Home Synthesis and crystal structure of oktakis(dimethylsulphoxide-κ1O)gadolinium(III) [tetrabromido-μ2-bromido-μ2-sulfido-di-μ3-sulfido-μ4-sulfido-tetracopper(I)-tungsten(VI)], C16H48O8S12Br5Cu4GdW
Article Open Access

Synthesis and crystal structure of oktakis(dimethylsulphoxide-κ1O)gadolinium(III) [tetrabromido-μ2-bromido-μ2-sulfido-di-μ3-sulfido-μ4-sulfido-tetracopper(I)-tungsten(VI)], C16H48O8S12Br5Cu4GdW

  • Yunfeng Ye , Guodong Tang and Jun Qian ORCID logo EMAIL logo
Published/Copyright: January 8, 2021

Abstract

C16H48O8S12Br5Cu4GdW, monoclinic, P21 (no. 4), a = 11.576(2) Å, b = 12.407(3) Å, c = 17.582(3) Å, β = 100.76(3)°, V = 2480.8(9) Å3, Z = 2, Rgt(F) = 0.0446, wRref(F2) = 0.1169, T = 293 K.

CCDC no.: 2035932

The asymmetric unit of the title crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Red block
Size:0.22 × 0.20 × 0.18 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:9.87 mm−1
Diffractometer, scan mode:Rigaku Satum 724+, φ and ω
θmax, completeness:25.3°, 99%
N(hkl)measured, N(hkl)unique, Rint:11490, 6878, 0.039
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 5277
N(param)refined:441
Programs:Bruker [1], Olex2 [2], SHELX [3], [4], PLATON [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
W10.13443 (8)0.68772 (7)0.22458 (5)0.0190 (2)
Gd10.70752 (8)0.11726 (8)0.25551 (5)0.0101 (2)
Br10.2800 (2)0.40576 (19)0.19271 (14)0.0314 (6)
Br2−0.0621 (2)0.4782 (2)−0.00076 (12)0.0313 (6)
Br30.1677 (2)0.3866 (2)0.40569 (13)0.0346 (6)
Br40.3093 (2)0.9085 (2)0.44834 (13)0.0331 (6)
Br50.5191 (2)0.6317 (2)0.15024 (16)0.0419 (7)
Cu10.0359 (3)0.5647 (2)0.10787 (16)0.0277 (7)
Cu20.2326 (3)0.8057 (2)0.34381 (15)0.0254 (7)
Cu30.1726 (3)0.4957 (2)0.29721 (16)0.0301 (7)
Cu40.3324 (2)0.6116 (3)0.18259 (14)0.0296 (7)
S1−0.0014 (5)0.5616 (5)0.2278 (3)0.0273 (14)
S20.1739 (5)0.6942 (5)0.1051 (3)0.0230 (12)
S30.0713 (6)0.8458 (5)0.2569 (3)0.0333 (16)
S40.3005 (5)0.6438 (4)0.3107 (3)0.0239 (14)
S50.9700 (5)0.2369 (5)0.2094 (3)0.0257 (13)
S60.5886 (7)0.3314 (7)0.1352 (4)0.051 (2)
S70.7256 (5)0.3572 (4)0.3575 (3)0.0219 (13)
S80.5144 (5)0.0969 (5)0.3867 (3)0.0252 (13)
S90.4426 (5)0.0275 (5)0.1384 (3)0.0273 (14)
S100.6509 (5)−0.1509 (5)0.2963 (4)0.0290 (14)
S110.8701 (5)0.0728 (5)0.4390 (3)0.0259 (14)
S120.8253 (5)−0.0393 (5)0.1190 (3)0.0273 (14)
O10.5167 (12)0.0431 (12)0.2195 (8)0.023 (3)
O20.6066 (14)0.1624 (12)0.3527 (8)0.028 (4)
O30.7315 (14)0.3021 (12)0.2804 (8)0.025 (4)
O40.8647 (12)0.1598 (12)0.1975 (8)0.025 (4)
O50.6180 (13)0.2084 (12)0.1425 (8)0.028 (4)
O60.8637 (12)0.1245 (13)0.3617 (8)0.025 (3)
O70.7073 (12)−0.0475 (11)0.3282 (8)0.022 (3)
O80.7409 (13)−0.0267 (12)0.1788 (8)0.027 (4)
C11.018 (2)0.227 (2)0.1202 (12)0.038 (7)
H1A1.01770.15270.10480.057*
H1B1.09580.25570.12550.057*
H1C0.96550.26710.08150.057*
C20.5945 (18)0.4310 (19)0.3366 (12)0.026 (5)
H2A0.58900.46570.28730.039*
H2B0.59390.48450.37600.039*
H2C0.52890.38320.33520.039*
C30.717 (2)0.392 (2)0.1086 (16)0.052 (8)
H3A0.69660.46150.08580.078*
H3B0.74560.34680.07200.078*
H3C0.77700.40050.15400.078*
C40.496 (3)0.340 (3)0.0408 (18)0.080 (11)
H4A0.49870.41180.02110.120*
H4B0.41660.32230.04480.120*
H4C0.52340.29010.00640.120*
C50.367 (3)−0.090 (3)0.1463 (18)0.069 (9)
H5A0.2901−0.07350.15580.103*
H5B0.4089−0.13230.18840.103*
H5C0.3602−0.13050.09900.103*
C60.324 (3)0.115 (3)0.1360 (19)0.080 (10)
H6A0.29790.11270.18480.120*
H6B0.26030.09350.09550.120*
H6C0.34730.18720.12630.120*
C70.804 (2)−0.1801 (18)0.0862 (13)0.031 (6)
H7A0.8474−0.22700.12470.046*
H7B0.8320−0.18870.03850.046*
H7C0.7221−0.19790.07840.046*
C80.741 (2)0.024 (2)0.0360 (14)0.045 (7)
H8A0.6708−0.01660.01810.067*
H8B0.78660.0282−0.00430.067*
H8C0.72020.09590.04940.067*
C90.989 (2)−0.020 (2)0.4446 (13)0.040 (7)
H9A0.9594−0.08960.42700.060*
H9B1.0301−0.02530.49730.060*
H9C1.04250.00490.41260.060*
C100.593 (3)−0.207 (2)0.3762 (16)0.053 (8)
H10A0.6515−0.20420.42250.080*
H10B0.5705−0.28110.36490.080*
H10C0.5248−0.16690.38350.080*
C110.945 (2)0.1663 (19)0.5045 (12)0.037 (7)
H11A1.00370.20180.48180.056*
H11B0.98120.12990.55090.056*
H11C0.88990.21870.51670.056*
C120.818 (2)0.4654 (18)0.3621 (14)0.030 (6)
H12A0.89650.44060.36050.044*
H12B0.81890.50400.40950.044*
H12C0.79200.51230.31900.044*
C131.099 (2)0.160 (2)0.2627 (13)0.051 (8)
H13A1.10910.17520.31700.077*
H13B1.16850.18030.24390.077*
H13C1.08540.08390.25450.077*
C140.400 (2)0.197 (2)0.3917 (15)0.052 (7)
H14A0.41660.23340.44070.078*
H14B0.32480.16160.38630.078*
H14C0.39730.24850.35070.078*
C150.5746 (19)0.089 (2)0.4881 (11)0.029 (6)
H15A0.64820.05090.49550.044*
H15B0.52080.05070.51400.044*
H15C0.58690.16000.50920.044*
C160.769 (2)−0.238 (2)0.2994 (18)0.054 (8)
H16A0.8319−0.20160.28230.081*
H16B0.7444−0.29890.26610.081*
H16C0.7943−0.26340.35150.081*

Source of material

A mixture of 0.0570 g CuBr (0.4 mmol), 0.0474 g KBr (0.4 mmol) and 0.0350 g (NH4)2WS4 (0.1 mmol) were added to 3 mL DMSO with strong stirring to obtain an orange solution. After that, 0.0343 g Gd(NO3)3 (0.1 mmol) was quickly added in this mixed solution and stirred for 30 min to get a deep red solution. After filtration, 1 mL DMSO was successively added on the top of the above filtrate as buffer solution. Subsequently, 5 mL of isopropyl alcohol was layered carefully on the buffer DMSO solution. Orange crystals were obtained after 10 days at room temperature in dark with a yield of 0.104 g (60% based W).

Experimental details

The structure was solved by direct methods and refined using the SHELX software [3]. All of the hydrogen atoms were placed in the calculated positions (see Table 2).

Comment

Heterothiometallic Mo(W)/S/Cu(Ag) clusters have attracted much attention because of their intriguing skeletal structures and topologies [6], [7], as well as the potential applications in non-linear optical (NLO) materials [8], [9] NLOs are of great interest due to their multifunctional applications in optical fibers, ultrafast optical communication, optical computing, logic devices, optical switching, and optical limiting [10], [11], [12]. As a result, considerable efforts in crystal engineering have been devoted to the design and syntheses of various kinds of Mo(W)/S/Cu(Ag) clusters with unique NLO properties [13], [14], [15], [16]. Until now, many Mo(W)/S/Cu(Ag) clusters have been synthesized to achieve a variety of structures, which origin from the assembly of (NH4)2MS4 (M = Mo, W) or (NH4)2MOS3 (M = Mo, W) precursors with different cuprous salts or silver salts [17]. To further study the structure-activity relationship of Mo(W)/S/Cu(Ag) clusters, here we introduced CuBr as the cuprous salt and prepared a semi-open cubic cluster with extra side.

As shown in the figure, the asymmetric unit of the title structure consists of the anion [WS4Cu4Br5]3− and the cation [Gd(DMSO)8]3+. The Gd(III) cation is coordinated by O atoms from eight DMSO molecules. The anion is a cluster, which contains three differently coordinated sulfido ligands (μ2–S, μ3–S and μ4–S), two differently bonded bromido ligands (μ2–Br and terminal Br), and three different coordination environments for the Cu(I) centers. Cu1 is coordinated by two μ3–S atoms and one terminal Br in a T-shaped mode and connected with two Cu atoms and W through two μ3–S bridges. Cu2 is coordinated with one μ2–S, one μ4–S and a terminal Br in a planar triangular mode. Cu3 and Cu4 have the same coordination environment, in which the Cu center is coordinated with one μ3–S, one μ4–S, one μ2–Br and one terminal Br atom to form a distorted tetrahedral coordination configuration. The W(VI) is 4-coordinated by four S atoms, displaying a distorted tetrahedron. The whole structure of title cluster exhibits a semi-open cubic cluster with an additional face, which is different to the common pentanuclear cluster [18].


Corresponding author: Jun Qian, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China, E-mail:

Award Identifier / Grant number: 51602130

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: National Natural Science Foundation of China (grant No. 51602130).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. BRUKER. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13; https://doi.org/10.1107/s0021889802022112.Search in Google Scholar

6. Zhang, C., Song, Y. L., Wang, X. Correlations between molecular structures and third-order nonlinear optical functions of heterothiometallic clusters: a comparative study. Coord. Chem. Rev. 2007, 251, 111–141; https://doi.org/10.1016/j.ccr.2006.06.007.Search in Google Scholar

7. Zhang, C., Cao, Y., Zhang, J. F., Meng, S. C., Matsumoto, T., Song, Y. L., Ma, J., Chen, Z. X., Tatsumi, K., Humphrey, M. G. Modulation of third-order nonlinear optical properties by backbone modification at polymeric pillared-layer heterometallic clusters. Adv. Mater. 2008, 20, 1870–1875; https://doi.org/10.1002/adma.200702645.Search in Google Scholar

8. Cariati, E., Macchi, R., Roberto, D., Ugo, R., Galli, S., Casati, N., Macchi, P., Sironi, A., Bogani, L., Caneschi, A., Gatteschi, D. Polyfunctional inorganic-organic hybrid materials: an unusual kind of NLO active layered mixed metal oxalates with tunable magnetic properties and very large second harmonic generation. J. Am. Chem. Soc. 2007, 129, 9410–9420; https://doi.org/10.1021/ja0710712.Search in Google Scholar

9. Cariati, E., Macchi, R., Roberto, D., Ugo, R., Galli, S., Masciocchi, N., Sironi, A. The surface of inorganic oxides or zeolites as a nonconventional reaction medium for the selective synthesis of metal carbonyl complexes and clusters. Chem. Mater. 2007, 19, 3704–3711; https://doi.org/10.1021/cm071003e.Search in Google Scholar

10. Beheshti, A., Clegg, W., Nobakht, V., Harrington, R. W. Metal-to-ligand ratio as a design factor in the one-pot synthesis of coordination polymers with [MS4Cun] (M = W or Mo, n = 3 or 5) cluster nodes and a flexible pyrazole-based bridging ligand. Cryst. Growth Des. 2013, 13, 1023–1032; https://doi.org/10.1021/cg301106g.Search in Google Scholar

11. Zhang, J. F., Liu, Y. H., Feng, J. Y., Gong, L. P., Humphrey, M. G., Zhang, C. Decanuclear cluster-based metal-organic framework with a (3,11)-connected topology and highly sensitive 2,4,6-trinitrophenol detection. Inorg. Chem. 2019, 58, 9749–9755; https://doi.org/10.1021/acs.inorgchem.9b00745.Search in Google Scholar

12. Dini, D., Calvete, M. J. F., Hanack, M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev. 2016, 116, 13043–13233; https://doi.org/10.1021/acs.chemrev.6b00033.Search in Google Scholar

13. Zhang, J. F., Jia, D., Humphrey, M. G., Meng, S. C., Zaworotko, M. J., Cifuentes, M. P., Zhang, C. Ammonium-crown ether supramolecular cation-templated assembly of an unprecedented heterobicluster-metal coordination polymer with enhanced NLO properties. Chem. Commun. 2016, 52, 3797–3800; https://doi.org/10.1039/c5cc10076c.Search in Google Scholar

14. Lu, Z. Z., Zhang, R., Pan, Z. R., Li, Y. Z., Guo, Z. J., Zheng, H. G. Metal-organic frameworks constructed from versatile WS4Cux(x-2) units: micropores in highly interpenetrated systems. Chem. Eur J. 2012, 18, 2812–2824; https://doi.org/10.1002/chem.201101963.Search in Google Scholar

15. Chen, X., Li, H. X., Zhang, Z. Y., Zhao, W., Lang, J. P., Abrahams, B. F. Activation and amplification of the thirdorder NLO and luminescent responses of a precursor cluster by a supramolecular approach. Chem. Commun. 2012, 48, 4480–4482; https://doi.org/10.1039/c2cc30581j.Search in Google Scholar

16. Lang, J. P., Xu, Q. T., Yuan, R. X., Abrahams, B. F. {[WS4Cu4(4,4′-bpy)]4[WS4Cu4I4(4,4′-bpy)2]}∞ — an unusual 3D porous coordination polymer formed from the preformed cluster [Et4N]4WS4Cu4I6. Angew. Chem. Int. Ed. 2004, 43, 4741–4745; https://doi.org/10.1002/anie.200460076.Search in Google Scholar

17. Zhang, J. F., Meng, S. C., Song, Y. L., Zhou, Y. M., Cao, Y., Li, J. H., Zhao, H. J., Hu, J. C., Wu, J. H., Humphrey, M. G., Zhang, C. Syntheses, structural, theoretical, and nonlinear optical studies of non-interpenetrating three-dimensional nest-shaped-cluster MoOS3Cu3-based coordination polymers. Cryst. Growth Des. 2011, 11, 100–109; https://doi.org/10.1021/cg1009779.Search in Google Scholar

18. Wang, H. M., Han, Y., Niu, Y. Y., Zhang, Z. H., Hou, H. W., Zhu, Y. External template-assisted self-assembly: design and synthesis of the [MoOS3Cu3]+ based supramolecular polymeric clusters. CrystEngComm 2012, 14, 3125–3130; https://doi.org/10.1039/c2ce06518e.Search in Google Scholar

Received: 2020-11-10
Accepted: 2020-12-15
Published Online: 2021-01-08
Published in Print: 2021-03-26

© 2020 Yunfeng Ye et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 4-hydroxybenzene-1,3-diaminium dichloride, C6H10Cl2N2O
  4. The crystal structure of 3-chloropropylammonium chloride, C3H9Cl2N
  5. The crystal structure of 1-chloro-2-(dimethylamino)ethane hydrochloride, C4H11Cl2N
  6. Crystal structure of N-(2-(trifluoromethyl)phenyl)hexanamide, C13H16F3NO
  7. Redetermination of the crystal structure of para-toluidine, C7H9
  8. The crystal structure of bis(1,3-dihydroxy-2-methylpropan-2-aminium) carbonate, C9H24N2O7
  9. The crystal structure of 4-chloro-1-methylpiperidin-1-ium chloride, C6H13Cl2N
  10. Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
  11. The crystal structure of ethyl 2-amino-4-(3,5-difluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H21F2NO4
  12. Crystal structure of 6,6'‐((1E,1'E)‐(propane‐1,3‐diylbis(azaneylylidene))bis(methaneylylidene))bis(3‐bromophenol), C34H32Br4N4O4
  13. The crystal structure of (E)-2-(2-((2-picolinoylhydrazono)methyl)phenoxy)acetic acid dihydrate, C15H17N3O6
  14. Crystal structure of (E)-4-bromo-N′-(3-chloro-2-hydroxybenzylidene)benzohydrazide, C14H10BrClN2O2
  15. Crystal structure of N,N′-bis(4-bromosalicylidene) ethylene-1,2-diaminopropan, C34H32Br4N4O4
  16. Crystal structure of 4-bromo-N′-[(3-bromo-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H14Br2N2O3
  17. The crystal structure of 1,2-bis(1H-benzo[d]imidazol-2-yl)ethane-1,2-diol — N-(2-aminophenyl)-3-(1H-benzo[d]imidazol-2-yl)-2,3-dihydroxypropanamide (1/1), C32H30N8O5
  18. The crystal structure of para-trifluoromethyl-aniline hemihydrate, C14H14F6N2O
  19. Redetermination of the crystal structure of 2-amino-2-methyl-propane-1,3-diole, C4H11NO2
  20. The crystal structure of methacholine chloride, C8H18ClNO2
  21. Crystal structure of 5,7,7-trimethyl-4,6,7,8-tetrahydrocyclopenta[g]isochromen-1(3H)-one, C15H18O2
  22. Crystal structure of poly[diammine-bis(μ4-4-hydroxypyridine-3-sulfonato-κ5N:O, O′:O′′:O′′)(μ2-pyrazinyl-κ2N:N′)tetrasilver(I)], C7H8Ag2N3O4S
  23. Crystal structure of ethyl (E)-5-(((3′,6′-bis(ethylamino)-3-oxospiro[isoindoline-1,9′-xanthen]-2-yl)imino)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate — ethanol (1/1), C38H45N5O5
  24. Crystal structure of 4-bromo-N′-[(3-chloro-2-hydroxyphenyl)methylidene]benzohydrazide, C14H7Br2N2O2
  25. Redetermination of the crystal structure of 3,3,3-triphenylpropanoic acid, C21H18O2 – Deposition of hydrogen atomic coordinates
  26. Structure redetermination of dextromethorphan hydrobromide monohydrate, C18H28BrNO2 – localization of hydrogen atoms
  27. Crystal structure of tris(azido-κ1N)-(N-(2-aminoethyl)-N-methyl-1,3-propanediamine-κ3N,N′,N′′)cobalt(III), C7H19CoN12
  28. Crystal structure of tetraaqua-bis(1H-indazole-6-carboxylate-κN)cadmium (II), C16H18CdN4O8
  29. Crystal structure of dichloride-bis(1-propylimidazole-κ1N)zinc(II), C12H20Cl2N4Zn
  30. Crystal structure of (E)-resveratrol 3-O-β-D-xylopyranoside, C19H22O8
  31. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-vinyl- 1H-imidazol-3-ium) bis(hexafluoro phosphate)(V), C18H20F12N4P2
  32. Crystal structure of diaqua[bis(benzimidazol-2-yl-methyl)amine-κ3N,N′,N″]-phthalato-κ1O-nickel(II)-methanol (1/2), C26H31N5NiO8
  33. Crystal structure of 6,7-difluoro-1-methyl-3-(trifluoromethyl)quinoxalin-2(1H)-one, C10H5F5N2O
  34. Crystal structure of dichlorido-bis(1-hexyl-1H-benzotriazole-k1N)zinc(II), C24H34N6Cl2Zn
  35. The crystal structre of 2-(4-bromophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H12BBrN2
  36. Crystal structure of diethyl 3,9-bis(4-fluorophenyl)-6,12-diphenyl-3,9-diazapentacyclo[6.4.0.02,7.04,11]dodecane-1,5-dicarboxylate, C40H36F2N2O4
  37. Crystal structure of (E)-7-methoxy-2-((5-methoxypyridin-3-yl)methylene)-3,4- dihydronaphthalen-1(2H)-one, C18H17NO3
  38. Crystal structure of (E)-2-chloro-6-(((1,3-dihydroxy-2-(oxidomethyl)propan-2-yl)imino)methyl)phenolate-κ3N,O,O’)manganese(IV), C22H24Cl2MnN2O8
  39. The crystal structure of α-(meta-methoxyphenoxy)-ortho-tolylic acid, C15H14O4
  40. The crystal structure of N-(2-chloroethyl)-N,N-diethylammonium chloride, C6H15Cl2N
  41. The crystal structure of tris(2,3,4,6,7,8,9,10-octahydro-1H-pyrimido[1,2-a]azepin-5-ium) trihydrodecavanadate(V), C27H54N6O28V10
  42. Crystal structure of 1,3-bis(octyl)benzimidazolium perchlorate C23H39ClN2O4
  43. Crystal structure of tetrakis[(Z)-(2-(1-(furan-2-yl)-2-methylpropylidene)-1-phenylhydrazin-1-ido-κ2N,N′)] zirconium(IV), C56H60N8O4Zr
  44. The crystal structure of 2-(naphthalen-2-yloxy)-4-phenyl-6-(prop-2-yn-1-yloxy)-1,3,5-triazine, C22H15N3O2
  45. The crystal structure of trimethylsulfonium tris(trifluoromethylsulfonyl)methanide, C7H9F9O6S4
  46. Crystal structure of 4-bromo-N′-[3,5-dichloro-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H13BrCl2N2O3
  47. The crystal structure of 4-(4-bromophenyl)-2-(3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole, C24H16Br2FN3S
  48. The crystal structure of N-(adamantan-1-yl)-piperidine-1-carbothioamide, C16H26N2S
  49. The crystal structure of 1-phenyl-N-(4,5,6,7-tetrabromo-1,3-dioxoisoindolin-2-yl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamide-dimethylformamide (1/1) C22H10Br4N4O3S
  50. The crystal structure of benzeneseleninic acid anhydride, C12H10O3Se2
  51. The crystal structure of diphenyalmine hydrochloride antimony trichloride co-crystallizate, C12H12Cl4NSb – Localization of hydrogen atoms
  52. The crystal structure of para-nitrobenzylbromide, C7H6BrNO2 – A second polymorph and correction of 3D coordinates
  53. Crystal structure of catena-poly[(5H-pyrrolo[3,2-b:4,5-b′]dipyridine-κ2N,N′)-(μ4-hexaoxidodivanadato)dizinc(II)],C10H9N3O6V2Zn
  54. Crystal structure of N,N′-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)-κ5N,N′,N′′,N′′′,O]-tris(nitrato-κ2O,O′) cerium(III), C15H16CeN7O10
  55. Synthesis and crystal structure of oktakis(dimethylsulphoxide-κ1O)gadolinium(III) [tetrabromido-μ2-bromido-μ2-sulfido-di-μ3-sulfido-μ4-sulfido-tetracopper(I)-tungsten(VI)], C16H48O8S12Br5Cu4GdW
  56. Crystal structure of {tris((1H-benzo[d]imidazol-2- yl)methyl)amine-κ4N,N′,N′′,N′′′}-(succinato-κ2O,O′)nickel(II) – methanol (1/4), C32H41N7NiO8
  57. Crystal structure of catena-poly[trans-tetraaqua(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-k2N:N′)cobalt(II)] dinitrate – 1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol) – water (1/3/2), C72H68CoN18O12
  58. Crystal structure of bis(μ2-2-oxido-2-phenylacetate-κ3O:O,O′)-bis(1-isopropoxy-2-oxo-2-phenylethan-1-olato-κ2O,O′)-bis(propan-2-olato-κ1O)dititanium(IV), C44H52O14Ti2
  59. The crystal structure of 5-carboxy-2-(hydroxymethyl)-1H-imidazol-3-ium-4-carboxylate, C6H8N2O6
  60. The crystal structure of 2,6-dibromo-4-fluoroaniline, C6H4Br2FN
  61. The crystal structure of 4-chloro-N-(2-phenoxyphenyl)benzamide, C19H14ClNO2
  62. The crystal structure of 2-methyl-β-naphthothiazole, C12H9NS
Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0591/html
Scroll to top button