6BrCl2N3, monoclinic, P21/c (no. 14), a = 9.2229(13) Å, b = 14.709(2) Å, c = 8.6472(13) Å, β = 104.851(3)°, V = 1133.9(3) Å3, Z = 4, R gt (F) = 0.0312, wRref (F 2) = 0.0839, T = 173 K.

CCDC no.: 1974803

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.19 × 0.12 × 0.10 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 4.07 mm−1
Diffractometer, scan mode: φ and ω
θ max, completeness: 27.5°, >99%
N(hkl)measured, N(hkl)unique, R int: 10,023, 2604, 0.038
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2049
N(param)refined: 145
Programs: Bruker [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Br1 0.99403 (3) 0.63793 (2) 0.44560 (4) 0.04282 (13)
C1 0.8329 (3) 0.6744 (2) 0.5307 (3) 0.0279 (6)
C2 0.8049 (2) 0.76616 (18) 0.5405 (3) 0.0275 (6)
H2 0.866507 0.810214 0.508149 0.033*
C3 0.6848 (2) 0.79229 (17) 0.5988 (3) 0.0240 (5)
C4 0.5904 (2) 0.72944 (17) 0.6448 (3) 0.0209 (5)
C5 0.6239 (3) 0.63829 (17) 0.6328 (3) 0.0250 (5)
C6 0.7456 (3) 0.60910 (18) 0.5784 (3) 0.0281 (6)
H6 0.768056 0.546255 0.574163 0.034*
C7 0.3534 (2) 0.81010 (16) 0.6170 (3) 0.0220 (5)
C8 0.2536 (3) 0.85180 (18) 0.6940 (3) 0.0322 (6)
H8 0.267999 0.842969 0.805796 0.039*
C9 0.1253 (3) 0.91259 (19) 0.4594 (4) 0.0366 (7)
H9 0.044873 0.948235 0.398584 0.044*
C10 0.2225 (3) 0.87269 (18) 0.3837 (3) 0.0312 (6)
H10 0.207684 0.882206 0.272064 0.037*
Cl1 0.51121 (8) 0.55647 (5) 0.68725 (9) 0.04195 (19)
Cl2 0.65617 (7) 0.90748 (5) 0.61843 (9) 0.03730 (18)
N1 0.4693 (2) 0.75760 (14) 0.7049 (2) 0.0258 (5)
H1 0.467541 0.741014 0.802171 0.031*
N2 0.3383 (2) 0.82052 (15) 0.4615 (2) 0.0255 (4)
N3 0.1404 (2) 0.90283 (16) 0.6159 (3) 0.0381 (6)

Source of material

A mixture of 3-((4-bromo-2,6-dichlorophenyl) amino) pyrazine-2-carbonitrile (344 mg) and concentrated sulfuric acid (5 mL) was stirred in ethanol (50 mL) at 80 °C for 24 h (monitored by TLC). After the reaction was completed, the crude reaction mixture was diluted with water and extracted with dichloromethane. The organic layer was dried and then concentrated to dryness under reduced pressure. The title compound was separated by silica-gel column chromatography with ethyl acetate-petroleum ether (10%) gradient solvent system. Suitable crystals of the title molecule were attained by crystallization in the petroleum ether and ethyl acetate (10:1, v/v) system and dried at room temperature.

Experimental details

All the H atoms of carbon were included using a riding-model, with C–H = 0.95 Å and C-N = 0.88 Å, respectively, and their U iso = 1.2 U eq (parent atom).

Comment

2-Benzylpyrazine derivatives were designed as a novel structure and core architecture for human carbonic anhydrase-II (hCA-II) inhibitors, which were important in developing antiglaucoma drugs [5]. Factually, many potent and effective hCA-II inhibitors were designed by introducing different substituents in sulphonamides [5], [6], [7], [8], [9], [10]. However, sulphonamide compounds non-selectively target on carbonic anhydrase, and in this way increase many undesired adverse effects, like gastrointestinal irritations, numbness, depression, fatigue, renal calculi, depression [5, 11], [12], [13], [14]. Therefore, it is still a hot research topic on developing potent and specific hCA-II inhibitors based on novel scaffolds like 2-benzylpyrazine.

The asymmetric unit of the title structure consists of one molecule. As displayed in the Figure, the 4-bromo-2,6-dichlorophenyl moiety is strictly planar. A chain motif was created by a weak hydrogen bond (N–H⃛N, 2.232 Å) formed by the N1 atom and N2 atom of the adjacent molecule, which is the same as in similar crystal structures like N-(pyrazin-2-yl) aniline [15], 4-chloro-N-(pyrazin-2-yl) aniline [16]. Compared to these similar crystal structures, the dihedral angle between the aromatic rings is increased to 75.5(4)°, and the bridging C4–N1–C7 angle is decreased to 122.5(2)°, due to the introduction of chlorine and bromine substituents.


Corresponding author: Bin Liu, Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang, Shaanxi, China, E-mail:

Funding source: Natural Science Foundation of Shaanxi Province http://dx.doi.org/10.13039/501100007128

Award Identifier / Grant number: 2021JM-540

Award Identifier / Grant number: 2021JQ-885

Funding source: Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province http://dx.doi.org/10.13039/501100009103

Award Identifier / Grant number: 2019XT-1-05

Award Identifier / Grant number: 2019XT-2-05

Funding source: Key Laboratory of Molecular Imaging and Drug Synthesis of Xianyang City http://dx.doi.org/10.13039/501100011710

Award Identifier / Grant number: 2021QXNL-PT-0008

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by the Natural Science Foundation of Shaanxi Province (2021JM-540, 2021JQ-885), Key Breeding Program by Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province (2019XT-1-05, 2019XT-2-05) and Key Laboratory of Molecular Imaging and Drug Synthesis of Xianyang City (2021QXNL-PT-0008).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. Smart Apex-II; CCD Bruker AXS Inc.: Madison, WI, USA, 2006.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

5. Ghorai, S., Pulya, S., Ghosh, K., Panda, P., Ghosh, B., Gayen, S. Structure-activity relationship of human carbonic anhydrase-II inhibitors: detailed insight for future development as anti-glaucoma agents. Bioorg. Chem. 2020, 95, 103557; https://doi.org/10.1016/j.bioorg.2019.103557.Search in Google Scholar

6. Bilginer, S., Gonder, B., Gul, H. I., Kaya, R., Gulcin, I., Anil, B., Supuran, C. T. Novel sulphonamides incorporating triazene moieties show powerful carbonic anhydrase I and II inhibitory properties. J. Enzym. Inhib. Med. Chem. 2020, 35, 325–329; https://doi.org/10.1080/14756366.2019.1700240.Search in Google Scholar

7. Wani, T. V., Bua, S., Khude, P. S., Chowdhary, A. H., Supuran, C. T., Toraskar, M. P. Evaluation of sulphonamide derivatives acting as inhibitors of human carbonic anhydrase isoforms I, II and Mycobacterium tuberculosis β-class enzyme Rv3273. J. Enzym. Inhib. Med. Chem. 2018, 33, 962–971; https://doi.org/10.1080/14756366.2018.1471475.Search in Google Scholar

8. Kurt, B. Z., Sönmez, F., Bilen, Ç., Ergun, A., Gençer, N., Arslan, O., Kucukislamoglu, M. Synthesis, antioxidant and carbonic anhydrase I and II inhibitory activities of novel sulphonamide-substituted coumarylthiazole derivatives. J. Enzym. Inhib. Med. Chem. 2016, 31, 991–998; https://doi.org/10.3109/14756366.2015.1077823.Search in Google Scholar

9. Kumar, R., Sharma, V., Bua, S., Supuran, C. T., Sharma, P. K. Synthesis and biological evaluation of benzenesulphonamide-bearing 1,4,5-trisubstituted-1,2,3-triazoles possessing human carbonic anhydrase I, II, IV, and IX inhibitory activity. J. Enzym. Inhib. Med. Chem. 2017, 32, 1187–1194; https://doi.org/10.1080/14756366.2017.1367775.Search in Google Scholar

10. Ekinci, D., Kurbanoglu, N. I., Salamci, E., Şentürk, M., Supuran, C. T. Carbonic anhydrase inhibitors: inhibition of human and bovine isoenzymes by benzenesulphonamides, cyclitols and phenolic compounds. J. Enzym. Inhib. Med. Chem. 2012, 27, 845–848; https://doi.org/10.3109/14756366.2011.621122.Search in Google Scholar

11. Mincione, F., Scozzafava, A., Supuran, C. T. The development of topically acting carbonic anhydrase inhibitors as antiglaucoma agents. Curr. Pharmaceut. Des. 2008, 14, 649–654; https://doi.org/10.2174/138161208783877866.Search in Google Scholar

12. Sağlık, B. N., Çevik, U. A., Osmaniye, D., Levent, S., Çavuşoğlu, B. K., Demir, Y., Ilgın, S., Özkay, Y., Koparal, A. S., Beydemir, Ş., Kaplancıklı, Z. A. Synthesis, molecular docking analysis and carbonic anhydrase I-II inhibitory evaluation of new sulfonamide derivatives. Bioorg. Chem. 2019, 91, 103153; https://doi.org/10.1016/j.bioorg.2019.103153.Search in Google Scholar

13. Lomelino, C. L., Supuran, C. T., McKenna, R. Non-classical inhibition of carbonic anhydrase. Int. J. Mol. Sci. 2016, 17, 1150; https://doi.org/10.3390/ijms17071150.Search in Google Scholar

14. Sugrue, M. F. Pharmacological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Prog. Retin. Eye Res. 2000, 19, 87–112; https://doi.org/10.1016/s1350-9462(99)00006-3.Search in Google Scholar

15. Wan Saffiee, W. A., Idris, A., Abdullah, Z., Aiyub, Z., Ng, S. W. N-(Pyrazin-2-yl)aniline. Acta Crystallogr. 2008, E64, o2105; https://doi.org/10.1107/s1600536808031942.Search in Google Scholar

16. Wan Saffiee, W. A., Idris, A., Aiyub, Z., Abdullah, Z., Ng, S. W. 4-Chloro-N-(pyrazin-2-yl)aniline. Acta Crystallogr. 2008, E65, o113; https://doi.org/10.1107/s1600536808041172.Search in Google Scholar

Received: 2022-01-15
Accepted: 2021-02-21
Published Online: 2022-03-07
Published in Print: 2022-06-27

© 2022 Zhoujing Zhu et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-(4-imidazol-1-yl-phenyl)-(2-methoxy-benzylidene)-amine monohydrate, C17H17N3O2
  4. Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2H-chromen-2-one, C15H15N1O3
  5. Crystal structure of 4-methyl-4-nitropentanoic acid, C6H11NO4
  6. The crystal structure of (E)-3-(furan-2-yl)acrylonitrile, C7H5NO
  7. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3
  8. Crystal structure of 2-(4-bromobenzyloxy)-6-chloropyridine, C12H9BrClNO
  9. Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
  10. Crystal structure of (E)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C15H11NO3
  11. The crystal structure of (E)-3-chloro-2-(2-(4-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  12. Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
  13. Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O
  14. The crystal structure bis(dimethylsulfoxide-κ1O)-dipyridine-κ1 N-bis(m2-(Z)-3-methyl-2-oxido-N-((Z)-oxido(phenyl)methylene)benzohydrazonato-κ5)trinickel(II) - dimethylsulfoxide (1/2), C48H56N6Ni3O10S4
  15. Crystal structure of bis(bis(triphenylphosphine)iminium) tetradecacarbonyltetratelluridopentaferrate(2-), (PPN)2[Fe5Te4(CO)14]
  16. Crystal structure of 4-Hydroxy-3-(naphthalen-2-ylthio)pent-3-en-2-one, C15H14O2S
  17. The crystal structure of [(1,10-phenanthroline-κ2 N,N)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)nickel(II)] monohydrate, C36H26N4O5Ni
  18. Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5
  19. The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
  20. The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
  21. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)–water–N,N-dimethylformamide(1/2/1), C27H31N3O9Co
  22. The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
  23. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)cobalt(II)], C32H22Br2CoN4O4
  24. Crystal structure of (E)-5-propyl-4-((pyridin-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione – methanol (1/1), C11H13N5S
  25. The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5
  26. Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]
  27. Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
  28. Crystal structure of (2,2′-((naphthalen-1-ylmethyl)azanediyl)diacetato-κ3 N,O,O′)-(1,10-phenanthroline-κ2 N,N′)-copper(II) trihydrate, CuC27H27N3O7
  29. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylato-κ2N,O)-bis(1H-pyrazol-3-ylamine-κ2 N:N)dicobalt(II) dihydrate, C27H23N5O5Co
  30. The crystal structure of bis((E)-2-((tert-butylimino)methyl)-4-chlorophenolato-κ2N,O)zinc(II), C22H26Cl2N2O2Zn
  31. The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20
  32. The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
  33. The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
  34. Crystal structure of 6-hydroxy-2,2-dimethyl-4Hbenzo[d][1,3]dioxin-4-one, C10H10O4
  35. The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
  36. Crystal structure of alaninato-κ2N,O-bis(hydroxylamido-κ2N,O)-oxido-vanadium(V), C3H10N3O5V
  37. Crystal structure of catena-poly[aqua-bis[μ2-6-(1H-imidazol-1-yl)nicotinato-κ2 N,O]copper(II)], C18H14N6O5Cu
  38. Crystal structure of diethyl 4,6-diphenyl-1,9-di-p-tolylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,5(2H)-dicarboxylate, C42H42N2O4
  39. The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
  40. Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4
  41. Crystal structure of (Z)-4-(furan-2-yl((4-iodophenyl)amino)methylene)-5-methyl-2(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, C21H16I N3O2
  42. Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
  43. Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C15H10BrClO2
  44. The crystal structure of 2-(benzhydryloxy)-3-nitropyridine, C18H14N2O3
  45. The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
  46. Crystal structure of 3,6-di-tert-butyl-1-iodo-9-methyl-8-(pyren-1-ylethynyl)-9H-carbazole, C39H34IN
  47. The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
  48. Crystal structure of 5-nitroquinazolin-4(3H)-one, C8H5N3O3
Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0017/html
Scroll to top button