Startseite The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
Artikel Open Access

The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO

  • Jingxiao Zhang ORCID logo EMAIL logo , Jinyu Lv und Jiajia Wang
Veröffentlicht/Copyright: 17. März 2022

Abstract

C16H15NO, monoclinic, P21/c (no. 14), a = 5.9233(3) Å, b = 14.5788(9) Å, c = 14.7095(9) Å, β = 99.073(2)°, V = 1254.34(13) Å3, Z = 4, Rgt (F) = 0.0600, wRref (F 2) = 0.1512, T = 170 K.

CCDC no.: 2143260

The molecular structure is shown in Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.15 × 0.08 × 0.05 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.08 mm−1
Diffractometer, scan mode: D8 VENTURE, φ and ω
θ max, completeness: 26.4°, 99%
N(hkl)measured, N(hkl)unique, R int: 9288, 2525, 0.062
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 1561
N(param)refined: 165
Programs: Bruker [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.0665 (4) 0.65406 (17) 0.73260 (18) 0.0368 (6)
H1 −0.025558 0.686228 0.769335 0.044*
C2 0.2691 (4) 0.69388 (17) 0.71327 (17) 0.0339 (6)
C3 0.4017 (4) 0.64440 (17) 0.65972 (18) 0.0348 (6)
H3 0.538568 0.670646 0.645369 0.042*
C4 0.3368 (4) 0.55821 (17) 0.62747 (17) 0.0342 (6)
H4 0.431085 0.525377 0.592139 0.041*
C5 0.1338 (4) 0.51812 (16) 0.64597 (16) 0.0298 (6)
C6 0.0006 (4) 0.56888 (17) 0.69874 (18) 0.0344 (6)
H6 −0.138946 0.543599 0.711388 0.041*
C7 0.0561 (4) 0.42645 (17) 0.61382 (18) 0.0337 (6)
C8 0.2148 (4) 0.36410 (16) 0.57528 (18) 0.0350 (6)
H8 0.374422 0.375960 0.587377 0.042*
C9 0.1389 (4) 0.29222 (17) 0.52436 (18) 0.0353 (6)
H9 −0.022393 0.285782 0.509914 0.042*
C10 0.2762 (4) 0.22144 (16) 0.48778 (18) 0.0330 (6)
C11 0.5047 (4) 0.20595 (17) 0.52362 (18) 0.0344 (6)
H11 0.578029 0.243631 0.572153 0.041*
C12 0.6266 (4) 0.13633 (17) 0.48949 (18) 0.0374 (6)
H12 0.781757 0.126501 0.515750 0.045*
C13 0.5266 (4) 0.08044 (17) 0.41751 (18) 0.0362 (6)
C14 0.3003 (5) 0.09620 (18) 0.38163 (19) 0.0407 (7)
H14 0.228638 0.059223 0.332185 0.049*
C15 0.1750 (4) 0.16482 (18) 0.41610 (18) 0.0379 (6)
H15 0.018811 0.173386 0.390669 0.046*
C16 0.6631 (5) 0.00734 (18) 0.3791 (2) 0.0466 (8)
H16A 0.769847 0.035940 0.343057 0.070*
H16B 0.559583 −0.033613 0.339385 0.070*
H16C 0.748961 −0.028048 0.429739 0.070*
N1 0.3355 (4) 0.77931 (14) 0.74641 (16) 0.0428 (6)
H1A 0.410274 0.806343 0.706709 0.051*
H1B 0.214020 0.812081 0.752672 0.051*
O1 −0.1388 (3) 0.39956 (12) 0.62087 (14) 0.0459 (5)

Source of material

The substrate 4-methylbenzaldehyde (12 mmol) was initially added to 10 mL ethanol in a 100 mL three-mouth flask. Then 1-(4-aminophenyl)ethan-1-one (10 mmol) was added to the solution and stirred at room temperature until the reactants were mixed evenly. Subsequently, 10 mL potassium hydroxide solution (20%) was slowly added to the reaction mixture and continued stirring for 30 min with solid precipitates. After the disappearance of raw materials monitored by thin-layer chromatography (TLC), the reactants were poured into 50 mL water. The solids were filtered by suction and washed successively with 50 mL water and 50 mL 30% ethanol. The crystals of the title compound were obtained after further recrystallization.

Experimental details

All hydrogen atoms were included in the refinement in the riding model approximation. The U iso values of the hydrogen atoms of phenolic hydroxyl groups were set to 1.5U eq(C), and the U iso values of all other hydrogen atoms were arranged to 1.2U eq(C).

Comment

Chalcones are aromatic ketones whose configurations are α, β-unsaturated ketones substituted with diaryl groups [5], [6], [7]. They are widely distributed in nature and have various biological activities [8], [9], [10], [11]. Because of their multiple reaction centers, they can bind to a variety of receptors. They have many pharmacological properties, [12], [13], [14]. Furthermore chalcones serve as an essential intermediate in organic synthesis and novel drug discovery in medicinal chemistry. The research and development of chalcones have become a hot research field of pharmaceutical chemistry [15], [16], [17], and many relative structures were reported [18], [19], [20], [21]. chalcones can be extracted from natural products and synthesized by chemical and biological methods [5, 15, 17].

The asymmetric unit of the title structure consists of one (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one molecule. In the title compound, as displayed in the figure, a methyl group and an amino group replace the hydrogen atoms on the opposite positions of the two benzene rings in the chalcone structure, respectively. Among them, the bond length of C13–C16 is 1.501(4) Å, and the bond length of C2–N1 is 1.372(4) Å. The bond angles of C12–C13–C16 and C14–C13–C16 are 120.8(3)° and 121.5(3)°, respectively [22]. In addition, the angle in the C10⋯C15 ring is in the range of 117.7°–121.5°, and the bond angles at substitutions sites are the smallest, indicating that the substitution on the benzene ring reduces the bond angle. The dihedral angle between the C10⋯C15 ring plane and the ketone plane is 12.4°, and the dihedral angle between the C1⋯C6 benzene ring plane and the ketone plane is 26.0°. Weak NH⋯O hydrogen bonds connects neighboring molecules to form chains along [10].


Corresponding author: Jingxiao Zhang, College of Food and Medicine, Luoyang Normal University, Luoyang, China, E-mail:

Acknowledgements

This work was financially supported by the key scientific research projects of colleges and universities in Henan Province for financial support (22A430032).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Key scientific research projects of colleges and universities in Henan Province for financial support (22A430032).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SMART APEX-II CCD; Bruker AXS Inc.: Madison, WI, USA, 2006.Suche in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. Olex2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

5. Jasim, H. A., Nahar, L., Jasim, M. A., Moore, S. A., Ritchie, K. J., Sarker, S. D. Chalcones: synthetic chemistry follows where nature leads. Biomolecules 2021, 11, 1203; https://doi.org/10.3390/biom11081203.Suche in Google Scholar

6. Elkhalifa, D., Al-Hashimi, I., Al Moustafa, A.-E., Khalil, A. A comprehensive review on the antiviral activities of chalcones. J. Drug Target. 2021, 29, 403–419; https://doi.org/10.1080/1061186x.2020.1853759.Suche in Google Scholar

7. Adelusi, T. I., Akinbolaji, G. R., Yin, X., Ayinde, K. S., Olaoba, O. T. Neurotrophic, anti-neuroinflammatory, and redox balance mechanisms of chalcones. Eur. J. Pharmacol. 2021, 891, 173695; https://doi.org/10.1016/j.ejphar.2020.173695.Suche in Google Scholar

8. Aktar, B. S. K., Sıcak, Y., Tok, T. T., Oruç-Emre, E. E., Yağlıoğlu, A. Ş., Iyidoğan, A. K., Öztürk, M., Demirtaş, I. Designing heterocyclic chalcones, benzoyl/sulfonyl hydrazones: an insight into their biological activities and molecular docking study. J. Mol. Struct. 2020, 1211, 128059; https://doi.org/10.1016/j.molstruc.2020.128059.Suche in Google Scholar

9. Wang, D., Liang, J., Zhang, J., Wang, Y., Cai, X. Natural chalcones in Chinese materia medica: licorice. Evid.-Based Complement. Altern. Med. 2020, 2020, 3821248; https://doi.org/10.1155/2020/3821248.Suche in Google Scholar

10. Rozmer, Z., Perjési, P. Naturally occurring chalcones and their biological activities. Phytochem. Rev. 2016, 15, 87–120; https://doi.org/10.1007/s11101-014-9387-8.Suche in Google Scholar

11. Singh, P., Anand, A., Kumar, V. Recent developments in biological activities of chalcones: a mini review. Eur. J. Med. Chem. 2014, 85, 758–777; https://doi.org/10.1016/j.ejmech.2014.08.033.Suche in Google Scholar

12. ur Rashid, H., Xu, Y., Ahmad, N., Muhammad, Y., Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem. 2019, 87, 335–365; https://doi.org/10.1016/j.bioorg.2019.03.033.Suche in Google Scholar

13. Rocha, S., Ribeiro, D., Fernandes, E., Freitas, M. A systematic review on anti-diabetic properties of chalcones. Curr. Med. Chem. 2020, 27, 2257–2321; https://doi.org/10.2174/0929867325666181001112226.Suche in Google Scholar

14. Sinha, S., Batovska, D. I., Medhi, B., Radotra, B., Bhalla, A., Markova, N., Sehgal, R. In vitro anti-malarial efficacy of chalcones: cytotoxicity profile, mechanism of action and their effect on erythrocytes. Malar. J. 2019, 18, 1–11; https://doi.org/10.1186/s12936-019-3060-z.Suche in Google Scholar

15. Rammohan, A., Reddy, J. S., Sravya, G., Rao, C. N., Zyryanov, G. V. Chalcone synthesis, properties and medicinal applications: a review. Environ. Chem. Lett. 2020, 18, 433–458; https://doi.org/10.1007/s10311-019-00959-w.Suche in Google Scholar

16. Lagu, S. B., Yejella, R. P., Bhandare, R. R., Shaik, A. B. Design, synthesis, and antibacterial and antifungal activities of novel trifluoromethyl and trifluoromethoxy substituted chalcone derivatives. Pharmaceuticals 2020, 13, 375; https://doi.org/10.3390/ph13110375.Suche in Google Scholar

17. Goyal, K., Kaur, R., Goyal, A., Awasthi, R. Chalcones: a review on synthesis and pharmacological activities. J. Appl. Pharmaceut. Sci. 2021, 11, 1–14.Suche in Google Scholar

18. Zaini, M. F., Arshad, S., Thanigaimani, K., Khalib, N. C., Zainuri, D. A., Abdullah, M., Razak, I. A. New halogenated chalcones: synthesis, crystal structure, spectroscopic and theoretical analyses for third-order nonlinear optical properties. J. Mol. Struct. 2019, 1195, 606–619; https://doi.org/10.1016/j.molstruc.2019.05.122.Suche in Google Scholar

19. Hall, C. L., Guo, R., Potticary, J., Cremeens, M. E., Warren, S. D., Andrusenko, I., Gemmi, M., Zwijnenburg, M. A., Sparkes, H. A., Pridmore, N. E. Color differences highlight concomitant polymorphism of chalcones. Cryst. Growth Des. 2020, 20, 6346–6355; https://doi.org/10.1021/acs.cgd.0c00285.Suche in Google Scholar

20. Asad, M., Arshad, M. N., Khan, S. A., Oves, M., Khalid, M., Asiri, A. M., Braga, A. A. Cyclization of chalcones into N-propionyl pyrazolines for their single crystal X-ray, computational and antibacterial studies. J. Mol. Struct. 2020, 1201, 127186; https://doi.org/10.1016/j.molstruc.2019.127186.Suche in Google Scholar

21. Wang, C., Wang, L., Meng, Q.-G., Huang, Z.-X., Ma, N.-N., Wang, C.-H. Crystal structure of (E)-2-((3-fluoropyridin-4-yl)methylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 1073–1075; https://doi.org/10.1515/ncrs-2021-0223.Suche in Google Scholar

22. Fun, H.-K., Chantrapromma, S., Patil, P. S., Silva, E. D., Dharmaprakash, S. M. (E)-3-(4-Methylphenyl)-1-(4-nitrophenyl)prop-2-en-1-one. Acta Crystallogr. 2008, E64, o954–o955; https://doi.org/10.1107/s1600536808012257.Suche in Google Scholar

Received: 2022-01-21
Accepted: 2022-03-07
Published Online: 2022-03-17
Published in Print: 2022-06-27

© 2022 Jingxiao Zhang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-(4-imidazol-1-yl-phenyl)-(2-methoxy-benzylidene)-amine monohydrate, C17H17N3O2
  4. Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2H-chromen-2-one, C15H15N1O3
  5. Crystal structure of 4-methyl-4-nitropentanoic acid, C6H11NO4
  6. The crystal structure of (E)-3-(furan-2-yl)acrylonitrile, C7H5NO
  7. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3
  8. Crystal structure of 2-(4-bromobenzyloxy)-6-chloropyridine, C12H9BrClNO
  9. Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
  10. Crystal structure of (E)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C15H11NO3
  11. The crystal structure of (E)-3-chloro-2-(2-(4-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  12. Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
  13. Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O
  14. The crystal structure bis(dimethylsulfoxide-κ1O)-dipyridine-κ1 N-bis(m2-(Z)-3-methyl-2-oxido-N-((Z)-oxido(phenyl)methylene)benzohydrazonato-κ5)trinickel(II) - dimethylsulfoxide (1/2), C48H56N6Ni3O10S4
  15. Crystal structure of bis(bis(triphenylphosphine)iminium) tetradecacarbonyltetratelluridopentaferrate(2-), (PPN)2[Fe5Te4(CO)14]
  16. Crystal structure of 4-Hydroxy-3-(naphthalen-2-ylthio)pent-3-en-2-one, C15H14O2S
  17. The crystal structure of [(1,10-phenanthroline-κ2 N,N)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)nickel(II)] monohydrate, C36H26N4O5Ni
  18. Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5
  19. The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
  20. The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
  21. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)–water–N,N-dimethylformamide(1/2/1), C27H31N3O9Co
  22. The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
  23. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)cobalt(II)], C32H22Br2CoN4O4
  24. Crystal structure of (E)-5-propyl-4-((pyridin-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione – methanol (1/1), C11H13N5S
  25. The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5
  26. Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]
  27. Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
  28. Crystal structure of (2,2′-((naphthalen-1-ylmethyl)azanediyl)diacetato-κ3 N,O,O′)-(1,10-phenanthroline-κ2 N,N′)-copper(II) trihydrate, CuC27H27N3O7
  29. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylato-κ2N,O)-bis(1H-pyrazol-3-ylamine-κ2 N:N)dicobalt(II) dihydrate, C27H23N5O5Co
  30. The crystal structure of bis((E)-2-((tert-butylimino)methyl)-4-chlorophenolato-κ2N,O)zinc(II), C22H26Cl2N2O2Zn
  31. The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20
  32. The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
  33. The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
  34. Crystal structure of 6-hydroxy-2,2-dimethyl-4Hbenzo[d][1,3]dioxin-4-one, C10H10O4
  35. The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
  36. Crystal structure of alaninato-κ2N,O-bis(hydroxylamido-κ2N,O)-oxido-vanadium(V), C3H10N3O5V
  37. Crystal structure of catena-poly[aqua-bis[μ2-6-(1H-imidazol-1-yl)nicotinato-κ2 N,O]copper(II)], C18H14N6O5Cu
  38. Crystal structure of diethyl 4,6-diphenyl-1,9-di-p-tolylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,5(2H)-dicarboxylate, C42H42N2O4
  39. The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
  40. Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4
  41. Crystal structure of (Z)-4-(furan-2-yl((4-iodophenyl)amino)methylene)-5-methyl-2(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, C21H16I N3O2
  42. Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
  43. Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C15H10BrClO2
  44. The crystal structure of 2-(benzhydryloxy)-3-nitropyridine, C18H14N2O3
  45. The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
  46. Crystal structure of 3,6-di-tert-butyl-1-iodo-9-methyl-8-(pyren-1-ylethynyl)-9H-carbazole, C39H34IN
  47. The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
  48. Crystal structure of 5-nitroquinazolin-4(3H)-one, C8H5N3O3
Heruntergeladen am 5.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0039/html
Button zum nach oben scrollen