Startseite Structure redetermination of dextromethorphan hydrobromide monohydrate, C18H28BrNO2 – localization of hydrogen atoms
Artikel Open Access

Structure redetermination of dextromethorphan hydrobromide monohydrate, C18H28BrNO2 – localization of hydrogen atoms

  • Kina Muller , Eric C. Hosten ORCID logo und Richard Betz ORCID logo
Veröffentlicht/Copyright: 12. Februar 2021

Abstract

C18H28BrNO2, orthorhombic, P212121 (no. 19), a = 7.0417(4) Å, b = 9.1635(5) Å, c = 27.3371(15) Å, V = 1763.97(17) Å3, Z = 4, Rgt(F) = 0.0275, wRref(F2) = 0.0596, T = 200 K.

CCDC no: 2047035

The molecular structure is shown in the Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless platelet
Size:0.52 × 0.49 × 0.18 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:2.34 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
θmax, completeness:28.3°, >99%
N(hkl)measured, N(hkl)unique, Rint:16,777, 4369, 0.029
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3771
N(param)refined:213
Programs:Bruker [1], [2], SHELX [3], WinGX/ORTEP [4], Mercury [5], PLATON [6]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
O10.6745 (2)−0.10446 (17)−0.03832 (6)0.0253 (4)
N110.3967 (3)0.0820 (2)0.19631 (8)0.0258 (4)
H7110.336 (4)0.156 (3)0.2075 (10)0.032 (8)*
C10.7232 (3)0.0179 (3)0.16452 (9)0.0291 (6)
H1A0.8559630.0457340.1718900.035*
H1B0.695332−0.0728230.1828380.035*
C20.3952 (4)−0.0202 (3)0.23888 (10)0.0407 (7)
H2A0.264789−0.0315810.2508310.061*
H2B0.4750270.0193540.2650720.061*
H2C0.444642−0.1153980.2286640.061*
C30.7810 (4)−0.2208 (3)−0.05989 (10)0.0334 (6)
H3A0.916357−0.206953−0.0529120.050*
H3B0.760930−0.220967−0.0953630.050*
H3C0.738816−0.314107−0.0461720.050*
C110.5923 (3)0.1380 (3)0.18328 (8)0.0235 (5)
H110.6504880.1809120.2133850.028*
C120.5687 (3)0.2590 (3)0.14582 (8)0.0224 (5)
H120.4792920.3327520.1598360.027*
C130.7566 (3)0.3369 (3)0.13485 (10)0.0307 (6)
H13A0.8096370.3770130.1655740.037*
H13B0.8488810.2658510.1214780.037*
C140.7276 (4)0.4601 (3)0.09823 (11)0.0407 (7)
H14A0.8519010.5042480.0899870.049*
H14B0.6469980.5368230.1130530.049*
C150.6331 (4)0.4031 (3)0.05158 (9)0.0367 (6)
H15A0.6060070.4860040.0294240.044*
H15B0.7212840.3360860.0345220.044*
C160.4502 (4)0.3235 (3)0.06292 (9)0.0294 (6)
H16A0.3960460.2851170.0320820.035*
H16B0.3579260.3936270.0768450.035*
C170.4769 (3)0.1967 (3)0.09898 (8)0.0220 (5)
C180.2809 (3)0.1340 (3)0.11293 (9)0.0269 (5)
H18A0.1977370.2145670.1240000.032*
H18B0.2220880.0895830.0836020.032*
C190.2935 (4)0.0199 (3)0.15309 (10)0.0291 (6)
H19A0.164203−0.0105390.1629780.035*
H19B0.361814−0.0671310.1408050.035*
C210.7079 (3)−0.0143 (3)0.11041 (9)0.0228 (5)
C220.5985 (3)0.0722 (2)0.07872 (8)0.0201 (5)
C230.5936 (3)0.0362 (2)0.02939 (8)0.0215 (5)
H230.5189500.0936010.0077430.026*
C240.6946 (3)−0.0812 (2)0.01095 (9)0.0214 (5)
C250.8032 (3)−0.1667 (3)0.04196 (9)0.0259 (5)
H250.872685−0.2476200.0296710.031*
C260.8087 (3)−0.1318 (3)0.09145 (9)0.0268 (5)
H260.883325−0.1898000.1128760.032*
Br10.12707 (4)0.63126 (3)0.19641 (2)0.04075 (9)
O900.1716 (4)0.2931 (3)0.23165 (10)0.0535 (6)
H9010.081 (5)0.261 (4)0.2473 (13)0.050 (11)*
H9020.147 (6)0.369 (4)0.2210 (14)0.059 (12)*

Source of material

The compound was obtained commercially (Lennon Limited). Crystals suitable for the diffraction study were obtained upon recrystallization of the compound from warm acetonitrile.

Experimental details

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms, C—H 0.99 Å for methylene groups and C—H 1.00 Å for methine groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite [3]), with U(H) set to 1.5Ueq(C).

The H atoms of the water molecule as well as the nitrogen-bound H atom were located on a difference Fourier map and refined freely.

Comment

The effect of size and steric pretense of large ions on chemical and spectroscopic properties of compounds have been a focus of research for many decades. Among the many effects that can be attributed to the spatial requirements of counterions have been the glass transition temperature in ionomers [7], surfactant modifying properties [8], the charge transfer in radical ions [9] and polymer-modified electrodes [10] as well as the structural and vibrational spectroscopic behaviour of DNA building blocks [11]. Furthermore, the benefit of chosing the adequate size of counterions to crystallize ionic compounds has been confirmed and reviewed on many occasions [12]. In continuation of our interest in metrical features of large cations [13], [14], [15] the structure of the title compound has been determined. While the latter has been reported previously [16], no hydrogen positions were determined which precludes discussions of inter- and intramolecular interactions. The molecular and crystal structures of tetrachlorido cuprate and cobaltate salts are known [17], as are the crystal and molecular structures of the neutral parent opioid dextromethorphan [18], [19]. The latter has found use as cough medication and has received renewed attention as potential remedy for several symptoms of Alzheimer’s disease [20].

The structure solution shows the presence of the polycyclic morphinan scaffold consisting of a central 2-aza-decalin system that features an ortho-methylene methoxyphenyl moiety bridging the latter via one of the annealing carbon atoms as well as one of the intracyclic nitrogen-bonded carbon atoms. A methyl group completes the coordination environment of the tertiary amine-type pnicogen atom. The latter is further protonated to produce the pertaining ammonium cation whose charge is balanced by the presence of a bromide anion. The asymmetric unit contains an additional water molecule. C—N bond lengths span a range of 1.494(3)–1.512(3) Å with the shortest bond established towards the exocyclic carbon atom. These values are in good agreement with the ones found for other tertiary ammonium compounds whose metrical parameters have been deposited with the Cambridge Structural Database [21]. A conformational analysis of the six-membered rings [22], [23] performed with PLATON [6] shows the two 2-aza-decalin rings to adopt C14 conformations (CN11C17 and CC12C15, respectively) while the bridging six-membered ring is present halfway in between H23 and E3 (HC11C12 and EC12, respectively) conformations. The least-squares planes as defined by the non-hydrogen atoms of the two separate six-membered rings of the 2-aza-decalin scaffold enclose angles of 74.59(12)° and 81.61(12)° with the corresponding least-squares plane as defined by the six-membered ring of the bridging motif as well as 7.33(13)° with one another. The plane of the aromatic moiety intersects at angles of 80.05(12)° and 87.08(11)° with the former two planes as well as 5.48(11)° with the latter plane. All three stereocenters are present in (S) configuration. The Flack parameter refined to 0.004(4) using 1407 quotients [24].

In the crystal, classical hydrogen bonds of the O—H⋯Br as well as the N—H⋯O type are observed next to C—H⋯O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating in them. While the oxygen atom of the water molecule exclusively acts as acceptor for the N—H⋯O hydrogen bonds the C—H⋯O contacts invariably employ the oxygen atom of the methoxy group as acceptor. The latter contacts are supported by one of the aromatic hydrogen atoms in ortho-position to the methoxy group as well as one hydrogen atom of the methylene group next to the bridgehead carbon atom in the all-carba ring of the 2-aza-decalin building block. In terms of graph-set analysis [25], the descriptor for these contacts is DDDC11(4)C11(7) at the unitary level. In total, the entities of the asymmetric unit are connected to a three-dimensional network. The aromatic systems show no signs of stacking.


Corresponding author: Richard Betz, Department of Chemistry, Nelson Mandela University, Summerstrand Campus (South), University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa, E-mail:

Funding source: National Research Foundation

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The corresponding author thanks the National Research Foundation for financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.Suche in Google Scholar

2. Bruker. SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.Suche in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

4. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854. https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar

5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470. https://doi.org/10.1107/s0021889807067908.Suche in Google Scholar

6. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155. https://doi.org/10.1107/s090744490804362x.Suche in Google Scholar

7. Enokida, J. S., Hu, W., Fang, H., Morgan, B. F., Beyer, F. L., Winter, H. H., Coughlin, E. B. Modifying the structure and dynamics of ionomers through counterion sterics. Macromolecules 2020, 53, 1767–1776. https://doi.org/10.1021/acs.macromol.9b02116.Suche in Google Scholar

8. Oh, S. G., Shah, D. O. Effect of counterions on the interfacial tension and emulsion droplet size in the oil/water/dodecyl sulfate system. J. Phys. Chem. 1993, 97, 284–286. https://doi.org/10.1021/j100104a003.Suche in Google Scholar

9. Piotrowiak, P., Miller, J. R. Counterion effects in intramolecular charge transfer in radical anions. J. Phys. Chem. 1993, 97, 13052–13060. https://doi.org/10.1021/j100152a004.Suche in Google Scholar

10. Mathias, M. F., Haas, O. Effect of counterion type on charge transport at redox polymer-modified electrodes. J. Phys. Chem. 1993, 97, 9217–9225. https://doi.org/10.1021/j100138a025.Suche in Google Scholar

11. Minguirbara, A., Vamhindi, B. S. D. R., Koyambo-Konzapa, S. J., Nsangou, M. Effects of counterions and solvents on the geometrical and vibrational features of dinucleoside-monophosphate (dNMP): case of 3′,5-dideoxycytidine-monophosphate (dDCMP). J. Mol. Model. 2020, 26, article #99. https://doi.org/10.1007/s00894-020-04369-6.Suche in Google Scholar PubMed

12. Roof, L. C., Kolis, J. W. New developments in the coordination chemistry of inorganic selenide and telluride ligands. Chem. Rev. 1993, 93, 1037–1080. https://doi.org/10.1021/cr00019a010.Suche in Google Scholar

13. Hosten, E. C., Betz, R. Redetermination of the crystal structure of benzyltriethylammoniumchloride monohydrate at 200 K – localization of hydrogen atoms, C13H24 ClNO. Z. Kristallogr. NCS 2015, 230, 21–22. https://doi.org/10.1515/ncrs-2014-9024.Suche in Google Scholar

14. Abrahams, A., van Brecht, B., Betz, R. Bis(pyridin-2-ylmethyl)ammonium nitrate. Acta Crystallogr. 2013, E69, o661. https://doi.org/10.1107/s1600536813008593.Suche in Google Scholar PubMed PubMed Central

15. Betz, R., Gerber, T., Hosten, E., Siddaraju, B. P., Yathirajan, H. S. Opipramol dihydrochloride. Acta Crystallogr. 2011, E67, o2994–o2995. https://doi.org/10.1107/s1600536811042280.Suche in Google Scholar PubMed PubMed Central

16. Gylbert, L., Carlström, D. The structure and absolute configuration of (+)-3-methoxy-N-methylmorphinan (dextromethorphan) hydrobromide monohydrate. Acta Crystallogr. 1977, B33, 2833–2837. https://doi.org/10.1107/s0567740877009571.Suche in Google Scholar

17. Gauchat, E., Nazarenko, A. Y. Crystal structures of bis [(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocobaltate and tetrachloridocuprate. Acta Crystallogr. 2017, E73, 63–67. https://doi.org/10.1107/s2056989016019939.Suche in Google Scholar PubMed PubMed Central

18. Swamy, G. Y. S. K., Ravikumar, K., Rao, A. K. S. B. Dextromethorphan, an antitussive agent. Acta Crystallogr. 2005, E61, o2071–o2073. https://doi.org/10.1107/s1600536805017782.Suche in Google Scholar

19. Scheins, S., Messerschmidt, M., Morgenroth, W., Paulmann, C., Luger, P. Electron density analyses of opioids: a comparative study. J. Phys. Chem. A 2007, 111, 5499–5508. https://doi.org/10.1021/jp0709252.Suche in Google Scholar PubMed

20. Nguyen, L., Thomas, K. L., Lucke-Wold, B. P., Cavendish, J. Z., Crowe, M. S., Matsumoto, R. R. Dextromethorphan: an update on its utility for neurological and neuropsychiatric disorders. Pharmacol. Ther. 2016, 159, 1–22. https://doi.org/10.1016/j.pharmthera.2016.01.016.Suche in Google Scholar PubMed

21. Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. 2002, B58, 380–388. https://doi.org/10.1107/s0108768102003890.Suche in Google Scholar PubMed

22. Cremer, D., Pople, J. A. General definition of ring puckering coordinates. J. Am. Chem. Soc. 1975, 97, 1354–1358. https://doi.org/10.1021/ja00839a011.Suche in Google Scholar

23. Boeyens, J. C. A. The conformation of six-membered rings. J. Cryst. Mol. Struct. 1978, 8, 317–320. https://doi.org/10.1007/bf01200485.Suche in Google Scholar

24. Parsons, S., Flack, H. D., Wagner, T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. 2013, 69, 249–259. https://doi.org/10.1002/anie.199515551.Suche in Google Scholar

25. Bernstein, J., Davis, R. E., Shimoni, L., Chang, N.-L. Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555–1573. https://doi.org/10.1002/anie.199515551.Suche in Google Scholar

Received: 2020-10-08
Accepted: 2020-11-29
Published Online: 2021-02-12
Published in Print: 2021-03-26

© 2020 Kina Muller et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 4-hydroxybenzene-1,3-diaminium dichloride, C6H10Cl2N2O
  4. The crystal structure of 3-chloropropylammonium chloride, C3H9Cl2N
  5. The crystal structure of 1-chloro-2-(dimethylamino)ethane hydrochloride, C4H11Cl2N
  6. Crystal structure of N-(2-(trifluoromethyl)phenyl)hexanamide, C13H16F3NO
  7. Redetermination of the crystal structure of para-toluidine, C7H9
  8. The crystal structure of bis(1,3-dihydroxy-2-methylpropan-2-aminium) carbonate, C9H24N2O7
  9. The crystal structure of 4-chloro-1-methylpiperidin-1-ium chloride, C6H13Cl2N
  10. Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
  11. The crystal structure of ethyl 2-amino-4-(3,5-difluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H21F2NO4
  12. Crystal structure of 6,6'‐((1E,1'E)‐(propane‐1,3‐diylbis(azaneylylidene))bis(methaneylylidene))bis(3‐bromophenol), C34H32Br4N4O4
  13. The crystal structure of (E)-2-(2-((2-picolinoylhydrazono)methyl)phenoxy)acetic acid dihydrate, C15H17N3O6
  14. Crystal structure of (E)-4-bromo-N′-(3-chloro-2-hydroxybenzylidene)benzohydrazide, C14H10BrClN2O2
  15. Crystal structure of N,N′-bis(4-bromosalicylidene) ethylene-1,2-diaminopropan, C34H32Br4N4O4
  16. Crystal structure of 4-bromo-N′-[(3-bromo-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H14Br2N2O3
  17. The crystal structure of 1,2-bis(1H-benzo[d]imidazol-2-yl)ethane-1,2-diol — N-(2-aminophenyl)-3-(1H-benzo[d]imidazol-2-yl)-2,3-dihydroxypropanamide (1/1), C32H30N8O5
  18. The crystal structure of para-trifluoromethyl-aniline hemihydrate, C14H14F6N2O
  19. Redetermination of the crystal structure of 2-amino-2-methyl-propane-1,3-diole, C4H11NO2
  20. The crystal structure of methacholine chloride, C8H18ClNO2
  21. Crystal structure of 5,7,7-trimethyl-4,6,7,8-tetrahydrocyclopenta[g]isochromen-1(3H)-one, C15H18O2
  22. Crystal structure of poly[diammine-bis(μ4-4-hydroxypyridine-3-sulfonato-κ5N:O, O′:O′′:O′′)(μ2-pyrazinyl-κ2N:N′)tetrasilver(I)], C7H8Ag2N3O4S
  23. Crystal structure of ethyl (E)-5-(((3′,6′-bis(ethylamino)-3-oxospiro[isoindoline-1,9′-xanthen]-2-yl)imino)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate — ethanol (1/1), C38H45N5O5
  24. Crystal structure of 4-bromo-N′-[(3-chloro-2-hydroxyphenyl)methylidene]benzohydrazide, C14H7Br2N2O2
  25. Redetermination of the crystal structure of 3,3,3-triphenylpropanoic acid, C21H18O2 – Deposition of hydrogen atomic coordinates
  26. Structure redetermination of dextromethorphan hydrobromide monohydrate, C18H28BrNO2 – localization of hydrogen atoms
  27. Crystal structure of tris(azido-κ1N)-(N-(2-aminoethyl)-N-methyl-1,3-propanediamine-κ3N,N′,N′′)cobalt(III), C7H19CoN12
  28. Crystal structure of tetraaqua-bis(1H-indazole-6-carboxylate-κN)cadmium (II), C16H18CdN4O8
  29. Crystal structure of dichloride-bis(1-propylimidazole-κ1N)zinc(II), C12H20Cl2N4Zn
  30. Crystal structure of (E)-resveratrol 3-O-β-D-xylopyranoside, C19H22O8
  31. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-vinyl- 1H-imidazol-3-ium) bis(hexafluoro phosphate)(V), C18H20F12N4P2
  32. Crystal structure of diaqua[bis(benzimidazol-2-yl-methyl)amine-κ3N,N′,N″]-phthalato-κ1O-nickel(II)-methanol (1/2), C26H31N5NiO8
  33. Crystal structure of 6,7-difluoro-1-methyl-3-(trifluoromethyl)quinoxalin-2(1H)-one, C10H5F5N2O
  34. Crystal structure of dichlorido-bis(1-hexyl-1H-benzotriazole-k1N)zinc(II), C24H34N6Cl2Zn
  35. The crystal structre of 2-(4-bromophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H12BBrN2
  36. Crystal structure of diethyl 3,9-bis(4-fluorophenyl)-6,12-diphenyl-3,9-diazapentacyclo[6.4.0.02,7.04,11]dodecane-1,5-dicarboxylate, C40H36F2N2O4
  37. Crystal structure of (E)-7-methoxy-2-((5-methoxypyridin-3-yl)methylene)-3,4- dihydronaphthalen-1(2H)-one, C18H17NO3
  38. Crystal structure of (E)-2-chloro-6-(((1,3-dihydroxy-2-(oxidomethyl)propan-2-yl)imino)methyl)phenolate-κ3N,O,O’)manganese(IV), C22H24Cl2MnN2O8
  39. The crystal structure of α-(meta-methoxyphenoxy)-ortho-tolylic acid, C15H14O4
  40. The crystal structure of N-(2-chloroethyl)-N,N-diethylammonium chloride, C6H15Cl2N
  41. The crystal structure of tris(2,3,4,6,7,8,9,10-octahydro-1H-pyrimido[1,2-a]azepin-5-ium) trihydrodecavanadate(V), C27H54N6O28V10
  42. Crystal structure of 1,3-bis(octyl)benzimidazolium perchlorate C23H39ClN2O4
  43. Crystal structure of tetrakis[(Z)-(2-(1-(furan-2-yl)-2-methylpropylidene)-1-phenylhydrazin-1-ido-κ2N,N′)] zirconium(IV), C56H60N8O4Zr
  44. The crystal structure of 2-(naphthalen-2-yloxy)-4-phenyl-6-(prop-2-yn-1-yloxy)-1,3,5-triazine, C22H15N3O2
  45. The crystal structure of trimethylsulfonium tris(trifluoromethylsulfonyl)methanide, C7H9F9O6S4
  46. Crystal structure of 4-bromo-N′-[3,5-dichloro-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H13BrCl2N2O3
  47. The crystal structure of 4-(4-bromophenyl)-2-(3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole, C24H16Br2FN3S
  48. The crystal structure of N-(adamantan-1-yl)-piperidine-1-carbothioamide, C16H26N2S
  49. The crystal structure of 1-phenyl-N-(4,5,6,7-tetrabromo-1,3-dioxoisoindolin-2-yl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamide-dimethylformamide (1/1) C22H10Br4N4O3S
  50. The crystal structure of benzeneseleninic acid anhydride, C12H10O3Se2
  51. The crystal structure of diphenyalmine hydrochloride antimony trichloride co-crystallizate, C12H12Cl4NSb – Localization of hydrogen atoms
  52. The crystal structure of para-nitrobenzylbromide, C7H6BrNO2 – A second polymorph and correction of 3D coordinates
  53. Crystal structure of catena-poly[(5H-pyrrolo[3,2-b:4,5-b′]dipyridine-κ2N,N′)-(μ4-hexaoxidodivanadato)dizinc(II)],C10H9N3O6V2Zn
  54. Crystal structure of N,N′-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)-κ5N,N′,N′′,N′′′,O]-tris(nitrato-κ2O,O′) cerium(III), C15H16CeN7O10
  55. Synthesis and crystal structure of oktakis(dimethylsulphoxide-κ1O)gadolinium(III) [tetrabromido-μ2-bromido-μ2-sulfido-di-μ3-sulfido-μ4-sulfido-tetracopper(I)-tungsten(VI)], C16H48O8S12Br5Cu4GdW
  56. Crystal structure of {tris((1H-benzo[d]imidazol-2- yl)methyl)amine-κ4N,N′,N′′,N′′′}-(succinato-κ2O,O′)nickel(II) – methanol (1/4), C32H41N7NiO8
  57. Crystal structure of catena-poly[trans-tetraaqua(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-k2N:N′)cobalt(II)] dinitrate – 1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol) – water (1/3/2), C72H68CoN18O12
  58. Crystal structure of bis(μ2-2-oxido-2-phenylacetate-κ3O:O,O′)-bis(1-isopropoxy-2-oxo-2-phenylethan-1-olato-κ2O,O′)-bis(propan-2-olato-κ1O)dititanium(IV), C44H52O14Ti2
  59. The crystal structure of 5-carboxy-2-(hydroxymethyl)-1H-imidazol-3-ium-4-carboxylate, C6H8N2O6
  60. The crystal structure of 2,6-dibromo-4-fluoroaniline, C6H4Br2FN
  61. The crystal structure of 4-chloro-N-(2-phenoxyphenyl)benzamide, C19H14ClNO2
  62. The crystal structure of 2-methyl-β-naphthothiazole, C12H9NS
Heruntergeladen am 6.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0528/html
Button zum nach oben scrollen