Home Redetermination of the crystal structure of para-toluidine, C7H9N 
Article Open Access

Redetermination of the crystal structure of para-toluidine, C7H9

  • Eric C. Hosten ORCID logo and Richard Betz ORCID logo EMAIL logo
Published/Copyright: November 23, 2020

Abstract

C7H9N, orthorhombic, Pna21 (no. 33), a = 8.9239(5) Å, b = 5.9550(3) Å, c = 23.1168(11) Å, V = 1228.47(11) Å3, Z = 8, Rgt(F) = 0.0367, wRref(F2) = 0.1019, T = 200 K.

CCDC no: 2042562

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless block
Size:0.52 × 0.46 × 0.39 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.07 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
θmax, completeness:28.4°, >99%
N(hkl)measured, N(hkl)unique, Rint:5027, 2216, 0.015
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2104
N(param)refined:164
Programs:Bruker [1, 2], SHELX [3], WinGX/ORTEP [4], Mercury [5], PLATON [6]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyZUiso*/Ueq
N110.5637 (2)0.1913 (4)0.40428 (9)0.0396 (5)
H1110.601 (3)0.076 (6)0.3856 (14)0.065 (9)*
H1120.625 (3)0.265 (5)0.4305 (14)0.063 (9)*
C110.48041 (19)0.3376 (3)0.36914 (9)0.0295 (4)
C120.4307 (2)0.2682 (3)0.31510 (9)0.0302 (4)
H120.4590450.1249040.3007480.036*
C130.3396 (2)0.4069 (3)0.28181 (9)0.0300 (4)
H130.3061970.3555790.2450890.036*
C140.2960 (2)0.6184 (3)0.30076 (9)0.0284 (4)
C150.3468 (2)0.6863 (3)0.35482 (9)0.0314 (4)
H150.3187980.8300660.3689620.038*
C160.4373 (2)0.5495 (3)0.38878 (9)0.0316 (4)
H160.4700190.6006800.4255980.038*
C170.2010 (2)0.7675 (4)0.26353 (10)0.0389 (5)
H17A0.2655380.8551700.2377020.058*
H17B0.1429730.8695010.2881030.058*
H17C0.1325330.6752260.2404410.058*
N210.1750 (2)0.7439 (5)0.00454 (12)0.0499 (6)
H2110.115 (3)0.862 (5)0.0270 (13)0.061 (9)*
H2120.119 (4)0.663 (6)−0.0196 (15)0.072 (10)*
C210.2684 (2)0.6170 (3)0.04018 (9)0.0335 (5)
C220.3214 (2)0.7062 (3)0.09200 (10)0.0330 (5)
H220.2896260.8512060.1039200.040*
C230.4194 (2)0.5865 (3)0.12611 (9)0.0307 (4)
H230.4540690.6509050.1612480.037*
C240.46905 (19)0.3734 (3)0.11041 (9)0.0306 (4)
C250.4175 (2)0.2863 (3)0.05832 (10)0.0336 (5)
H250.4511330.1425330.0461070.040*
C260.3180 (2)0.4050 (4)0.02375 (9)0.0353 (5)
H260.2835270.340831−0.0114450.042*
C270.5719 (3)0.2410 (4)0.14940 (11)0.0439 (6)
H27A0.5504880.0803530.1452600.066*
H27B0.5556760.2863780.1896650.066*
H27C0.6762760.2701410.1386000.066*

Source of material

The compound was obtained commercially (Riedel de Haen). Crystals were obtained upon repeated sublimation of the compound at ambient conditions.

Experimental details

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were added using the HFIX 137 option in the SHELX program [3], with U(H) set to 1.5Ueq(C). All nitrogen-bound H atoms were refined freely.

Comment

Aniline, pyridine and their respective core-substituted derivatives are important synthons in preparative chemistry as the pattern of additional functional groups introduced to the aromatic system allows for a broad range of physicochemical properties and their respective fine-tuning. Therefore, many members of these two classes of compounds are commercially available. In this context it is particularly striking to note that fundamental parameters of certain basic members of this class have never been fully ascertained as is the case for para-toluidine. In our continued interest in the structural aspects of anilines and pyridines [7], [8], [9], [10], [11], [12], [13], [14], [15], [16] we close this gap. The structure of the title compound has been mentioned earlier [17], however, no coordinates of hydrogen atoms have been determined. The present study is intended to fill this gap.

The structure solution shows the presence of para-methylaniline. The asymmetric unit contains two molecules. C–N bond lengths are measured at 1.394(3) and 1.404(3) Å which is in good agreement with other aniline derivatives which have been deposited with the Cambridge Structural Database [18]. Intracyclic C–C–C angles span ranges of 117.17(18)–121.82(19)° in the first and 117.45(19)–121.7(2)° in the second molecule (see the Figure). While the smallest angle is invariably found on the carbon atom bearing the methyl substituent the largest angle is always found on one of the carbon atoms in meta position to the amino group. The two molecules are almost parallel to one another with the least-squares planes as defined by the non-hydrogen atoms of the aromatic system intersecting at an angle of 4.22(9)°. The latter value is found even closer to co-planarity with only 4.16(7)° if all respective non-hydrogen atoms of the two individual molecules are taken into account.

In the crystal, classical hydrogen bonds of the N–H⃛N type are observed that involve one of the two hydrogen atoms of each amino group as donor and the nitrogen atom of the other molecule’s amino group as acceptor. The second hydrogen atom of each amino group further gives rise to N–H⃛π interactions with the aromatic system of each molecule’s symmetry-generated equivalent acting as acceptor. In terms of graph-set analysis [19], the descriptor for the classical hydrogen bonds is C11(2) on the binary level which represents zig–zag chains along the crystallographic a axis. Furthermore, one could debate the presence of C–H⃛π interactions supported by one hydrogen atom each on the methyl groups in both molecules as donors and the aromatic system of each molecule’s symmetry generated equivalent as acceptor.


Corresponding author: Richard Betz, Department of Chemistry, Nelson Mandela University, Summerstrand Campus (South), University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: National Research Foundation.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.Search in Google Scholar

2. Bruker. SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

4. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez‐Monge, L., Taylor, R., van de Streek, J., Wood, P. A. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Search in Google Scholar

6. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Search in Google Scholar

7. Betz, R., Gerber, T. 3‐Nitrobenzene-1,2-diamine. Acta Crystallogr. 2011, E67, o1359; https://doi.org/10.1107/s1600536811016825.Search in Google Scholar

8. Betz, R., Gerber, T., Hosten, E. (3‐Aminophenyl)methanol. Acta Crystallogr. 2011, E67, o2118; https://doi.org/10.1107/s1600536811029163.Search in Google Scholar

9. Betz, R., Gerber, T., Hosten, E., Schalekamp, H. Pyridine-2,3-diamine. Acta Crystallogr. 2011, E67, o2154; https://doi.org/10.1107/s1600536811029412.Search in Google Scholar

10. Betz, R., Gerber, T., Hosten, E., Schalekamp, H. 2‐Aminopyridin-3-ol. Acta Crystallogr. 2011, E67, o2513; https://doi.org/10.1107/s1600536811034775.Search in Google Scholar

11. Betz, R., Klüfers, P. 2,4,6‐Trifluoroaniline. Acta Crystallogr. 2008, E64, o2242; https://doi.org/10.1107/s1600536808035083.Search in Google Scholar

12. Betz, R., Gerber, T., Schalekamp, H. 2-[(4‐Methylphenyl)sulfanyl]aniline. Acta Crystallogr. 2011, E67, o489; https://doi.org/10.1107/s1600536811002820.Search in Google Scholar

13. Islor, A. M., Chandrakantha, B., Shetty, P., Gerber, T., Hosten, E., Betz, R. Quinolin-3-amine. Acta Crystallogr. 2012, E68, o3155; https://doi.org/10.1107/s1600536812042626.Search in Google Scholar

14. Betz, R., Klüfers, P., Mayer, P. m‐Phenylenediamine. Acta Crystallogr. 2008, E64, o2501; https://doi.org/10.1107/s1600536808039950.Search in Google Scholar

15. Islor, A. M., Chandrakantha, B., Gerber, T., Hosten, E., Betz, R. Redetermination of the structure of 4-amino-benzonitrile, C7H6N2. Z. Kristallogr. NCS 2013, 228, 217–218; https://doi.org/10.1524/ncrs.2013.0107.Search in Google Scholar

16. Gerber, T., Mukiza, J., Hosten, E., Betz, R. Redetermination of the crystal structure of di-2-pyridylketone 2-aminobenzoylhydrazone, at 200 K – localisation of hydrogen atoms, C18H15N5O. Z. Kristallogr. NCS 2014, 229, 327–328; https://doi.org/10.1515/ncrs-2014-0168.Search in Google Scholar

17. Bertinotti, A., Wyart, M. J. Détermination de la structure crystalline de la paratoluidine. C. R. Hebd. Seanc. Acad. Sci. Paris 1963, 257, 4174–4176.Search in Google Scholar

18. Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. 2002, B58, 380–388; https://doi.org/10.1107/s0108768102003890.Search in Google Scholar

19. Bernstein, J., Davis, R. E., Shimoni, L., Chang, N.‐L. Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem. Int. Ed. Engl. 1995, 34, 1555–1573; https://doi.org/10.1002/anie.199515551.Search in Google Scholar

Received: 2020-10-08
Accepted: 2020-11-08
Published Online: 2020-11-23
Published in Print: 2021-03-26

© 2020 Eric C. Hosten and Richard Betz, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 4-hydroxybenzene-1,3-diaminium dichloride, C6H10Cl2N2O
  4. The crystal structure of 3-chloropropylammonium chloride, C3H9Cl2N
  5. The crystal structure of 1-chloro-2-(dimethylamino)ethane hydrochloride, C4H11Cl2N
  6. Crystal structure of N-(2-(trifluoromethyl)phenyl)hexanamide, C13H16F3NO
  7. Redetermination of the crystal structure of para-toluidine, C7H9
  8. The crystal structure of bis(1,3-dihydroxy-2-methylpropan-2-aminium) carbonate, C9H24N2O7
  9. The crystal structure of 4-chloro-1-methylpiperidin-1-ium chloride, C6H13Cl2N
  10. Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
  11. The crystal structure of ethyl 2-amino-4-(3,5-difluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H21F2NO4
  12. Crystal structure of 6,6'‐((1E,1'E)‐(propane‐1,3‐diylbis(azaneylylidene))bis(methaneylylidene))bis(3‐bromophenol), C34H32Br4N4O4
  13. The crystal structure of (E)-2-(2-((2-picolinoylhydrazono)methyl)phenoxy)acetic acid dihydrate, C15H17N3O6
  14. Crystal structure of (E)-4-bromo-N′-(3-chloro-2-hydroxybenzylidene)benzohydrazide, C14H10BrClN2O2
  15. Crystal structure of N,N′-bis(4-bromosalicylidene) ethylene-1,2-diaminopropan, C34H32Br4N4O4
  16. Crystal structure of 4-bromo-N′-[(3-bromo-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H14Br2N2O3
  17. The crystal structure of 1,2-bis(1H-benzo[d]imidazol-2-yl)ethane-1,2-diol — N-(2-aminophenyl)-3-(1H-benzo[d]imidazol-2-yl)-2,3-dihydroxypropanamide (1/1), C32H30N8O5
  18. The crystal structure of para-trifluoromethyl-aniline hemihydrate, C14H14F6N2O
  19. Redetermination of the crystal structure of 2-amino-2-methyl-propane-1,3-diole, C4H11NO2
  20. The crystal structure of methacholine chloride, C8H18ClNO2
  21. Crystal structure of 5,7,7-trimethyl-4,6,7,8-tetrahydrocyclopenta[g]isochromen-1(3H)-one, C15H18O2
  22. Crystal structure of poly[diammine-bis(μ4-4-hydroxypyridine-3-sulfonato-κ5N:O, O′:O′′:O′′)(μ2-pyrazinyl-κ2N:N′)tetrasilver(I)], C7H8Ag2N3O4S
  23. Crystal structure of ethyl (E)-5-(((3′,6′-bis(ethylamino)-3-oxospiro[isoindoline-1,9′-xanthen]-2-yl)imino)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate — ethanol (1/1), C38H45N5O5
  24. Crystal structure of 4-bromo-N′-[(3-chloro-2-hydroxyphenyl)methylidene]benzohydrazide, C14H7Br2N2O2
  25. Redetermination of the crystal structure of 3,3,3-triphenylpropanoic acid, C21H18O2 – Deposition of hydrogen atomic coordinates
  26. Structure redetermination of dextromethorphan hydrobromide monohydrate, C18H28BrNO2 – localization of hydrogen atoms
  27. Crystal structure of tris(azido-κ1N)-(N-(2-aminoethyl)-N-methyl-1,3-propanediamine-κ3N,N′,N′′)cobalt(III), C7H19CoN12
  28. Crystal structure of tetraaqua-bis(1H-indazole-6-carboxylate-κN)cadmium (II), C16H18CdN4O8
  29. Crystal structure of dichloride-bis(1-propylimidazole-κ1N)zinc(II), C12H20Cl2N4Zn
  30. Crystal structure of (E)-resveratrol 3-O-β-D-xylopyranoside, C19H22O8
  31. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-vinyl- 1H-imidazol-3-ium) bis(hexafluoro phosphate)(V), C18H20F12N4P2
  32. Crystal structure of diaqua[bis(benzimidazol-2-yl-methyl)amine-κ3N,N′,N″]-phthalato-κ1O-nickel(II)-methanol (1/2), C26H31N5NiO8
  33. Crystal structure of 6,7-difluoro-1-methyl-3-(trifluoromethyl)quinoxalin-2(1H)-one, C10H5F5N2O
  34. Crystal structure of dichlorido-bis(1-hexyl-1H-benzotriazole-k1N)zinc(II), C24H34N6Cl2Zn
  35. The crystal structre of 2-(4-bromophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H12BBrN2
  36. Crystal structure of diethyl 3,9-bis(4-fluorophenyl)-6,12-diphenyl-3,9-diazapentacyclo[6.4.0.02,7.04,11]dodecane-1,5-dicarboxylate, C40H36F2N2O4
  37. Crystal structure of (E)-7-methoxy-2-((5-methoxypyridin-3-yl)methylene)-3,4- dihydronaphthalen-1(2H)-one, C18H17NO3
  38. Crystal structure of (E)-2-chloro-6-(((1,3-dihydroxy-2-(oxidomethyl)propan-2-yl)imino)methyl)phenolate-κ3N,O,O’)manganese(IV), C22H24Cl2MnN2O8
  39. The crystal structure of α-(meta-methoxyphenoxy)-ortho-tolylic acid, C15H14O4
  40. The crystal structure of N-(2-chloroethyl)-N,N-diethylammonium chloride, C6H15Cl2N
  41. The crystal structure of tris(2,3,4,6,7,8,9,10-octahydro-1H-pyrimido[1,2-a]azepin-5-ium) trihydrodecavanadate(V), C27H54N6O28V10
  42. Crystal structure of 1,3-bis(octyl)benzimidazolium perchlorate C23H39ClN2O4
  43. Crystal structure of tetrakis[(Z)-(2-(1-(furan-2-yl)-2-methylpropylidene)-1-phenylhydrazin-1-ido-κ2N,N′)] zirconium(IV), C56H60N8O4Zr
  44. The crystal structure of 2-(naphthalen-2-yloxy)-4-phenyl-6-(prop-2-yn-1-yloxy)-1,3,5-triazine, C22H15N3O2
  45. The crystal structure of trimethylsulfonium tris(trifluoromethylsulfonyl)methanide, C7H9F9O6S4
  46. Crystal structure of 4-bromo-N′-[3,5-dichloro-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H13BrCl2N2O3
  47. The crystal structure of 4-(4-bromophenyl)-2-(3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole, C24H16Br2FN3S
  48. The crystal structure of N-(adamantan-1-yl)-piperidine-1-carbothioamide, C16H26N2S
  49. The crystal structure of 1-phenyl-N-(4,5,6,7-tetrabromo-1,3-dioxoisoindolin-2-yl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamide-dimethylformamide (1/1) C22H10Br4N4O3S
  50. The crystal structure of benzeneseleninic acid anhydride, C12H10O3Se2
  51. The crystal structure of diphenyalmine hydrochloride antimony trichloride co-crystallizate, C12H12Cl4NSb – Localization of hydrogen atoms
  52. The crystal structure of para-nitrobenzylbromide, C7H6BrNO2 – A second polymorph and correction of 3D coordinates
  53. Crystal structure of catena-poly[(5H-pyrrolo[3,2-b:4,5-b′]dipyridine-κ2N,N′)-(μ4-hexaoxidodivanadato)dizinc(II)],C10H9N3O6V2Zn
  54. Crystal structure of N,N′-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)-κ5N,N′,N′′,N′′′,O]-tris(nitrato-κ2O,O′) cerium(III), C15H16CeN7O10
  55. Synthesis and crystal structure of oktakis(dimethylsulphoxide-κ1O)gadolinium(III) [tetrabromido-μ2-bromido-μ2-sulfido-di-μ3-sulfido-μ4-sulfido-tetracopper(I)-tungsten(VI)], C16H48O8S12Br5Cu4GdW
  56. Crystal structure of {tris((1H-benzo[d]imidazol-2- yl)methyl)amine-κ4N,N′,N′′,N′′′}-(succinato-κ2O,O′)nickel(II) – methanol (1/4), C32H41N7NiO8
  57. Crystal structure of catena-poly[trans-tetraaqua(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-k2N:N′)cobalt(II)] dinitrate – 1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol) – water (1/3/2), C72H68CoN18O12
  58. Crystal structure of bis(μ2-2-oxido-2-phenylacetate-κ3O:O,O′)-bis(1-isopropoxy-2-oxo-2-phenylethan-1-olato-κ2O,O′)-bis(propan-2-olato-κ1O)dititanium(IV), C44H52O14Ti2
  59. The crystal structure of 5-carboxy-2-(hydroxymethyl)-1H-imidazol-3-ium-4-carboxylate, C6H8N2O6
  60. The crystal structure of 2,6-dibromo-4-fluoroaniline, C6H4Br2FN
  61. The crystal structure of 4-chloro-N-(2-phenoxyphenyl)benzamide, C19H14ClNO2
  62. The crystal structure of 2-methyl-β-naphthothiazole, C12H9NS
Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0525/html
Scroll to top button