Startseite The crystal structure of trimethylsulfonium tris(trifluoromethylsulfonyl)methanide, C7H9F9O6S4
Artikel Open Access

The crystal structure of trimethylsulfonium tris(trifluoromethylsulfonyl)methanide, C7H9F9O6S4

  • Raphael Wirthensohn und Maik Finze ORCID logo EMAIL logo
Veröffentlicht/Copyright: 8. Januar 2021

Abstract

C7H9F9O6S4, orthorhombic, P212121 (no. 19), a = 8.80180(10) Å, b = 10.96580(10) Å, c = 16.91360(10) Å, V = 1632.48(3) Å3, Z = 4, Rgt(F) = 0.0222, wRref(F2) = 0.0604, T = 100 K.

CCDC no.: 2049434

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless block
Size:0.50 × 0.33 × 0.28 mm
Wavelength:Cu Kα radiation (1.54184 Å)
μ:6.57 mm−1
Diffractometer, scan mode:XtaLAB Synergy,
θmax, completeness:77.1°, >99%
N(hkl)measured, N(hkl)unique, Rint:106,974, 3454, 0.052
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3451
N(param)refined:239
Programs:CrysAlisPRO [1], SHELX [2], [3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomXyzUiso*/Ueq
C1_10.3067 (3)0.3541 (2)0.42660 (14)0.0249 (5)
S1_10.35961 (6)0.49696 (5)0.37304 (3)0.02142 (13)
F1_10.42950 (19)0.29494 (15)0.45107 (11)0.0359 (4)
O1_10.3952 (2)0.57813 (18)0.43680 (11)0.0280 (4)
C2_10.4757 (3)0.4897 (2)0.15300 (14)0.0279 (5)
S2_10.50395 (6)0.38004 (5)0.23488 (3)0.02170 (13)
F2_10.22620 (19)0.38664 (16)0.48996 (9)0.0346 (4)
O2_10.2323 (2)0.52015 (17)0.32299 (10)0.0259 (4)
C3_10.7838 (3)0.3973 (2)0.40938 (15)0.0270 (5)
S3_10.69775 (7)0.51786 (5)0.34747 (3)0.02185 (13)
F3_10.22247 (19)0.27995 (15)0.38364 (9)0.0309 (3)
O3_10.3649 (2)0.31357 (17)0.23848 (11)0.0281 (4)
C4_10.5214 (3)0.4663 (2)0.31936 (14)0.0214 (4)
O4_10.6429 (2)0.31989 (17)0.21490 (11)0.0285 (4)
F4_10.3499 (2)0.55323 (18)0.16235 (10)0.0430 (4)
O5_10.7951 (2)0.52201 (17)0.27979 (10)0.0268 (4)
F5_10.4628 (3)0.42691 (18)0.08633 (10)0.0449 (5)
O6_10.6911 (2)0.61938 (17)0.39992 (11)0.0283 (4)
F6_10.5911(2)0.56497 (18)0.14605 (11)0.0454 (5)
F7_10.7794 (2)0.28927 (14)0.37505 (10)0.0351 (4)
F8_10.92796 (19)0.42713 (18)0.42247 (11)0.0399 (4)
F9_10.71355 (18)0.38993 (16)0.47885 (9)0.0321 (3)
C1_20.0209 (3)0.2908 (3)0.22124 (15)0.0297 (5)
H1A_2−0.0896310.2895260.2283020.044*
H1AB_20.0662050.3477120.2591680.044*
H1AC_20.0618340.2088450.2301610.044*
S1_20.06499 (7)0.33877 (5)0.12289 (4)0.02495 (13)
C2_2−0.0184 (4)0.4872 (2)0.12157 (17)0.0349 (6)
H2A_2−0.0137370.5204710.0678370.052*
H2AB_20.0374550.5408940.1576570.052*
H2AC_2−0.1246720.4818220.1384900.052*
C3_2−0.0694 (4)0.2522 (3)0.06682 (16)0.0345(6)
H3A_2−0.0678060.2794820.0116490.052*
H3AB_2−0.1713730.2642420.0887860.052*
H3AC_2−0.0427680.1655450.0693200.052*

Source of material

Trifluoromethylsulfonyl fluoride (0.2 g, 1.3 mmol) was transferred to diethyl ether (5 mL) in vacuum at −196 °C. The mixture was warmed to 0 °C and a solution of MeMgCl in THF (1.52 mL, 3 mol L−1, 4.55 mmol) was added. The reaction mixture was allowed to warm to room temperature over the course of 12 h. A few crystals of the title compound were obtained by slow evaporation of the reaction mixture within 14 days.

Experimental details

Hydrogen atoms were located from difference Fourier maps. For the refinement, a riding model was applied and their Uiso values were set to 1.5 Ueq of the parent atoms. Using a hole-in-one method a Flack parameter of 0.459(16) [3] was calculated. Using Parsons’ method [5] using 1456 selected quotients the parameter was very similar [0.461(8)]. The structure was finally refined as a 2-component inversion twin with a refined twin ratio of 0.459(6)/0.541(6).

Comment

Weakly coordinating anions (WCAs) have a low tendency to coordinate because the negative charge is delocalized and they are chemically and electrochemically robust [6], [7], [8], [9], [10], [11]. Thus, WCAs have been applied for the stabilization of highly reactive cations and they serve as important building blocks for many applications in materials science. For example, they are used as components of the electrolytes applied in electrochemical devices such as batteries, supercapacitors, and dye-sensitized solar cells (DSSCs). The tris(trifluoromethylsulfonyl)methanide anion ([Tf3C]) is a WCA that is accessible from trifluoromethylsulfonyl fluoride and methylmagnesium bromide [12]. So far, only few crystallographic studies on salts of the [Tf3C] anion with different types of counterions have been described [12], [13], [14], [15].

In the course of our studies on reactions of trifluoromethylsulfonyl fluoride with methylmagnesium bromide single crystals of the title compound trimethylsulfonium tris(trifluoromethylsulfonyl)methanide ([SMe3][Tf3C]) have been obtained. The [SMe3]+ cation formed during storage of a reaction mixture for 14 days.

The asymmetric unit of the title compound contains one [Tf3C] anion and one [SMe3]+ cation. The C–S3 unit of the anion is planar. The SO2CF3 groups have different orientations with respect to the central C–S3 core with two groups facing up and one facing down with regard to the CS3 plane. The bond lengths and angles are similar to those reported earlier for the [Tf3C] anion [12], [13], [14], [15].

The [SMe3]+ cation reveals the typical pyramidal structure and the bond parameters are close to values reported for other trimethylsulfonium salts, e.g. [SMe3][1-H2N-6-F-closo-1-CB11I10] [16].


Corresponding author: Maik Finze, Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany; and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, E-mail:

Funding source: University of Wuerzburg

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This publication was supported by the Open Access Publication Fund of the University of Wuerzburg.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Oxford Diffraction Ltd. CrysAlisPRO; Yarnton: Oxfordshire, England, 2020.Suche in Google Scholar

2. Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s205327331402637/0.Suche in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Brandenburg, K. Diamond. Visual crystal structure information system (Ver. 4.5.1); Crystal Impact GbR: Bonn, Germany, 2018.Suche in Google Scholar

5. Parsons, S., Flack, H. D., Wagner, T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. 2013, B69, 249–259; https://doi.org/10.1107/s2052519213010014.Suche in Google Scholar PubMed PubMed Central

6. Beck, W., Sünkel, K. Metal complexes of weakly coordinating anions. Precursors of strong cationic organometallic lewis acids. Chem. Rev. 1988, 88, 1405–1421; https://doi.org/10.1021/cr00089a017.Suche in Google Scholar

7. Seppelt, K. “Noncoordinating” anions, II. Angew Chem. Int. Ed. Engl. 1993, 32, 1025–1027; Angew. Chem., 1993, 105, 1074–1077; https://doi.org/10.1002/anie.199310251.Suche in Google Scholar

8. Strauss, S. H. The search for larger and more weakly coordinating anions. Chem. Rev. 1993, 93, 927–942; https://doi.org/10.1021/cr00019a005.Suche in Google Scholar

9. Krossing, I., Raabe, I. Noncoordinating anions – fact or fiction? A survey of likely candidates. Angew. Chem. Int. Ed. 2004, 43, 2066–2090. Angew. Chem., 2004, 117, 2116–2142; https://doi.org/10.1002/anie.200300620.Suche in Google Scholar PubMed

10. Riddlestone, I. M., Kraft, A., Schaefer, J., Krossing, I. Taming the cationic beast: novel developments in the synthesis and application of weakly coordinating anions. Angew. Chem. Int. Ed. 2018, 57, 13982–14024. Angew. Chem., 2018, 130, 14178–14221; https://doi.org/10.1002/anie.201710782.Suche in Google Scholar PubMed

11. Huang, Z., Wang, S., Dewhurst, R. D., Ignat’ev, N. V., Finze, M., Braunschweig, H. Boron: its role in energy related research and applications. Angew. Chem. Int. Ed. 2020, 59, 8800–8816. Angew. Chem., 2020, 132, 8882–8900; https://doi.org/10.1002/anie.201911108.Suche in Google Scholar PubMed PubMed Central

12. Turowsky, L., Seppelt, K. Tris[(trifluoromethyl)sulfonyl]methane, C(SO2CF3)3. Inorg. Chem. 1988, 27, 2135–2137; https://doi.org/10.1021/ic00285a025.Suche in Google Scholar

13. Schlueter, J. A., Geiser, U., Wang, H. H., Aravinda, M. K., Ward, B. H., Parakka, J. P., Daugherty, R. G., Kelly, M. E., Nixon, P. G., Winter, R. W., Gard, G. L., Montgomery, L. K., Koo, H. -J., Whangbo, M. -H. Trifluoromethylsulfonyl-based salts of BEDT-TTF: crystal and electronic structures and physical properties. J. Solid State Chem. 2002, 168, 524–534; https://doi.org/10.1006/jssc.2002.9750.Suche in Google Scholar

14. Waller, F. J., Barrett, A. G. M., Braddock, D. C., Ramprasad, D., McKinnell, R. M., White, A. J. P., Williams, D. J., Ducray, R. Tris(trifluoromethanesulfonyl)methide (“triflide”) anion: convenient preparation, X-ray crystal structures, and exceptional catalytic activity as a counterion with ytterbium(III) and scandium(III). J. Org. Chem. 1999, 64, 2910–2913; https://doi.org/10.1021/jo9800917.Suche in Google Scholar PubMed

15. Schulz, C., Daniels, J., Bredow, T., Beck, J. The electrochemical synthesis of polycationic clusters. Angew. Chem. Int. Ed. 2016, 55, 1173–1177. Angew. Chem., 2016, 128, 1188–1192; https://doi.org/10.1002/anie.201507644.Suche in Google Scholar PubMed

16. Finze, M., Reiss, G. J. Trimethylsulfonium 1-amino-6-fluoro-2,3,4,5,7,8,9,10,11,12-decaiodo-1-carba-closo-dodecaborate. Acta Crystallogr. 2012, E68, o640; https://doi.org/10.1107/s1600536812004424.Suche in Google Scholar

Received: 2020-11-23
Accepted: 2020-12-10
Published Online: 2021-01-08
Published in Print: 2021-03-26

© 2020 Raphael Wirthensohn and Maik Finze, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 4-hydroxybenzene-1,3-diaminium dichloride, C6H10Cl2N2O
  4. The crystal structure of 3-chloropropylammonium chloride, C3H9Cl2N
  5. The crystal structure of 1-chloro-2-(dimethylamino)ethane hydrochloride, C4H11Cl2N
  6. Crystal structure of N-(2-(trifluoromethyl)phenyl)hexanamide, C13H16F3NO
  7. Redetermination of the crystal structure of para-toluidine, C7H9
  8. The crystal structure of bis(1,3-dihydroxy-2-methylpropan-2-aminium) carbonate, C9H24N2O7
  9. The crystal structure of 4-chloro-1-methylpiperidin-1-ium chloride, C6H13Cl2N
  10. Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
  11. The crystal structure of ethyl 2-amino-4-(3,5-difluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H21F2NO4
  12. Crystal structure of 6,6'‐((1E,1'E)‐(propane‐1,3‐diylbis(azaneylylidene))bis(methaneylylidene))bis(3‐bromophenol), C34H32Br4N4O4
  13. The crystal structure of (E)-2-(2-((2-picolinoylhydrazono)methyl)phenoxy)acetic acid dihydrate, C15H17N3O6
  14. Crystal structure of (E)-4-bromo-N′-(3-chloro-2-hydroxybenzylidene)benzohydrazide, C14H10BrClN2O2
  15. Crystal structure of N,N′-bis(4-bromosalicylidene) ethylene-1,2-diaminopropan, C34H32Br4N4O4
  16. Crystal structure of 4-bromo-N′-[(3-bromo-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H14Br2N2O3
  17. The crystal structure of 1,2-bis(1H-benzo[d]imidazol-2-yl)ethane-1,2-diol — N-(2-aminophenyl)-3-(1H-benzo[d]imidazol-2-yl)-2,3-dihydroxypropanamide (1/1), C32H30N8O5
  18. The crystal structure of para-trifluoromethyl-aniline hemihydrate, C14H14F6N2O
  19. Redetermination of the crystal structure of 2-amino-2-methyl-propane-1,3-diole, C4H11NO2
  20. The crystal structure of methacholine chloride, C8H18ClNO2
  21. Crystal structure of 5,7,7-trimethyl-4,6,7,8-tetrahydrocyclopenta[g]isochromen-1(3H)-one, C15H18O2
  22. Crystal structure of poly[diammine-bis(μ4-4-hydroxypyridine-3-sulfonato-κ5N:O, O′:O′′:O′′)(μ2-pyrazinyl-κ2N:N′)tetrasilver(I)], C7H8Ag2N3O4S
  23. Crystal structure of ethyl (E)-5-(((3′,6′-bis(ethylamino)-3-oxospiro[isoindoline-1,9′-xanthen]-2-yl)imino)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate — ethanol (1/1), C38H45N5O5
  24. Crystal structure of 4-bromo-N′-[(3-chloro-2-hydroxyphenyl)methylidene]benzohydrazide, C14H7Br2N2O2
  25. Redetermination of the crystal structure of 3,3,3-triphenylpropanoic acid, C21H18O2 – Deposition of hydrogen atomic coordinates
  26. Structure redetermination of dextromethorphan hydrobromide monohydrate, C18H28BrNO2 – localization of hydrogen atoms
  27. Crystal structure of tris(azido-κ1N)-(N-(2-aminoethyl)-N-methyl-1,3-propanediamine-κ3N,N′,N′′)cobalt(III), C7H19CoN12
  28. Crystal structure of tetraaqua-bis(1H-indazole-6-carboxylate-κN)cadmium (II), C16H18CdN4O8
  29. Crystal structure of dichloride-bis(1-propylimidazole-κ1N)zinc(II), C12H20Cl2N4Zn
  30. Crystal structure of (E)-resveratrol 3-O-β-D-xylopyranoside, C19H22O8
  31. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-vinyl- 1H-imidazol-3-ium) bis(hexafluoro phosphate)(V), C18H20F12N4P2
  32. Crystal structure of diaqua[bis(benzimidazol-2-yl-methyl)amine-κ3N,N′,N″]-phthalato-κ1O-nickel(II)-methanol (1/2), C26H31N5NiO8
  33. Crystal structure of 6,7-difluoro-1-methyl-3-(trifluoromethyl)quinoxalin-2(1H)-one, C10H5F5N2O
  34. Crystal structure of dichlorido-bis(1-hexyl-1H-benzotriazole-k1N)zinc(II), C24H34N6Cl2Zn
  35. The crystal structre of 2-(4-bromophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H12BBrN2
  36. Crystal structure of diethyl 3,9-bis(4-fluorophenyl)-6,12-diphenyl-3,9-diazapentacyclo[6.4.0.02,7.04,11]dodecane-1,5-dicarboxylate, C40H36F2N2O4
  37. Crystal structure of (E)-7-methoxy-2-((5-methoxypyridin-3-yl)methylene)-3,4- dihydronaphthalen-1(2H)-one, C18H17NO3
  38. Crystal structure of (E)-2-chloro-6-(((1,3-dihydroxy-2-(oxidomethyl)propan-2-yl)imino)methyl)phenolate-κ3N,O,O’)manganese(IV), C22H24Cl2MnN2O8
  39. The crystal structure of α-(meta-methoxyphenoxy)-ortho-tolylic acid, C15H14O4
  40. The crystal structure of N-(2-chloroethyl)-N,N-diethylammonium chloride, C6H15Cl2N
  41. The crystal structure of tris(2,3,4,6,7,8,9,10-octahydro-1H-pyrimido[1,2-a]azepin-5-ium) trihydrodecavanadate(V), C27H54N6O28V10
  42. Crystal structure of 1,3-bis(octyl)benzimidazolium perchlorate C23H39ClN2O4
  43. Crystal structure of tetrakis[(Z)-(2-(1-(furan-2-yl)-2-methylpropylidene)-1-phenylhydrazin-1-ido-κ2N,N′)] zirconium(IV), C56H60N8O4Zr
  44. The crystal structure of 2-(naphthalen-2-yloxy)-4-phenyl-6-(prop-2-yn-1-yloxy)-1,3,5-triazine, C22H15N3O2
  45. The crystal structure of trimethylsulfonium tris(trifluoromethylsulfonyl)methanide, C7H9F9O6S4
  46. Crystal structure of 4-bromo-N′-[3,5-dichloro-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H13BrCl2N2O3
  47. The crystal structure of 4-(4-bromophenyl)-2-(3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole, C24H16Br2FN3S
  48. The crystal structure of N-(adamantan-1-yl)-piperidine-1-carbothioamide, C16H26N2S
  49. The crystal structure of 1-phenyl-N-(4,5,6,7-tetrabromo-1,3-dioxoisoindolin-2-yl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamide-dimethylformamide (1/1) C22H10Br4N4O3S
  50. The crystal structure of benzeneseleninic acid anhydride, C12H10O3Se2
  51. The crystal structure of diphenyalmine hydrochloride antimony trichloride co-crystallizate, C12H12Cl4NSb – Localization of hydrogen atoms
  52. The crystal structure of para-nitrobenzylbromide, C7H6BrNO2 – A second polymorph and correction of 3D coordinates
  53. Crystal structure of catena-poly[(5H-pyrrolo[3,2-b:4,5-b′]dipyridine-κ2N,N′)-(μ4-hexaoxidodivanadato)dizinc(II)],C10H9N3O6V2Zn
  54. Crystal structure of N,N′-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)-κ5N,N′,N′′,N′′′,O]-tris(nitrato-κ2O,O′) cerium(III), C15H16CeN7O10
  55. Synthesis and crystal structure of oktakis(dimethylsulphoxide-κ1O)gadolinium(III) [tetrabromido-μ2-bromido-μ2-sulfido-di-μ3-sulfido-μ4-sulfido-tetracopper(I)-tungsten(VI)], C16H48O8S12Br5Cu4GdW
  56. Crystal structure of {tris((1H-benzo[d]imidazol-2- yl)methyl)amine-κ4N,N′,N′′,N′′′}-(succinato-κ2O,O′)nickel(II) – methanol (1/4), C32H41N7NiO8
  57. Crystal structure of catena-poly[trans-tetraaqua(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-k2N:N′)cobalt(II)] dinitrate – 1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol) – water (1/3/2), C72H68CoN18O12
  58. Crystal structure of bis(μ2-2-oxido-2-phenylacetate-κ3O:O,O′)-bis(1-isopropoxy-2-oxo-2-phenylethan-1-olato-κ2O,O′)-bis(propan-2-olato-κ1O)dititanium(IV), C44H52O14Ti2
  59. The crystal structure of 5-carboxy-2-(hydroxymethyl)-1H-imidazol-3-ium-4-carboxylate, C6H8N2O6
  60. The crystal structure of 2,6-dibromo-4-fluoroaniline, C6H4Br2FN
  61. The crystal structure of 4-chloro-N-(2-phenoxyphenyl)benzamide, C19H14ClNO2
  62. The crystal structure of 2-methyl-β-naphthothiazole, C12H9NS
Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0612/html
Button zum nach oben scrollen