Home Physical Sciences The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
Article Open Access

The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2

  • Xia Hu and Fei Zeng ORCID logo EMAIL logo
Published/Copyright: April 6, 2022

Abstract

C36H24F12N2P2, triclinic, P 1 (no. 2), a = 8.218(7) Å, b = 10.384(9) Å, c = 19.908(17) Å, α = 96.402(12)°, β = 91.216(12)°, γ = 101.161(12)°, V = 1655(2) Å3, Z = 2, R gt (F) = 0.0685, wR ref (F2) = 0.2188, T = 296(2) K.

CCDC no.: 2151727

The molecular structure is shown in the figure (The anions are omitted for clarity). Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow prism
Size: 0.45 × 0.26 × 0.21 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.23 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 27.5°, 97%
N(hkl)measured, N(hkl)unique, Rint: 18688, 7338, 0.041
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3668
N(param)refined: 506
Programs: Bruker [1], SHELX [2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 −0.1815 (5) −0.0588 (4) 0.2657 (2) 0.0562 (10)
H1 −0.2025 −0.1504 0.2565 0.067*
C2 −0.1381 (5) −0.0014 (4) 0.3302 (2) 0.0573 (10)
H2 −0.1322 −0.0543 0.3646 0.069*
C3 −0.1028 (4) 0.1348 (4) 0.34494 (19) 0.0493 (9)
C4 −0.1211 (5) 0.2088 (4) 0.29208 (19) 0.0517 (9)
H4 −0.1006 0.3006 0.3001 0.062*
C5 −0.1691 (5) 0.1472 (4) 0.22844 (19) 0.0517 (9)
H5 −0.1845 0.1973 0.1938 0.062*
C6 −0.0472 (5) 0.1979 (4) 0.4108 (2) 0.0531 (9)
C7 0.0042 (5) 0.2539 (4) 0.4648 (2) 0.0518 (9)
C8 0.0691 (5) 0.3219 (4) 0.52996 (18) 0.0500 (9)
C9 0.0111 (5) 0.2755 (4) 0.5882 (2) 0.0614 (11)
H9 −0.0717 0.1999 0.5856 0.074*
C10 0.0733 (6) 0.3387 (5) 0.6514 (2) 0.0697 (12)
H10 0.0314 0.3053 0.6904 0.084*
C11 0.1945 (6) 0.4486 (5) 0.65651 (19) 0.0655 (12)
H11 0.2375 0.4876 0.6992 0.079*
C12 0.2579 (5) 0.5063 (4) 0.59814 (18) 0.0521 (10)
C13 0.1938 (4) 0.4428 (3) 0.53255 (17) 0.0468 (9)
C14 0.2503 (4) 0.4993 (3) 0.47524 (17) 0.0461 (9)
H14 0.2105 0.4572 0.4327 0.055*
C15 0.3657 (4) 0.6182 (3) 0.48018 (17) 0.0464 (9)
C16 0.4309 (5) 0.6825 (4) 0.54476 (19) 0.0515 (9)
C17 0.3759 (5) 0.6229 (4) 0.60222 (19) 0.0583 (11)
H17 0.4200 0.6628 0.6446 0.070*
C18 0.5472 (5) 0.8051 (4) 0.5490 (2) 0.0664 (12)
H18 0.5928 0.8458 0.5911 0.080*
C19 0.5917 (5) 0.8627 (4) 0.4928 (2) 0.0715 (12)
H19 0.6658 0.9434 0.4966 0.086*
C20 0.5272 (5) 0.8017 (4) 0.4286 (2) 0.0613 (11)
H20 0.5581 0.8433 0.3905 0.074*
C21 0.4198 (4) 0.6822 (3) 0.42130 (18) 0.0481 (9)
C22 0.3653 (4) 0.6180 (4) 0.35493 (19) 0.0500 (9)
C23 0.3275 (5) 0.5637 (4) 0.2996 (2) 0.0526 (9)
C24 0.2968 (4) 0.4883 (4) 0.23359 (18) 0.0483 (9)
C25 0.2496 (5) 0.5404 (4) 0.17684 (19) 0.0547 (10)
H25 0.2342 0.6272 0.1803 0.066*
C26 0.2257 (5) 0.4632 (4) 0.11568 (19) 0.0567 (10)
H26 0.1913 0.4971 0.0777 0.068*
C27 0.2996 (5) 0.2876 (4) 0.1643 (2) 0.0576 (10)
H27 0.3190 0.2018 0.1595 0.069*
C28 0.3205 (5) 0.3588 (4) 0.2261 (2) 0.0600 (11)
H28 0.3507 0.3211 0.2635 0.072*
C29 0.2135 (5) 0.2514 (4) 0.04492 (18) 0.0617 (11)
H29A 0.2864 0.1880 0.0407 0.074*
H29B 0.2318 0.3044 0.0076 0.074*
C30 0.0332 (5) 0.1786 (4) 0.04215 (18) 0.0537 (10)
C31 −0.0839 (6) 0.2085 (4) −0.0020 (2) 0.0690 (12)
H31 −0.0509 0.2676 −0.0332 0.083*
C32 −0.2487 (6) 0.1507 (5) 0.0007 (2) 0.0775 (14)
H32 −0.3258 0.1676 −0.0303 0.093*
C33 −0.3003 (6) 0.0682 (4) 0.0485 (2) 0.0710 (12)
H33 −0.4130 0.0350 0.0519 0.085*
C34 −0.1849 (5) 0.0339 (4) 0.09222 (19) 0.0542 (10)
C35 −0.0180 (5) 0.0880 (4) 0.08718 (18) 0.0536 (10)
H35 0.0608 0.0629 0.1145 0.064*
C36 −0.2390 (5) −0.0545 (4) 0.1457 (2) 0.0648 (11)
H36A −0.3584 −0.0854 0.1410 0.078*
H36B −0.1873 −0.1311 0.1391 0.078*
F1a 0.2832 (10) 0.9454 (8) 0.3227 (3) 0.098 (2)
F1b 0.2315 (18) 0.8942 (15) 0.3036 (8) 0.098 (5)
F2a 0.1615 (6) 0.8405 (5) 0.2278 (5) 0.090 (2)
F2b 0.1910 (19) 0.8684 (15) 0.1931 (10) 0.156 (7)
F3a 0.3449 (12) 0.9779 (8) 0.1682 (3) 0.094 (2)
F3b 0.414 (2) 1.0305 (16) 0.1872 (9) 0.104 (5)
F4a 0.4660 (6) 1.0777 (5) 0.2647 (5) 0.089 (2)
F4b 0.4495 (14) 1.0532 (12) 0.2913 (9) 0.152 (7)
F5 0.1976 (3) 1.0624 (3) 0.24873 (16) 0.1047 (10)
F6 0.4341 (3) 0.8566 (3) 0.23969 (18) 0.1096 (10)
F7 0.6519 (4) 0.5371 (4) 0.18786 (14) 0.1268 (12)
F8 0.6138 (4) 0.3961 (4) 0.0933 (2) 0.1431 (14)
F9 0.8512 (4) 0.4989 (3) 0.05664 (14) 0.1058 (10)
F10 0.8908 (4) 0.6373 (3) 0.15032 (19) 0.1279 (13)
F11 0.6547 (4) 0.6122 (4) 0.08992 (16) 0.1218 (11)
F12 0.8492 (4) 0.4213 (3) 0.15544 (19) 0.1308 (13)
N1 −0.1944 (4) 0.0143 (3) 0.21560 (15) 0.0485 (7)
N2 0.2518 (4) 0.3378 (3) 0.11026 (15) 0.0493 (8)
P1 0.31585 (13) 0.95909 (10) 0.24530 (5) 0.0541 (3)
P2 0.75253 (14) 0.51553 (12) 0.12302 (6) 0.0644 (4)
  1. aOccupancy: 0.641 (16), bOccupancy: 0.359 (16).

Source of material

1,8-Diiodoanthracene (430 mg, 1 mmol) was placed in a 50 ml Schlenk flask along with 4-ethynylpyridine hydrochloride (278 mg, 2 mmol), (Ph3P)2–PdCl2 (10 mg), and CuI (2 mg). Diethylamine (40 ml) was distilled under nitrogen directly into the reaction flask, and the reaction was stirred in the dark at room temperature for 2 days. The solvent was then removed in vacuo; the residue was redissolved in dichloromethane, washed with water, and then washed with brine. The organic fraction was dried with Na2SO4, filtered through a silica gel plug, and then the solvent was removed on a rotary evaporator to produce 1,8-bis(4-pyridylethynyl)anthracene as a yellow solid. A mixture of 1,8-bis(4-pyridylethynyl)anthracene (380 mg, 1.0 mmol) and 1,3-bis(bromomethyl)benzene (262 mg, 1.0 mmol) in CH3CN (300 ml) was stirred for 24 h at reflux under nitrogen atmosphere. Then, the mixture was filtrated, washed with acetone, and dried in vacuo and by protonation the title compound was obtained (635.1 mg, 0.82 mmol) as a yellow solid. Crystals of the title compound were obtained by slow vapor diffusion of ether to a solution of title compound in CH3CN within 1 weeks.

Experimental details

Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms.

Comment

Efficient synthesis of novel macrocyclic hosts with unique structures and good host–guest properties is a permanent and challenging topic in the field of supramolecular chemistry [3], [4], [5]. During the last decade, considerable effort has been devoted to the development of macrocyclic molecular and a number of new macrocyclic receptors with novel properties have been reported, such as pillar[n]arene [6, 7], Ex-box [8], and others [9]. These approaches often suffer from long synthetic steps and low yields, which restrict their further application in the complicated supramolecular self-assembly. Recently, we reported the high yield synthesis of a novel good water-soluble macrocycle containing two pyridinium moieties [10].

The title compound will enriched the toolbox of supramolecular chemists. The single-crystal structure verifies that all bond lengths are in normal ranges.


Corresponding author: Fei Zeng, Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425199, People’s Republic of China, E-mail:

Funding source: The work was supported by National Natural Science Foundation of China

Award Identifier / Grant number: No. 21602055

Funding source: Natural Science Foundation of Hunan Province

Award Identifier / Grant number: No. 2017 J J3094

Funding source: Undergraduate Research Study and Innovative Experiment of Hunan Provincial (2016–636)

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The work was supported by National Natural Science Foundation of China No. 21602055; Natural Science Foundation of Hunan Province No. 2017 J J3094 and Undergraduate Research Study and Innovative Experiment of Hunan Provincial (2016–636).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2, SAINT and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2009.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar

3. Chen, C.-F. Novel triptycene-derived hosts: synthesis and their applications in supramolecular chemistry. Chem. Commun. 2011, 47, 1674–1688.10.1039/c0cc04852fSearch in Google Scholar PubMed

4. Ogoshi, T., Yamagichi, T. A., Nakamoto, Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem. Rev. 2016, 116, 7937–8002.10.1021/acs.chemrev.5b00765Search in Google Scholar PubMed

5. Yu, G., Jie, K., Huang, F. Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem. Rev. 2015, 115, 7240–7307.10.1021/cr5005315Search in Google Scholar PubMed

6. Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. A. para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. J. Am. Chem. Soc. 2008, 130, 5022–5023.10.1021/ja711260mSearch in Google Scholar PubMed

7. Xue, M., Yang, Y., Chi, X. D., Zhang, Z. B., Huang, F. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 2012, 45, 1294–1308.10.1021/ar2003418Search in Google Scholar PubMed

8. Barnes, J. C., Juríček, M., Strutt, N. L., Frasconi, M., Sampath, S., Giesener, M. A., McGrier, P. L., Bruns, C. J., Stern, C. L., Sarjeant, A. A., Stoddart, J. F. ExBox: a polycyclic aromatic hydrocarbon scavenger. J. Am. Chem. Soc. 2013, 135, 183–192.10.1021/ja307360nSearch in Google Scholar PubMed

9. Chen, Y., Qian, C., Zhao, Q., Cheng, M., Dong, X., Zhao, Y., Jiang, J., Wang, L. Adjustable chiral self-sorting and self-discriminating behaviour between diamond-like Tröger’s base-linked cryptands. Chem. Commun. 2019, 55, 8072–8075.10.1039/C9CC03577JSearch in Google Scholar PubMed

10. Ding, M.-H., Liao, J., Tang, L.-L., Ou, G.-C., Zeng, F. High-yield synthesis of a novel water-soluble macrocycle for selective recognition of naphthalene. Chin. Chem. Lett. 2021, 32, 1665–1668.10.1016/j.cclet.2020.11.019Search in Google Scholar

Received: 2022-02-18
Accepted: 2022-03-29
Published Online: 2022-04-06
Published in Print: 2022-06-27

© 2022 Xia Hu and Fei Zeng, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-(4-imidazol-1-yl-phenyl)-(2-methoxy-benzylidene)-amine monohydrate, C17H17N3O2
  4. Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2H-chromen-2-one, C15H15N1O3
  5. Crystal structure of 4-methyl-4-nitropentanoic acid, C6H11NO4
  6. The crystal structure of (E)-3-(furan-2-yl)acrylonitrile, C7H5NO
  7. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3
  8. Crystal structure of 2-(4-bromobenzyloxy)-6-chloropyridine, C12H9BrClNO
  9. Crystal structure of N-(4-bromo-2,6-dichloro-phenyl)pyrazin-2-amine, C10H6BrCl2N3
  10. Crystal structure of (E)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C15H11NO3
  11. The crystal structure of (E)-3-chloro-2-(2-(4-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  12. Crystal structure of (E)-amino(2-(thiazol-2-ylmethylene)hydrazineyl)methaniminium nitrate, C10H16N12O6S2
  13. Crystal structure of 9-methoxy-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C15H18N4O
  14. The crystal structure bis(dimethylsulfoxide-κ1O)-dipyridine-κ1 N-bis(m2-(Z)-3-methyl-2-oxido-N-((Z)-oxido(phenyl)methylene)benzohydrazonato-κ5)trinickel(II) - dimethylsulfoxide (1/2), C48H56N6Ni3O10S4
  15. Crystal structure of bis(bis(triphenylphosphine)iminium) tetradecacarbonyltetratelluridopentaferrate(2-), (PPN)2[Fe5Te4(CO)14]
  16. Crystal structure of 4-Hydroxy-3-(naphthalen-2-ylthio)pent-3-en-2-one, C15H14O2S
  17. The crystal structure of [(1,10-phenanthroline-κ2 N,N)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)nickel(II)] monohydrate, C36H26N4O5Ni
  18. Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5
  19. The crystal structure of (E)-1-(4-aminophenyl)-3-(p-tolyl)prop-2-en-1-one, C16H15NO
  20. The crystal structure of poly[(μ2-terephthalato-κ4O,O′: O″,O‴)-(μ4-terephthalato-κ4O:O′:O″:O‴)-{μ4-(1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ4O:O′:O″,O‴)}dicadmium(II)] – water – acetronitrile (1/2/2), C38H36N14O10Cd2
  21. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)–water–N,N-dimethylformamide(1/2/1), C27H31N3O9Co
  22. The co-crystal structure of 4-hydroxy-3-methoxybenzoic acid – 4,4′-bipyridine, C8H8O4·C10H8N2
  23. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)cobalt(II)], C32H22Br2CoN4O4
  24. Crystal structure of (E)-5-propyl-4-((pyridin-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione – methanol (1/1), C11H13N5S
  25. The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5
  26. Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]
  27. Crystal structure of 2,6-di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one, C21H25ClO
  28. Crystal structure of (2,2′-((naphthalen-1-ylmethyl)azanediyl)diacetato-κ3 N,O,O′)-(1,10-phenanthroline-κ2 N,N′)-copper(II) trihydrate, CuC27H27N3O7
  29. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylato-κ2N,O)-bis(1H-pyrazol-3-ylamine-κ2 N:N)dicobalt(II) dihydrate, C27H23N5O5Co
  30. The crystal structure of bis((E)-2-((tert-butylimino)methyl)-4-chlorophenolato-κ2N,O)zinc(II), C22H26Cl2N2O2Zn
  31. The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20
  32. The crystal structure of (E)-1-ferrocenyl-3-(naphthalen-1-yl)prop-2-en-1-one, C23H18FeO
  33. The crystal structure of (E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C22H22FeO
  34. Crystal structure of 6-hydroxy-2,2-dimethyl-4Hbenzo[d][1,3]dioxin-4-one, C10H10O4
  35. The crystal structure of (2E,4E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C21H18FeO
  36. Crystal structure of alaninato-κ2N,O-bis(hydroxylamido-κ2N,O)-oxido-vanadium(V), C3H10N3O5V
  37. Crystal structure of catena-poly[aqua-bis[μ2-6-(1H-imidazol-1-yl)nicotinato-κ2 N,O]copper(II)], C18H14N6O5Cu
  38. Crystal structure of diethyl 4,6-diphenyl-1,9-di-p-tolylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,5(2H)-dicarboxylate, C42H42N2O4
  39. The crystal structure of cobalt cadmium bis(hydrogenphosphate) bis(phosphate(V)) tetrahydrate, H10O20P4Co3.14Cd1.86
  40. Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4
  41. Crystal structure of (Z)-4-(furan-2-yl((4-iodophenyl)amino)methylene)-5-methyl-2(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one, C21H16I N3O2
  42. Crystal structure of (E)-1-(4-(3,5-dimethoxystyryl)phenyl)-7-ethylheptanedioate, C25H30O6
  43. Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C15H10BrClO2
  44. The crystal structure of 2-(benzhydryloxy)-3-nitropyridine, C18H14N2O3
  45. The crystal structure of 1,3(4,1)-dipyridin-1-iuma-2(1,8)-diethynylanthracena-5(1,3)-benzenacyclohexaphane-11,31-diium bis(hexafluoridophosphate), C36H24F12N2P2
  46. Crystal structure of 3,6-di-tert-butyl-1-iodo-9-methyl-8-(pyren-1-ylethynyl)-9H-carbazole, C39H34IN
  47. The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C9H10N2O4
  48. Crystal structure of 5-nitroquinazolin-4(3H)-one, C8H5N3O3
Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0080/html
Scroll to top button