Home Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
Article Open Access

Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO

  • Yue Ding ORCID logo , Hongying Wang , Qin Zheng , Jiaojie Guo , Guangbo Zhang , Jing Wang , Xiumin Wang EMAIL logo and Haibo Guo EMAIL logo
Published/Copyright: March 22, 2022

Abstract

C21H25ClO, orthorhombic, Pna21 (no. 33), a = 14.152(2) Å, b = 22.112(3) Å, c = 6.0109(7) Å, V = 1880.9(4) Å3, Z = 4, R gt (F) = 0.0586, wRref(F2) = 0.1227, T = 150 K.

CCDC No.: 2126288

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow needle
Size: 0.13 × 0.10 × 0.08 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.21 mm−1
Diffractometer, scan mode: SuperNova, ω
θmax, completeness: 29.5°, >99%
N(hkl)measured, N(hkl)unique, Rint: 6153, 3556, 0.050
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2501
N(param)refined: 214
Programs: CrysAlisPRO [1], SHELX [2, 3], Olex2 [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Cl1 0.86208 (9) 0.53160 (5) 1.1634 (2) 0.0485 (3)
O1 0.4117 (2) 0.27324 (14) 0.2313 (5) 0.0407 (9)
C1 0.8597 (3) 0.42196 (18) 0.6391 (8) 0.0329 (10)
H1 0.894901 0.416984 0.509708 0.040*
C2 0.8822 (3) 0.4686 (2) 0.7819 (8) 0.0377 (11)
H2 0.930169 0.495754 0.746695 0.045*
C3 0.8324 (3) 0.47430 (19) 0.9773 (7) 0.0313 (10)
C4 0.7604 (3) 0.43477 (19) 1.0315 (7) 0.0332 (11)
H4 0.727653 0.438734 1.164905 0.040*
C5 0.7379 (3) 0.3889 (2) 0.8823 (7) 0.0339 (11)
H5 0.689322 0.362200 0.916899 0.041*
C6 0.7861 (3) 0.38219 (18) 0.6831 (7) 0.0276 (9)
C7 0.7621 (3) 0.33426 (19) 0.5215 (7) 0.0301 (10)
H7 0.811401 0.310147 0.470573 0.036*
C8 0.6746 (3) 0.32232 (19) 0.4410 (6) 0.0257 (9)
C9 0.5929 (3) 0.35980 (17) 0.4875 (6) 0.0230 (9)
H9 0.601176 0.394384 0.573372 0.028*
C10 0.5062 (3) 0.34695 (18) 0.4127 (6) 0.0223 (9)
C11 0.4209 (3) 0.38755 (19) 0.4624 (6) 0.0261 (9)
C12 0.4506 (3) 0.44368 (19) 0.5946 (7) 0.0391 (12)
H12A 0.476180 0.431485 0.735565 0.059*
H12B 0.396595 0.469122 0.618337 0.059*
H12C 0.497714 0.465601 0.512632 0.059*
C13 0.3476 (3) 0.3532 (2) 0.6033 (8) 0.0388 (12)
H13A 0.325762 0.318458 0.522520 0.058*
H13B 0.295112 0.379353 0.634911 0.058*
H13C 0.376131 0.340409 0.740318 0.058*
C14 0.3760 (3) 0.4093 (2) 0.2448 (7) 0.0380 (11)
H14A 0.421827 0.431470 0.159884 0.057*
H14B 0.323198 0.435123 0.277858 0.057*
H14C 0.354645 0.375099 0.160453 0.057*
C15 0.4917 (3) 0.29046 (19) 0.2811 (6) 0.0254 (10)
C16 0.5760 (3) 0.25536 (17) 0.2099 (6) 0.0234 (9)
C17 0.6619 (3) 0.27177 (19) 0.2889 (6) 0.0270 (10)
H17 0.714698 0.249894 0.244213 0.032*
C18 0.5633 (3) 0.20162 (19) 0.0516 (7) 0.0289 (10)
C19 0.6589 (4) 0.1759 (3) −0.0158 (12) 0.078 (2)
H19A 0.695731 0.206869 −0.086308 0.117*
H19B 0.649723 0.142937 −0.117561 0.117*
H19C 0.691443 0.161581 0.114101 0.117*
C20 0.5075 (3) 0.15187 (19) 0.1684 (8) 0.0441 (12)
H20A 0.537998 0.141725 0.306143 0.066*
H20B 0.504985 0.116741 0.074773 0.066*
H20C 0.444526 0.165831 0.197854 0.066*
C21 0.5101 (4) 0.2205 (2) −0.1602 (7) 0.0500 (15)
H21A 0.447204 0.232911 −0.121984 0.075*
H21B 0.507207 0.186799 −0.260865 0.075*
H21C 0.542768 0.253424 −0.230165 0.075*

Source of material

The raw materials 2,6-di-tert-butylphenol (20.63 mg, 0.1 mmol) and p-chlorobenzaldehyde (14.06 mg, 0.1 mmol) were placed in a Dean–Stark device. Subsequently, toluene (20 ml) was added and heated to reflux for 12 h. During this process, piperidine (0.2 mmol) was added dropwise to the reaction system at a uniform rate within 3 h. Heating was stopped and a small amount of acetic anhydride was added to the reaction solution and stirring was continued for 15 min. Afterwards, the reaction solution was poured into ice water and extracted with ethyl acetate. The organic phase was dried with magnesium sulfate to remove water and then rotary evaporated. The obtained oily solid was purified by column chromatography to obtain the product. Finally, the product was recrystallized from methanol to obtain crystals.

Experimental details

Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms.

Comment

1,4-Cylohexadiene moieties are widely found in organisms and have a 4π electron system [5]. So far, 1,4-cyclohexadiene derivatives are extensively used as intermediates in organic synthesis, and their applications in medicine and materials have also attracted widespread attention [6], [7], [8]. At home and abroad, the synthesis of 1,4-cyclohexadiene derivatives mainly includes Birch reduction method [9], [10], [11], Diels–Alder reaction [12], [13], [14], and redox method [15, 16]. In addition, the yields of 1,4-cyclohexadiene compounds prepared by several synthetic methods are relatively high. By preparing single crystals, we have greatly reduced the hygroscopicity and improved the purity of the product.

The title molecule is the only one in the asymmetric unit (see the figure). The bond length and bond angle of the molecule are within a reasonable range. For instance, the bond lengths of O1–C15 and Cl1–C3 are 1.231 and 1.742, respectively. The bond angle of C6–C7–C8 is 125.77° and the torsion angle of C5–C6–C7–C8 is −129.60°. In addition, the cyclohexadiene plane (C8–C9–C10–C15–C16–C17) and the plane of the chlorophenyl (C1–C2–C3–C4–C5–C6) show a dihedral angle of 52°.


Corresponding authors: Xiumin Wang, Shijiazhuang Vocational College of Technology and Information, #2 Hongqi Street, Qiaoxi District, Shijiazhuang, 050091, China, E-mail: ; and Haibo Guo, Shijiazhuang Food and Drug Inspection Center, #16 Fuqiang Street, Yuhua District, Shijiazhuang, 050022, China, E-mail:

Award Identifier / Grant number: 16214016

  1. Author contributions: Yue Ding: Writing – Original Draft; Qin Zheng: Methodology and Conceptualization; Jiaojie Guo: Visualization; Guangbo Zhang: Formal Analysis: Jing Wang: Data Curation; Xiumin Wang: Writing – Review & Editing; Haibo Guo: Supervision. All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Hebei Province Science and Technology Support Program (No. 16214016).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Agilent Technologies. CrysAlisPro Software System (version 1.171.38.41r); Agilent Technologies UK Ltd: Oxford, UK, 2015.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Lei, P., Ding, Y. X., Zhang, X. H., Adijiang, A., Li, H. Z., Ling, Y., An, J. A practical and chemoselective ammonia-free Birch reduction. Org. Lett. 2018, 20, 3439–3442; https://doi.org/10.1021/acs.orglett.8b00891.Search in Google Scholar

6. Winkler, M., Romain, C., Meier, M. A. R., Williams, C. K. Renewable polycarbonates and polyesters from 1,4-cyclohexadiene. Green Chem. 2015, 17, 300–306; https://doi.org/10.1039/c4gc01353k.Search in Google Scholar

7. Baschieri, A., Amorati, R., Valgimigli, L., Sambri, L. 1-Methyl-1,4-cyclohexadiene as a traceless reducing agent for the synthesis of catechols and hydroquinones. J. Org. Chem. 2019, 84, 13655–13664; https://doi.org/10.1021/acs.joc.9b01898.Search in Google Scholar

8. Khan, F. A., Dash, J. Synthesis of a novel, highly symmetric bis-oxa-bridged compound. J. Am. Chem. Soc. 2002, 124, 2424–2425; https://doi.org/10.1021/ja017371f.Search in Google Scholar

9. Murphy, S., Adam, W. The elusive 1,4-dioxy biradical: revised mechanism for the formation of diol from 3,3-dimethyldioxetane in cyclohexadiene. J. Am. Chem. Soc. 1996, 118, 12916–12921; https://doi.org/10.1021/ja9540886.Search in Google Scholar

10. Lebeuf, R., Dunet, J., Beniazza, R., Ibrahim, D., Bose, G., Berlande, M., Robert, F., Landais, Y. Birch reductive alkylation of biaryls: scope and limitations. J. Org. Chem. 2009, 74, 6469–6478; https://doi.org/10.1021/jo901395m.Search in Google Scholar

11. Cole, J. P., Chen, D.-F., Kudisch, M., Pearson, R. M., Lim, C.-H., Miyake, G. M. Organocatalyzed Birch reduction driven by visible light. J. Am. Chem. Soc. 2020, 142, 13573–13581; https://doi.org/10.1021/jacs.0c05899.Search in Google Scholar

12. Hilt, G., Janikowski, J., Hess, W. meta-Directing cobalt-catalyzed Diels–Alder reactions. Angew. Chem. Int. Ed. 2006, 45, 5204–5206; https://doi.org/10.1002/anie.200601974.Search in Google Scholar

13. Hamal, K. B., Chalifoux, W. A. One-pot synthesis of α-carbonyl bicyclic furans via a sequential Diels–Alder/5-exo-dig cyclization/oxidation reaction. J. Org. Chem. 2017, 82, 12920–12927; https://doi.org/10.1021/acs.joc.7b02479.Search in Google Scholar

14. Goeke, A., Charpentier, J., Voirol, F., Flachsmann, F., Tanner, S., Aeberli, N., Brunner, G. Synthesis of 1,4-cyclohexadiene carboxylates via a formal [2+4]-cycloaddition of propiolates under cobalt catalysis. Helv. Chim. Acta 2020, 103, e2000175.10.1002/hlca.202000175Search in Google Scholar

15. Löbermann, F., Mayer, P., Trauner, D. Biomimetic synthesis of (−)-Pycnanthuquinone C through the Diels–Alder reaction of a vinyl quinone. Angew. Chem. Int. Ed. 2010, 49, 6199–6202.10.1002/anie.201001862Search in Google Scholar PubMed

16. Liang, Y. F., Wu, K., Liu, Z., Wang, X., Liang, Y., Liu, C., Jiao, N. CsOH catalyzed aerobic oxidative synthesis of p-quinols from multi-alkyl phenols under mild conditions. Sci. China Chem. 2015, 58, 1334–1339; https://doi.org/10.1007/s11426-015-5363-4.Search in Google Scholar

Received: 2022-01-27
Accepted: 2022-03-11
Published Online: 2022-03-22
Published in Print: 2022-06-27

© 2022 Yue Ding et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-(4-imidazol-1-yl-phenyl)-(2-methoxy-benzylidene)-amine monohydrate, C17H17N3O2
  4. Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2H-chromen-2-one, C15H15N1O3
  5. Crystal structure of 4-methyl-4-nitropentanoic acid, C6H11NO4
  6. The crystal structure of (E)-3-(furan-2-yl)acrylonitrile, C7H5NO
  7. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3
  8. Crystal structure of 2-(4-bromobenzyloxy)-6-chloropyridine, C12H9BrClNO
  9. Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
  10. Crystal structure of (E)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C15H11NO3
  11. The crystal structure of (E)-3-chloro-2-(2-(4-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  12. Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
  13. Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O
  14. The crystal structure bis(dimethylsulfoxide-κ1O)-dipyridine-κ1 N-bis(m2-(Z)-3-methyl-2-oxido-N-((Z)-oxido(phenyl)methylene)benzohydrazonato-κ5)trinickel(II) - dimethylsulfoxide (1/2), C48H56N6Ni3O10S4
  15. Crystal structure of bis(bis(triphenylphosphine)iminium) tetradecacarbonyltetratelluridopentaferrate(2-), (PPN)2[Fe5Te4(CO)14]
  16. Crystal structure of 4-Hydroxy-3-(naphthalen-2-ylthio)pent-3-en-2-one, C15H14O2S
  17. The crystal structure of [(1,10-phenanthroline-κ2 N,N)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)nickel(II)] monohydrate, C36H26N4O5Ni
  18. Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5
  19. The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
  20. The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
  21. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)–water–N,N-dimethylformamide(1/2/1), C27H31N3O9Co
  22. The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
  23. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)cobalt(II)], C32H22Br2CoN4O4
  24. Crystal structure of (E)-5-propyl-4-((pyridin-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione – methanol (1/1), C11H13N5S
  25. The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5
  26. Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]
  27. Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
  28. Crystal structure of (2,2′-((naphthalen-1-ylmethyl)azanediyl)diacetato-κ3 N,O,O′)-(1,10-phenanthroline-κ2 N,N′)-copper(II) trihydrate, CuC27H27N3O7
  29. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylato-κ2N,O)-bis(1H-pyrazol-3-ylamine-κ2 N:N)dicobalt(II) dihydrate, C27H23N5O5Co
  30. The crystal structure of bis((E)-2-((tert-butylimino)methyl)-4-chlorophenolato-κ2N,O)zinc(II), C22H26Cl2N2O2Zn
  31. The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20
  32. The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
  33. The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
  34. Crystal structure of 6-hydroxy-2,2-dimethyl-4Hbenzo[d][1,3]dioxin-4-one, C10H10O4
  35. The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
  36. Crystal structure of alaninato-κ2N,O-bis(hydroxylamido-κ2N,O)-oxido-vanadium(V), C3H10N3O5V
  37. Crystal structure of catena-poly[aqua-bis[μ2-6-(1H-imidazol-1-yl)nicotinato-κ2 N,O]copper(II)], C18H14N6O5Cu
  38. Crystal structure of diethyl 4,6-diphenyl-1,9-di-p-tolylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,5(2H)-dicarboxylate, C42H42N2O4
  39. The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
  40. Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4
  41. Crystal structure of (Z)-4-(furan-2-yl((4-iodophenyl)amino)methylene)-5-methyl-2(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, C21H16I N3O2
  42. Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
  43. Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C15H10BrClO2
  44. The crystal structure of 2-(benzhydryloxy)-3-nitropyridine, C18H14N2O3
  45. The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
  46. Crystal structure of 3,6-di-tert-butyl-1-iodo-9-methyl-8-(pyren-1-ylethynyl)-9H-carbazole, C39H34IN
  47. The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
  48. Crystal structure of 5-nitroquinazolin-4(3H)-one, C8H5N3O3
Downloaded on 5.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0056/html
Scroll to top button