Home The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
Article Open Access

The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4

  • Jianqiang Cui , Jing Men and Bin Liu ORCID logo EMAIL logo
Published/Copyright: April 7, 2022

Abstract

C9H10N2O4, triclinic, P 1 (no. 2), a = 9.722(2) Å, b = 10.805(2) Å, c = 10.947(2) Å, α = 67.938(4)°, β = 66.250(4)°, γ = 72.978(4)°, V = 961.8(3) Å3, Z = 4, R gt (F) = 0.0421, wR ref (F2) = 0.1339, T = 173 K.

CCDC no.: 2074932

The asymmetri unit of the title crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.28 × 0.15 × 0.11 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.12 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 26.4°, 99%
N(hkl)measured, N(hkl)unique, Rint: 7986, 3867, 0.026
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3096
N(param)refined: 279
Programs: Bruker [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.89087 (18) −0.22043 (16) 0.85017 (17) 0.0262 (3)
C2 0.86065 (19) −0.10462 (16) 0.74850 (18) 0.0285 (4)
H2 0.913877 −0.031475 0.717094 0.034*
C3 0.75147 (18) −0.09531 (15) 0.69191 (16) 0.0254 (3)
C4 0.7227 (2) 0.03187 (16) 0.57704 (18) 0.0309 (4)
C5 0.67455 (17) −0.20461 (15) 0.74417 (16) 0.0230 (3)
C6 0.70408 (19) −0.31984 (16) 0.84865 (17) 0.0279 (4)
H6 0.648692 −0.392094 0.883266 0.033*
C7 0.81472 (19) −0.32864 (16) 0.90193 (17) 0.0280 (4)
H7 0.837829 −0.407195 0.972442 0.034*
C8 0.40596 (19) −0.2098 (2) 0.78446 (19) 0.0368 (4)
H8A 0.405263 −0.302211 0.848275 0.055*
H8B 0.334250 −0.190084 0.734666 0.055*
H8C 0.375583 −0.145451 0.837942 0.055*
C9 0.6158 (2) −0.29775 (18) 0.60251 (19) 0.0354 (4)
H9A 0.718992 −0.287673 0.536642 0.053*
H9B 0.546999 −0.282116 0.550989 0.053*
H9C 0.616815 −0.389538 0.667605 0.053*
N3 1.00948 (16) −0.22929 (15) 0.90617 (15) 0.0324 (3)
N4 0.56208 (15) −0.19738 (14) 0.68197 (14) 0.0255 (3)
O5 1.05758 (16) −0.34050 (14) 0.97445 (15) 0.0467 (4)
O6 1.05430 (16) −0.12565 (14) 0.88210 (16) 0.0490 (4)
O7 0.79889 (17) 0.12111 (13) 0.54301 (16) 0.0500 (4)
O8 0.62584 (16) 0.03740 (12) 0.52515 (14) 0.0411 (3)
C10 0.54457 (18) 0.73187 (17) 0.18610 (17) 0.0282 (4)
C11 0.60307 (18) 0.60425 (16) 0.25648 (16) 0.0269 (4)
H11 0.560037 0.528431 0.273747 0.032*
C12 0.72330 (18) 0.58556 (15) 0.30201 (16) 0.0236 (3)
C13 0.75566 (18) 0.45072 (16) 0.40282 (17) 0.0265 (4)
C14 0.79534 (17) 0.69766 (15) 0.26801 (16) 0.0236 (3)
C15 0.72737 (19) 0.82733 (16) 0.20108 (18) 0.0304 (4)
H15 0.768127 0.904686 0.183205 0.037*
C16 0.60461 (19) 0.84404 (16) 0.16153 (18) 0.0303 (4)
H16 0.560761 0.932056 0.117458 0.036*
C17 1.0368 (2) 0.55897 (18) 0.29598 (19) 0.0347 (4)
H17A 1.137760 0.582792 0.236595 0.052*
H17B 1.011016 0.502132 0.259135 0.052*
H17C 1.037640 0.509183 0.391276 0.052*
C18 0.9826 (2) 0.79878 (19) 0.2810 (2) 0.0420 (5)
H18A 1.035410 0.839604 0.181876 0.063*
H18B 1.054066 0.769943 0.332955 0.063*
H18C 0.897806 0.865469 0.317334 0.063*
N1 0.92410 (15) 0.68179 (13) 0.29735 (15) 0.0293 (3)
N2 0.42479 (17) 0.74576 (16) 0.13406 (15) 0.0354 (4)
O1 0.39351 (15) 0.64268 (15) 0.13463 (14) 0.0449 (4)
O2 0.36021 (16) 0.86101 (15) 0.08662 (16) 0.0515 (4)
O3 0.77092 (15) 0.43896 (12) 0.51125 (13) 0.0379 (3)
O4 0.75413 (16) 0.34823 (11) 0.36584 (13) 0.0387 (3)
H4A 0.767811 0.275360 0.427568 0.058*
H4 0.561 (3) −0.105 (2) 0.619 (2) 0.058*

Source of material

A mixture of 2-chloro-5-nitrobenzoic acid (5.0 mmol) and KOH (15.0 mmol) were added to 5.8 mL Dimethyl Formamide (DMF) in a sealed tube. The reaction was carried out at 100 °C for 14 h and monitored by thin-layer chromatography (TLC). After the reaction was completed, the mixture was diluted with saturated brine (30 mL) and extracted three times with ethyl acetate (30 mL). The organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography with petroleum and ethyl acetate mixture solvent (v/v = 2/1) to obtain a white solid with a yield of 68%. Then the crystal of the title compound was obtained by recrystallization.

Experimental details

The C-bound and O-bound H atoms were positioned geometrically and included in the riding-model approximation refinement.

Comment

N,N-Dimethylarylamine organic compounds are widely present in commercial drug structures, such as antibiotics tigecycline [5] and minocycline [6], fungicide pyrimethamine [7], antipyretic and analgesic drug aminopyrine [8], antihistamine drug diphenhydramine [9], and the narcotic analgesic drug methadone [10]. Due to their bioactive properties, the synthesis of N,N-dimethylarylamine organic compounds attracted much attention, and many similar structures were reported [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]. This paper reports a N,N-dimethylarylamine derivative compound.

As shown in the figure, the asymmetric unit of the crystal structure contains two molecules of the title compound, which show a different protonation state. As shown in the figure the left molecule owns a carboxy group and a dimethylamino group, whereas the right molecule is in its ylidic form with a carboxylate and an dimethyl aminium function. All bond distances and angles are consistent with the expectation and accord with the parent structure [20]. A hydrogen bond O4–H4A⃛O7 was formed between the two molecules with a bond length of 1.7020(13) Å and a bond angle of 175.36(13)°, stabilizing the crystal configuration. The intramolecular hydrogen bond between the dimethylaminiumf unction and one oxygen atom of the carboxylate group, stabilizes the conformation of this second molecule. The title structure represent a rare case that the ylidic amino acid is found together with its neutral analogon, which must be caused by the hydrogenbonding scheme.


Corresponding author: Bin Liu, Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang, Shaanxi, China, E-mail:

Funding source: Natural Science Foundation of Shannxi Province http://dx.doi.org/10.13039/501100007128

Award Identifier / Grant number: 2021JM-540

Award Identifier / Grant number: 2021JQ-885

Funding source: Key Breeding Program by Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province http://dx.doi.org/10.13039/501100009103

Award Identifier / Grant number: 2019XT-1-05

Award Identifier / Grant number: 2019XT-2-05

Funding source: Key Laboratory of Molecular Imaging and Drug Synthesis of Xianyang City http://dx.doi.org/10.13039/501100011710

Award Identifier / Grant number: 2021QXNL-PT-0008

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was financially supported by the Natural Science Foundation of Shaanxi Province (2021JM-540, 2021JQ-885), Key Breeding Program by Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province (2019XT-1-05, 2019XT-2-05), and Key Laboratory of Molecular Imaging and Drug Synthesis of Xianyang City (2021QXNL-PT-0008).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SMART APEX-II. Bruker AXS Inc.: Madison, WI, USA, 2006.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

5. Pankey, G. A. Tigecycline. J. Antimicrob. Chemother. 2005, 56, 470–480; https://doi.org/10.1093/jac/dki248.Search in Google Scholar

6. Dean, O. M., Data-Franco, J., Giorlando, F., Berk, M. Minocycline. CNS Drugs 2012, 26, 391–401; https://doi.org/10.2165/11632000-000000000-00000.Search in Google Scholar

7. Peters, P. J., Thigpen, M. C., Parise, M. E., Newman, R. D. Safety and toxicity of sulfadoxine/pyrimethamine. Drug Saf. 2007, 30, 481–501; https://doi.org/10.2165/00002018-200730060-00003.Search in Google Scholar

8. Jiang, B., Tian, Y., Zhang, Z., Yin, Z., Feng, L., Liu, Y., Zhang, L. Degradation behaviors of Isopropylphenazone and Aminopyrine and their genetic toxicity variations during UV/chloramine treatment. Water Res. 2020, 170, 115339; https://doi.org/10.1016/j.watres.2019.115339.Search in Google Scholar

9. Kristofco, L. A., Haddad, S. P., Chambliss, C. K., Brooks, B. W. Differential uptake of and sensitivity to diphenhydramine in embryonic and larval zebrafish. Environ. Toxicol. Chem. 2018, 37, 1175–1181; https://doi.org/10.1002/etc.4068.Search in Google Scholar

10. Murphy, G. S., Szokol, J. W. Intraoperative methadone in surgical patients: a review of clinical investigations. Anesthesiology 2019, 131, 678–692; https://doi.org/10.1097/aln.0000000000002755.Search in Google Scholar

11. Wallis, J. D., Dunitz, J. D. Interactions between functional groups. Part I. Crystal structure of 2-phenylethynyl-N,N-dimthlaniline at 98 K: a remarkably short C–H⃛C distance. Helv. Chim. Acta 1984, 67, 39–46; https://doi.org/10.1002/hlca.19840670106.Search in Google Scholar

12. Chen, Y., Yuan, C., Xie, T., Li, Y., Dai, B., Zhou, K., Liang, Y., Dai, J., Tan, H., Cui, M. N. O-Benzamide difluoroboron complexes as near-infrared probes for the detection of β-amyloid and tau fibrils. Chem. Commun. 2020, 56, 7269–7272; https://doi.org/10.1039/d0cc02820g.Search in Google Scholar

13. Chen, J., Ye, F., Lin, Y., Chen, Z., Liu, S., Yin, J. Vinyl-functionalized multicolor benzothiadiazoles: design, synthesis, crystal structures and mechanically-responsive performance. Sci. China Chem. 2019, 62, 440–450; https://doi.org/10.1007/s11426-018-9384-1.Search in Google Scholar

14. Harzmann, G. D., Frisenda, R., van der Zant, H. S. J., Mayor, M. Single-molecule spin switch based on voltage-triggered distortion of the coordination sphere. Angew. Chem. Int. Ed. 2015, 54, 13425–13430; https://doi.org/10.1002/anie.201505447.Search in Google Scholar

15. Ishidoshiro, M., Imoto, H., Tanaka, S., Naka, K. An experimental study on arsoles: structural variation, optical and electronic properties, and emission behavior. Dalton Trans. 2016, 45, 8717–8723; https://doi.org/10.1039/c6dt01010e.Search in Google Scholar

16. Potopnyk, M. A., Volyniuk, D., Luboradzki, R., Ceborska, M., Hladka, I., Danyliv, Y., Grazulevicius, J. V. Organolithium-mediated postfunctionalization of thiazolo[3,2-c][1,3,5,2]oxadiazaborinine fluorescent dyes. J. Org. Chem. 2020, 85, 6060–6072; https://doi.org/10.1021/acs.joc.0c00552.Search in Google Scholar

17. Koch, R., Sun, Y., Orthaber, A., Pierik, A. J., Pammer, F. Turn-on fluorescence sensors based on dynamic intramolecular N–B-coordination. Org. Chem. Front. 2020, 7, 1437–1452; https://doi.org/10.1039/d0qo00267d.Search in Google Scholar

18. Prabhuswamy, M., Viveka, S., Madan Kumar, S., Nagaraja, G. K., Lokanath, N. K. 4-(4,5-Diphenyl-1H-imidazol-2-yl)-N,N-dimethylaniline. Acta Crystallogr. 2013, E69, o1006; https://doi.org/10.1107/s160053681301444x.Search in Google Scholar

19. Ozkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z., Mlowe, S. Crystal structure and Hirshfeld surface analysis of 4-{2,2-dichloro-1-[(E)-2-(4-methylphenyl)diazen-1-yl]ethenyl}-N,N-dimethylaniline. Acta Crystallogr. 2020, E76, 1122–1125; https://doi.org/10.1107/s2056989020007744.Search in Google Scholar

20. Linxin, D., Hui, L., Song, L. Crystal structure of 4-(chloromethyl)-3-nitrobenzoic acid, C8H6ClNO4. Z. Kristallogr. N. Cryst. Struct. 2017, 232, 647–648; https://doi.org/10.1515/ncrs-2016-0389.Search in Google Scholar

Received: 2022-03-03
Accepted: 2022-03-29
Published Online: 2022-04-07
Published in Print: 2022-06-27

© 2022 Jianqiang Cui et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-(4-imidazol-1-yl-phenyl)-(2-methoxy-benzylidene)-amine monohydrate, C17H17N3O2
  4. Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2H-chromen-2-one, C15H15N1O3
  5. Crystal structure of 4-methyl-4-nitropentanoic acid, C6H11NO4
  6. The crystal structure of (E)-3-(furan-2-yl)acrylonitrile, C7H5NO
  7. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3
  8. Crystal structure of 2-(4-bromobenzyloxy)-6-chloropyridine, C12H9BrClNO
  9. Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
  10. Crystal structure of (E)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C15H11NO3
  11. The crystal structure of (E)-3-chloro-2-(2-(4-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  12. Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
  13. Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O
  14. The crystal structure bis(dimethylsulfoxide-κ1O)-dipyridine-κ1 N-bis(m2-(Z)-3-methyl-2-oxido-N-((Z)-oxido(phenyl)methylene)benzohydrazonato-κ5)trinickel(II) - dimethylsulfoxide (1/2), C48H56N6Ni3O10S4
  15. Crystal structure of bis(bis(triphenylphosphine)iminium) tetradecacarbonyltetratelluridopentaferrate(2-), (PPN)2[Fe5Te4(CO)14]
  16. Crystal structure of 4-Hydroxy-3-(naphthalen-2-ylthio)pent-3-en-2-one, C15H14O2S
  17. The crystal structure of [(1,10-phenanthroline-κ2 N,N)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)nickel(II)] monohydrate, C36H26N4O5Ni
  18. Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5
  19. The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
  20. The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
  21. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)–water–N,N-dimethylformamide(1/2/1), C27H31N3O9Co
  22. The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
  23. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)cobalt(II)], C32H22Br2CoN4O4
  24. Crystal structure of (E)-5-propyl-4-((pyridin-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione – methanol (1/1), C11H13N5S
  25. The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5
  26. Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]
  27. Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
  28. Crystal structure of (2,2′-((naphthalen-1-ylmethyl)azanediyl)diacetato-κ3 N,O,O′)-(1,10-phenanthroline-κ2 N,N′)-copper(II) trihydrate, CuC27H27N3O7
  29. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylato-κ2N,O)-bis(1H-pyrazol-3-ylamine-κ2 N:N)dicobalt(II) dihydrate, C27H23N5O5Co
  30. The crystal structure of bis((E)-2-((tert-butylimino)methyl)-4-chlorophenolato-κ2N,O)zinc(II), C22H26Cl2N2O2Zn
  31. The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20
  32. The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
  33. The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
  34. Crystal structure of 6-hydroxy-2,2-dimethyl-4Hbenzo[d][1,3]dioxin-4-one, C10H10O4
  35. The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
  36. Crystal structure of alaninato-κ2N,O-bis(hydroxylamido-κ2N,O)-oxido-vanadium(V), C3H10N3O5V
  37. Crystal structure of catena-poly[aqua-bis[μ2-6-(1H-imidazol-1-yl)nicotinato-κ2 N,O]copper(II)], C18H14N6O5Cu
  38. Crystal structure of diethyl 4,6-diphenyl-1,9-di-p-tolylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,5(2H)-dicarboxylate, C42H42N2O4
  39. The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
  40. Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4
  41. Crystal structure of (Z)-4-(furan-2-yl((4-iodophenyl)amino)methylene)-5-methyl-2(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, C21H16I N3O2
  42. Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
  43. Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C15H10BrClO2
  44. The crystal structure of 2-(benzhydryloxy)-3-nitropyridine, C18H14N2O3
  45. The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
  46. Crystal structure of 3,6-di-tert-butyl-1-iodo-9-methyl-8-(pyren-1-ylethynyl)-9H-carbazole, C39H34IN
  47. The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
  48. Crystal structure of 5-nitroquinazolin-4(3H)-one, C8H5N3O3
Downloaded on 5.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0101/html
Scroll to top button