Home The crystal structure of para-trifluoromethyl-aniline hemihydrate, C14H14F6N2O
Article Open Access

The crystal structure of para-trifluoromethyl-aniline hemihydrate, C14H14F6N2O

  • Eric C. Hosten ORCID logo and Richard Betz ORCID logo
Published/Copyright: February 15, 2021

Abstract

C14H14F6N2O, orthorhombic, Pbcn (no. 60), a = 17.7552(12) Å, b = 10.7574(9) Å, c = 8.0207(7) Å, V = 1532.0(2) Å3, Z = 4, Rgt(F) = 0.0415, wRref(F2) = 0.1154, T = 200 K.

CCDC no.: 2045357

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless block
Size:0.52 × 0.32 × 0.29 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.14 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
θmax, completeness:28.3°, >99%
N(hkl)measured, N(hkl)unique, Rint:12771, 1906, 0.024
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 1330
N(param)refined:146
Programs:Bruker [1], [2], SHELX [3], WinGX/ORTEP [4], Mercury [5], PLATON [6]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
O10.5000000.49124 (17)0.7500000.0573 (5)
N10.57698 (7)0.34368 (15)0.4965 (2)0.0520 (4)
C10.89510 (9)0.39375 (17)0.5090 (2)0.0564 (4)
C110.65549 (7)0.35450 (12)0.49763 (16)0.0366 (3)
C120.69036 (7)0.45499 (12)0.41937 (18)0.0374 (3)
H120.6607700.5151510.3625630.045*
C130.76765 (7)0.46730 (12)0.42416 (18)0.0383 (3)
H130.7910110.5358180.3702260.046*
C140.81141 (7)0.38059 (13)0.50697 (17)0.0386 (3)
C150.77703 (8)0.28104 (13)0.58534 (19)0.0445 (4)
H150.8067770.2211080.6421830.053*
C160.70005 (8)0.26853 (12)0.58129 (19)0.0434 (4)
H160.6769850.2002460.6363690.052*
H10.5234 (10)0.4423 (11)0.6858 (19)0.081 (7)*
H1A0.5533 (10)0.3855 (17)0.416 (2)0.064 (6)*
H1B0.5623 (10)0.2714 (19)0.510 (2)0.060 (6)*
F1a0.9293 (2)0.3371 (5)0.6340 (6)0.0993 (13)
F2a0.91733 (18)0.5102 (2)0.5155 (7)0.1009 (15)
F3a0.9292 (2)0.3455 (4)0.3779 (4)0.0863 (11)
F4b0.9165 (7)0.389 (2)0.6614 (12)0.142 (6)
F5b0.9194 (6)0.4923 (17)0.439 (3)0.181 (8)
F6b0.9244 (7)0.302 (2)0.430 (3)0.171 (8)
  1. aOccupancy: 0.742(11).

  2. bOccupancy: 0.258(11).

Source of material

The compound was obtained commercially (Fluka). Crystals were taken directly from the crystalline product.

Experimental details

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Both nitrogen-bound H atoms as well as the hydrogen atom of the water molecule were located on a difference Fourier map and refined freely. The fluorine atoms of the trifluoromethyl group show rotational disorder with the major component being present in 74.2% of cases.

Comment

Aniline, pyridine and their respective core-substituted derivatives are important synthons in preparative chemistry as the pattern of additional functional groups introduced to the aromatic system allows for a broad range of physicochemical properties and their respective fine-tuning. Therefore, many of the more common members of these two classes of compounds are commercially available and their basic physical properties have been tabulated. In this context it is particularly striking if a reagent that is known to be a liquid at ambient conditions presents itself as a solid in excess of 20 °C beyond its melting point after prolonged storage at ambient temperatures. To establish the nature of the crystalline material that presented itself in a vial of the title compound a diffraction study was conducted as this was seen as a possible extension of our continued interest in the structural aspects of anilines and pyridines [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. Structural data about the title compound acting as a ligand towards iridium [17] or boron [18] as well as forming part of a rotaxane compound [19] is available.

While the structure confirms the presence of the title compound it simultaneously shows the presence of half a molecule of water (one molecule of water on a mirror plane), thus denoting the crystalline material as the title compound’s hemihydrate. The C—N bond length of 1.3988(18) Å is in good agreement with numerical values apparent for other aniline derivatives deposited with the Cambridge Structural Database [20]. Intracyclic C—C—C angles cover a narrow range of 118.70(12)–120.84(13)°.

In the crystal, classical hydrogen bonds of the O—H⃛N and the N—H⃛O type are apparent that are supported by both hydrogen atoms on the water molecule but only one of the hydrogen atoms of the amino group. These intermolecular interactions present themselves as a cooperative set of hydrogen bonds and give rise to cyclic D⃛A patterns. In terms of graph-set analysis [21], [22], the descriptor for these hydrogen bonds is DD on the unary and R44(8) on the binary level. In total, the entities present in the crystal are connected to infinite chains along the crystallographic c axis. π-stacking is not a prominent feature in the crystal structure of the title compound with the shortest distance between two centers of gravity measured at 4.7797(9) Å.

The hydrogen bonding pattern supported by the presence of half a molecule of water per molecule of the title compound (supposedly absorbed from the atmosphere through a small crevice in the lid over years of storage) explains the significant increase for the melting point in comparison to the anhydrous material. The results of this study strengthen the notion that even simple organic compounds that enjoy a – supposedly! – infinite shelf-live and are impervious to decomposition can undergo chemical alterations over prolonged periods of time.


Corresponding author: Dr. Richard Betz, Department of Chemistry, Nelson Mandela University, Summerstrand Campus (South) University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The corresponding author thanks the National Research Foundation for financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.Search in Google Scholar

2. Bruker. SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

4. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez–Monge, L., Taylor, R., van de Streek, J., Wood, P. A. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Search in Google Scholar

6. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Search in Google Scholar

7. Betz, R., Gerber, T. 3-Nitrobenzene-1,2-diamine. Acta Crystallogr. 2011, E67, o1359; https://doi.org/10.1107/s1600536811016825.Search in Google Scholar

8. Betz, R., Gerber, T., Hosten, E. (3-Aminophenyl)methanol. Acta Crystallogr. 2011, E67, o2118; https://doi.org/10.1107/s1600536811029163.Search in Google Scholar

9. Betz, R., Gerber, T., Hosten, E., Schalekamp, H. Pyridine-2,3-diamine. Acta Crystallogr. 2011, E67, o2154; https://doi.org/10.1107/s1600536811029412.Search in Google Scholar

10. Betz, R., Gerber, T., Hosten, E., Schalekamp, H. 2-Amino-pyridin-3-ol. Acta Crystallogr. 2011, E67, o2513; https://doi.org/10.1107/s1600536811034775.Search in Google Scholar

11. Betz, R., Klüfers, P. 2,4,6-Trifluoroaniline. Acta Crystallogr. 2008, E64, o2242; https://doi.org/10.1107/s1600536808035083.Search in Google Scholar

12. Betz, R., Gerber, T., Schalekamp, H. 2-[(4-Methylphenyl)sulfanyl]aniline. Acta Crystallogr. 2011, E67, o489; https://doi.org/10.1107/s1600536811002820.Search in Google Scholar

13. Islor, A. M., Chandrakantha, B., Shetty, P., Gerber, T., Hosten, E., Betz, R. Quinolin-3-amine. Acta Crystallogr. 2012, E68, o3155; https://doi.org/10.1107/s1600536812042626.Search in Google Scholar

14. Betz, R., Klüfers, P., Mayer, P. m–Phenylenediamine. Acta Crystallogr. 2008, E64, o2501; https://doi.org/10.1107/s1600536808039950.Search in Google Scholar

15. Islor, A. M., Chandrakantha, B., Gerber, T., Hosten, E., Betz, R. Redetermination of the structure of 4-amino-benzonitrile, C7H6N2. Z. Kristallogr. NCS 2013, 228, 217–218; https://doi.org/10.1524/ncrs.2013.0107.Search in Google Scholar

16. Gerber, T., Mukiza, J., Hosten, E., Betz, R. Redetermination of the crystal structure of di-2-pyridylketone 2- aminobenzoylhydrazone, at 200 K – Localisation of hydrogen atoms, C18H15N5O. Z. Kristallogr. NCS 2014, 229, 327–328; https://doi.org/10.1515/ncrs-2014-0168.Search in Google Scholar

17. Kim, H., Shin, K., Chang, S. Iridium-catalyzed C–H amination with anilines at room temperature: compatibility of iridacycles with external oxidants. J. Am. Chem. Soc. 2014, 136, 5904–5907; https://doi.org/10.1021/ja502270y.Search in Google Scholar

18. Helten, H., Robertson, A. P. M., Staubitz, A., Vance, J. R., Haddow, M. F., Manners, I. “Spontaneous” ambient temperature dehydrocoupling of aromatic amineboranes. Chem. Eur J. 2012, 18, 4665–4680; https://doi.org/10.1002/chem.201103241.Search in Google Scholar

19. Loeb, S. J., Tiburcio, J., Vella, S. J. [2]Pseudorotaxane formation with N-benzylanilinium axles and 24-crown-8 ether wheels. Org. Lett. 2005, 7, 4923–4926; https://doi.org/10.1021/ol051786e.Search in Google Scholar

20. Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. 2002, B58, 380–388; https://doi.org/10.1107/s0108768102003890.Search in Google Scholar

21. Bernstein, J., Davis, R. E., Shimoni, L., Chang, N.–L. Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem. Int. Ed. Engl. 1995, 34, 1555–1573; https://doi.org/10.1002/anie.199515551.Search in Google Scholar

22. Etter, M. C., MacDonald, J. C., Bernstein, J. Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr. 1990, B46, 256–262; https://doi.org/10.1107/s0108768189012929.Search in Google Scholar

Received: 2020-10-03
Accepted: 2020-11-19
Published Online: 2021-02-15
Published in Print: 2021-03-26

© 2020 Eric C. Hosten and Richard Betz, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 4-hydroxybenzene-1,3-diaminium dichloride, C6H10Cl2N2O
  4. The crystal structure of 3-chloropropylammonium chloride, C3H9Cl2N
  5. The crystal structure of 1-chloro-2-(dimethylamino)ethane hydrochloride, C4H11Cl2N
  6. Crystal structure of N-(2-(trifluoromethyl)phenyl)hexanamide, C13H16F3NO
  7. Redetermination of the crystal structure of para-toluidine, C7H9
  8. The crystal structure of bis(1,3-dihydroxy-2-methylpropan-2-aminium) carbonate, C9H24N2O7
  9. The crystal structure of 4-chloro-1-methylpiperidin-1-ium chloride, C6H13Cl2N
  10. Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
  11. The crystal structure of ethyl 2-amino-4-(3,5-difluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H21F2NO4
  12. Crystal structure of 6,6'‐((1E,1'E)‐(propane‐1,3‐diylbis(azaneylylidene))bis(methaneylylidene))bis(3‐bromophenol), C34H32Br4N4O4
  13. The crystal structure of (E)-2-(2-((2-picolinoylhydrazono)methyl)phenoxy)acetic acid dihydrate, C15H17N3O6
  14. Crystal structure of (E)-4-bromo-N′-(3-chloro-2-hydroxybenzylidene)benzohydrazide, C14H10BrClN2O2
  15. Crystal structure of N,N′-bis(4-bromosalicylidene) ethylene-1,2-diaminopropan, C34H32Br4N4O4
  16. Crystal structure of 4-bromo-N′-[(3-bromo-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H14Br2N2O3
  17. The crystal structure of 1,2-bis(1H-benzo[d]imidazol-2-yl)ethane-1,2-diol — N-(2-aminophenyl)-3-(1H-benzo[d]imidazol-2-yl)-2,3-dihydroxypropanamide (1/1), C32H30N8O5
  18. The crystal structure of para-trifluoromethyl-aniline hemihydrate, C14H14F6N2O
  19. Redetermination of the crystal structure of 2-amino-2-methyl-propane-1,3-diole, C4H11NO2
  20. The crystal structure of methacholine chloride, C8H18ClNO2
  21. Crystal structure of 5,7,7-trimethyl-4,6,7,8-tetrahydrocyclopenta[g]isochromen-1(3H)-one, C15H18O2
  22. Crystal structure of poly[diammine-bis(μ4-4-hydroxypyridine-3-sulfonato-κ5N:O, O′:O′′:O′′)(μ2-pyrazinyl-κ2N:N′)tetrasilver(I)], C7H8Ag2N3O4S
  23. Crystal structure of ethyl (E)-5-(((3′,6′-bis(ethylamino)-3-oxospiro[isoindoline-1,9′-xanthen]-2-yl)imino)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate — ethanol (1/1), C38H45N5O5
  24. Crystal structure of 4-bromo-N′-[(3-chloro-2-hydroxyphenyl)methylidene]benzohydrazide, C14H7Br2N2O2
  25. Redetermination of the crystal structure of 3,3,3-triphenylpropanoic acid, C21H18O2 – Deposition of hydrogen atomic coordinates
  26. Structure redetermination of dextromethorphan hydrobromide monohydrate, C18H28BrNO2 – localization of hydrogen atoms
  27. Crystal structure of tris(azido-κ1N)-(N-(2-aminoethyl)-N-methyl-1,3-propanediamine-κ3N,N′,N′′)cobalt(III), C7H19CoN12
  28. Crystal structure of tetraaqua-bis(1H-indazole-6-carboxylate-κN)cadmium (II), C16H18CdN4O8
  29. Crystal structure of dichloride-bis(1-propylimidazole-κ1N)zinc(II), C12H20Cl2N4Zn
  30. Crystal structure of (E)-resveratrol 3-O-β-D-xylopyranoside, C19H22O8
  31. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-vinyl- 1H-imidazol-3-ium) bis(hexafluoro phosphate)(V), C18H20F12N4P2
  32. Crystal structure of diaqua[bis(benzimidazol-2-yl-methyl)amine-κ3N,N′,N″]-phthalato-κ1O-nickel(II)-methanol (1/2), C26H31N5NiO8
  33. Crystal structure of 6,7-difluoro-1-methyl-3-(trifluoromethyl)quinoxalin-2(1H)-one, C10H5F5N2O
  34. Crystal structure of dichlorido-bis(1-hexyl-1H-benzotriazole-k1N)zinc(II), C24H34N6Cl2Zn
  35. The crystal structre of 2-(4-bromophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H12BBrN2
  36. Crystal structure of diethyl 3,9-bis(4-fluorophenyl)-6,12-diphenyl-3,9-diazapentacyclo[6.4.0.02,7.04,11]dodecane-1,5-dicarboxylate, C40H36F2N2O4
  37. Crystal structure of (E)-7-methoxy-2-((5-methoxypyridin-3-yl)methylene)-3,4- dihydronaphthalen-1(2H)-one, C18H17NO3
  38. Crystal structure of (E)-2-chloro-6-(((1,3-dihydroxy-2-(oxidomethyl)propan-2-yl)imino)methyl)phenolate-κ3N,O,O’)manganese(IV), C22H24Cl2MnN2O8
  39. The crystal structure of α-(meta-methoxyphenoxy)-ortho-tolylic acid, C15H14O4
  40. The crystal structure of N-(2-chloroethyl)-N,N-diethylammonium chloride, C6H15Cl2N
  41. The crystal structure of tris(2,3,4,6,7,8,9,10-octahydro-1H-pyrimido[1,2-a]azepin-5-ium) trihydrodecavanadate(V), C27H54N6O28V10
  42. Crystal structure of 1,3-bis(octyl)benzimidazolium perchlorate C23H39ClN2O4
  43. Crystal structure of tetrakis[(Z)-(2-(1-(furan-2-yl)-2-methylpropylidene)-1-phenylhydrazin-1-ido-κ2N,N′)] zirconium(IV), C56H60N8O4Zr
  44. The crystal structure of 2-(naphthalen-2-yloxy)-4-phenyl-6-(prop-2-yn-1-yloxy)-1,3,5-triazine, C22H15N3O2
  45. The crystal structure of trimethylsulfonium tris(trifluoromethylsulfonyl)methanide, C7H9F9O6S4
  46. Crystal structure of 4-bromo-N′-[3,5-dichloro-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H13BrCl2N2O3
  47. The crystal structure of 4-(4-bromophenyl)-2-(3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole, C24H16Br2FN3S
  48. The crystal structure of N-(adamantan-1-yl)-piperidine-1-carbothioamide, C16H26N2S
  49. The crystal structure of 1-phenyl-N-(4,5,6,7-tetrabromo-1,3-dioxoisoindolin-2-yl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamide-dimethylformamide (1/1) C22H10Br4N4O3S
  50. The crystal structure of benzeneseleninic acid anhydride, C12H10O3Se2
  51. The crystal structure of diphenyalmine hydrochloride antimony trichloride co-crystallizate, C12H12Cl4NSb – Localization of hydrogen atoms
  52. The crystal structure of para-nitrobenzylbromide, C7H6BrNO2 – A second polymorph and correction of 3D coordinates
  53. Crystal structure of catena-poly[(5H-pyrrolo[3,2-b:4,5-b′]dipyridine-κ2N,N′)-(μ4-hexaoxidodivanadato)dizinc(II)],C10H9N3O6V2Zn
  54. Crystal structure of N,N′-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)-κ5N,N′,N′′,N′′′,O]-tris(nitrato-κ2O,O′) cerium(III), C15H16CeN7O10
  55. Synthesis and crystal structure of oktakis(dimethylsulphoxide-κ1O)gadolinium(III) [tetrabromido-μ2-bromido-μ2-sulfido-di-μ3-sulfido-μ4-sulfido-tetracopper(I)-tungsten(VI)], C16H48O8S12Br5Cu4GdW
  56. Crystal structure of {tris((1H-benzo[d]imidazol-2- yl)methyl)amine-κ4N,N′,N′′,N′′′}-(succinato-κ2O,O′)nickel(II) – methanol (1/4), C32H41N7NiO8
  57. Crystal structure of catena-poly[trans-tetraaqua(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-k2N:N′)cobalt(II)] dinitrate – 1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol) – water (1/3/2), C72H68CoN18O12
  58. Crystal structure of bis(μ2-2-oxido-2-phenylacetate-κ3O:O,O′)-bis(1-isopropoxy-2-oxo-2-phenylethan-1-olato-κ2O,O′)-bis(propan-2-olato-κ1O)dititanium(IV), C44H52O14Ti2
  59. The crystal structure of 5-carboxy-2-(hydroxymethyl)-1H-imidazol-3-ium-4-carboxylate, C6H8N2O6
  60. The crystal structure of 2,6-dibromo-4-fluoroaniline, C6H4Br2FN
  61. The crystal structure of 4-chloro-N-(2-phenoxyphenyl)benzamide, C19H14ClNO2
  62. The crystal structure of 2-methyl-β-naphthothiazole, C12H9NS
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0512/html
Scroll to top button