Startseite Crystal structure of bis(μ2-2-oxido-2-phenylacetate-κ3O:O,O′)-bis(1-isopropoxy-2-oxo-2-phenylethan-1-olato-κ2O,O′)-bis(propan-2-olato-κ1O)dititanium(IV), C44H52O14Ti2
Artikel Open Access

Crystal structure of bis(μ2-2-oxido-2-phenylacetate-κ3O:O,O′)-bis(1-isopropoxy-2-oxo-2-phenylethan-1-olato-κ2O,O′)-bis(propan-2-olato-κ1O)dititanium(IV), C44H52O14Ti2

  • Yu Youzhu ORCID logo EMAIL logo , Guo Yuhua , Niu Yongsheng , Liu Nana und Zhang Hongfei
Veröffentlicht/Copyright: 13. Januar 2021

Abstract

C44H52O14Ti2, orthorhombic, Pbca (no. 61), a = 15.0005(7) Å, b = 15.9478(8) Å, c = 18.4438(10) Å, V = 4412.2(4) Å3, Z = 4, Rgt(F) = 0.0372, wRref(F2) = 0.1089, T = 296(2) K.

CCDC no.: 2051187

The molecular structure is shown in the Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colorless block
Size:0.23 × 0.21 × 0.18 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.43 mm−1
Diffractometer, scan mode:Bruker APEX-II
θmax, completeness:25.0°, 97%
N(hkl)measured, N(hkl)uniqueRint:41,802, 3867, 0.025
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3166
N(param)refined:301
Programs:Bruker [1], [2], SHELX [3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Ti10.60658 (2)0.49523 (2)0.49017 (2)0.03814 (14)
O10.63018 (10)0.39918 (10)0.44827 (9)0.0528 (4)
O20.70255 (10)0.49320 (8)0.55300 (8)0.0449 (4)
O30.65064 (9)0.57004 (10)0.41393 (8)0.0503 (4)
O40.62187 (12)0.68145 (12)0.34494 (10)0.0680 (5)
O50.49208 (8)0.53860 (9)0.44489 (7)0.0391 (3)
O60.59783 (10)0.61686 (9)0.54934 (8)0.0476 (4)
O70.66932 (11)0.69279 (11)0.63243 (9)0.0622 (5)
C10.37725 (17)0.63642 (18)0.30520 (15)0.0635 (7)
H10.35770.68130.33510.076*
C20.3327 (2)0.6195 (2)0.24039 (17)0.0799 (9)
H20.28350.65320.22610.096*
C30.3592 (3)0.5562 (3)0.19874 (17)0.0920 (10)
H30.32850.54440.15480.110*
C40.4293 (3)0.5085 (3)0.2184 (2)0.1057 (12)
H40.44760.46340.18820.127*
C50.4751 (2)0.5247 (2)0.28271 (16)0.0802 (8)
H50.52450.49080.29620.096*
C60.44895 (14)0.58893 (14)0.32602 (12)0.0462 (5)
C70.49835 (14)0.60732 (13)0.39574 (11)0.0418 (5)
H70.47170.65810.41890.050*
C80.59786 (15)0.62327 (14)0.38226 (12)0.0465 (5)
C90.5296 (2)0.7347 (2)0.6818 (2)0.1018 (11)
H9A0.50510.67970.66880.153*
H9B0.48170.77650.68150.153*
H9C0.55610.73190.73030.153*
C100.59845 (17)0.75868 (17)0.62864 (16)0.0669 (7)
H100.57210.76010.57880.080*
C110.6408 (3)0.8404 (2)0.6453 (2)0.1007 (11)
H11A0.66770.83820.69370.151*
H11B0.59570.88480.64400.151*
H11C0.68710.85230.60920.151*
C120.65871 (15)0.62608 (14)0.59184 (12)0.0466 (5)
C130.72830 (14)0.55672 (13)0.60012 (12)0.0462 (5)
H130.72570.53480.65090.055*
C140.82233 (15)0.58741 (14)0.58502 (12)0.0476 (5)
C150.86174 (19)0.5710 (2)0.51958 (16)0.0758 (8)
H150.83060.53970.48380.091*
C160.9470 (2)0.6000 (3)0.5054 (2)0.0959 (11)
H160.97400.58820.46000.115*
C170.99248 (19)0.6450 (2)0.5554 (2)0.0846 (9)
H171.05060.66530.54490.101*
C180.9547 (2)0.66092 (19)0.62019 (19)0.0777 (8)
H180.98660.69210.65560.093*
C190.8694418)0.63214 (17)0.63556 (15)0.0651 (7)
H190.84350.64350.68150.078*
C20a0.7372 (6)0.2940 (6)0.4768 (4)0.083 (2)
H20Aa0.76930.24510.45810.125*
H20Ba0.70200.27770.51930.125*
H20Ca0.78010.33750.49060.125*
C21a0.6770 (5)0.3271 (5)0.4198 (3)0.0649 (17)
H21a0.63460.28310.40230.078*
C22b0.7359 (8)0.3598 (10)0.3584 (5)0.086 (3)
H22Ab0.76930.31310.33700.129*
H22Bb0.77770.40150.37760.129*
H22Cb0.69850.38590.32110.129*
C20Ab0.6959 (6)0.2649 (4)0.4558 (5)0.0780 (19)
H20Db0.69710.26470.50890.117*
H20Eb0.74270.22780.43720.117*
H20Fb0.63760.24510.43890.117*
C21Ab0.7116 (5)0.3530 (4)0.4285 (4)0.0682 (18)
H21Ab0.72150.40130.45760.082*
C22Aa0.7087 (8)0.3502 (10)0.3448 (5)0.078 (2)
H22Da0.71840.40670.32540.117*
H22Ea0.65030.32960.32890.117*
H22Fa0.75540.31260.32690.117*
  1. aOccupancy: 0.491(8), bOccupancy: 0.509(8).

Source of material

All reagents and solvents employed in this work were commercially available and used without further purification.

A mixture of phenylphosphonic acid (0.5 mmol, 79 mg) and mandelic acid (3 mmol, 0.456 g) were added with stirring to acetonitrile (5 mL) and isopropanol (1 mL). After 5 min, Ti(OiPr)4 (3 mmol, 0.92 mL) was added to the above solution, and then the resulting mixture was sealed in a Teflon-lined stainless vessel (15 mL) and heated at 373 K for 3 d under autogenous pressure. After cooling to room temperature at a rate of 5 K · h−1, colorless block crystals were isolated, washed with acetonitrile and then dried in air.

Experimental details

H atoms were subsequently treated as riding atoms with distances C—H = 0.98 (CH3), 0.99 (CH) and 0.95 (ArH) Å.

Comment

In the field of solar energy conversion and degradation of environmental pollutants, titanium dioxide (TiO2) is one of the most promising photocatalysts because of its high effciency, non-toxic nature and biocompatibility [5], [6], [7]. However, the imprecise and inhomogeneous characteristics of TiO2 materials may greatly inhibit the theoretical calculations study and mechanistic research [8]. As the structure and reactivity model of TiO2, titanium-oxo clusters (TOCs) have garnered intense attraction in the very recent years and a great number of TOCs have been reported [9], [10], [11]. To be noted most of the reported TOCs exhibited high photocatalytic properties due to their coordinated ligands. However, it is still challenging to rationally design and synthesize TOCs with desired properties. As is known, Ti4+ ions belong to hard Lewis acids and are easily coordinated with oxygen atoms. Mandelic acid are endowed with hydroxyl and carboxyl groups which is an ideal ligand for Ti4+. However, to the best of our knowledge, only a few TOCs based on mandelic acid have been reported [12], [13].

The crystal structure of the title compound shows that the basic dinuclear complex consists of two Ti4+ ions, two 2-oxido-2-phenylacetate (mandalate) ligands two esterified mandelate and two propan-2-olate groups (the figure). Notably, the hydroxyl groups of mandelic acid which do not participate in coordination tend to be esterified. The two Ti4+ ions show octahedral TiO6 coordination environments and are linked by two μ2–O atoms to generate the Ti2 core. The distance of the two Ti4+ ions is 3.222 Å which is longer than the reported 2.961 Å of the TOC based on another mandalate [13]. In addition, the average bond length of Ti–O is 1.963 Å, to be consistent with the literature [13], [14], [15].


Corresponding author: Yu Youzhu, College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang455000, Henan, P. R. China, E-mail:

Funding source: Foundation of Anyang Institute of Technology

Award Identifier / Grant number: YPY2019003

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Foundation of Anyang Institute of Technology (YPY2019003).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2; Bruker AXS Inc.: Madison, Wisconsin, USA, 2005.Suche in Google Scholar

2. Bruker. SAINT‐Plus; Bruker AXS Inc.: Madison, Wisconsin, USA, 2001.Suche in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Version 3.2i; Crystal Impact: Bonn, Germany, 2012.Suche in Google Scholar

5. Chen, X., Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959; https://doi.org/10.1021/cr0500535.Suche in Google Scholar

6. Fujishima, A., Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38; https://doi.org/10.1038/238037a0.Suche in Google Scholar

7. Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M., Kamat, P. V. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe‐TiO2 architecture. J. Am. Chem. Soc. 2008, 130, 4007–4015; https://doi.org/10.1021/ja0782706.Suche in Google Scholar

8. Sokolow, J. D., Trzop, E., Chen, Y., Tang, J., Allen, L. J., Crabtree, R. H., Benedict, J. B., Coppens, P. Binding modes of carboxylate-and acetylacetonate-linked chromophores to homodisperse polyoxotitanate nanoclusters. J. Am. Chem. Soc. 2012, 134, 11695–11700; https://doi.org/10.1021/ja303692r.Suche in Google Scholar

9. Yu, Y.-Z., Zhang, Y.-R., Geng, C.-H., Sun, L., Guo, Y., Feng, Y.-R., Wang, Y.-X., Zhang, X.-M. Precise and wide-ranged band-gap tuning of Ti6-core-based titanium oxo clusters by the type and number of chromophore ligands. Inorg. Chem. 2019, 58, 16785–16791; https://doi.org/10.1021/acs.inorgchem.9b02951.Suche in Google Scholar

10. Yu, Y. Z., Guo, Y., Zhang, Y. R., Liu, M. M., Feng, Y. R., Geng, C. H., Zhang, X. M. A series of silver doped butterfly-like Ti8Ag2 clusters with two Ag ions panelled on a Ti8 surface. Dalton Trans 2019, 48, 13423–13429; https://doi.org/10.1039/c9dt02508a.Suche in Google Scholar

11. Fang, W. H., Zhang, L., Zhang, J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47, 404–421; https://doi.org/10.1039/c7cs00511c.Suche in Google Scholar

12. Schetter, B., Stosiek, C., Ziemer, B., Mahrwald, R. Multinuclear enantiopure titanium self-assembly complexes-synthesis, characterization and application to organic synthesis. Appl. Organomet. Chem. 2007, 21, 139–145; https://doi.org/10.1002/aoc.1183.Suche in Google Scholar

13. Mahrwald, R., Ziemer, B. Insight into the mechanism of direct catalytic aldol addition mediated by ambifunctional titanium complexes. Tetrahedron Lett. 2002, 43, 4459–4461; https://doi.org/10.1016/s0040-4039(02)00822-5.Suche in Google Scholar

14. Fang, W. H., Zhang, L., Zhang, J. A 3.6 nm Ti52-oxo nanocluster with precise atomic structure. J. Am. Chem. Soc. 2016, 138, 7480–7483; https://doi.org/10.1021/jacs.6b03489.Suche in Google Scholar

15. Hou, J. L., Huo, P., Tang, Z. Z., Cui, L. N., Zhu, Q. Y., Dai, J. A titanium oxo cluster model study of synergistic effect of co-coordinated dye ligands on photocurrent responses. Inorg. Chem. 2018, 57, 7420–7427; https://doi.org/10.1021/acs.inorgchem.8b01050.Suche in Google Scholar

Received: 2020-11-10
Accepted: 2020-12-18
Published Online: 2021-01-13
Published in Print: 2021-03-26

© 2020 Yu Youzhu et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 4-hydroxybenzene-1,3-diaminium dichloride, C6H10Cl2N2O
  4. The crystal structure of 3-chloropropylammonium chloride, C3H9Cl2N
  5. The crystal structure of 1-chloro-2-(dimethylamino)ethane hydrochloride, C4H11Cl2N
  6. Crystal structure of N-(2-(trifluoromethyl)phenyl)hexanamide, C13H16F3NO
  7. Redetermination of the crystal structure of para-toluidine, C7H9
  8. The crystal structure of bis(1,3-dihydroxy-2-methylpropan-2-aminium) carbonate, C9H24N2O7
  9. The crystal structure of 4-chloro-1-methylpiperidin-1-ium chloride, C6H13Cl2N
  10. Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
  11. The crystal structure of ethyl 2-amino-4-(3,5-difluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H21F2NO4
  12. Crystal structure of 6,6'‐((1E,1'E)‐(propane‐1,3‐diylbis(azaneylylidene))bis(methaneylylidene))bis(3‐bromophenol), C34H32Br4N4O4
  13. The crystal structure of (E)-2-(2-((2-picolinoylhydrazono)methyl)phenoxy)acetic acid dihydrate, C15H17N3O6
  14. Crystal structure of (E)-4-bromo-N′-(3-chloro-2-hydroxybenzylidene)benzohydrazide, C14H10BrClN2O2
  15. Crystal structure of N,N′-bis(4-bromosalicylidene) ethylene-1,2-diaminopropan, C34H32Br4N4O4
  16. Crystal structure of 4-bromo-N′-[(3-bromo-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H14Br2N2O3
  17. The crystal structure of 1,2-bis(1H-benzo[d]imidazol-2-yl)ethane-1,2-diol — N-(2-aminophenyl)-3-(1H-benzo[d]imidazol-2-yl)-2,3-dihydroxypropanamide (1/1), C32H30N8O5
  18. The crystal structure of para-trifluoromethyl-aniline hemihydrate, C14H14F6N2O
  19. Redetermination of the crystal structure of 2-amino-2-methyl-propane-1,3-diole, C4H11NO2
  20. The crystal structure of methacholine chloride, C8H18ClNO2
  21. Crystal structure of 5,7,7-trimethyl-4,6,7,8-tetrahydrocyclopenta[g]isochromen-1(3H)-one, C15H18O2
  22. Crystal structure of poly[diammine-bis(μ4-4-hydroxypyridine-3-sulfonato-κ5N:O, O′:O′′:O′′)(μ2-pyrazinyl-κ2N:N′)tetrasilver(I)], C7H8Ag2N3O4S
  23. Crystal structure of ethyl (E)-5-(((3′,6′-bis(ethylamino)-3-oxospiro[isoindoline-1,9′-xanthen]-2-yl)imino)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate — ethanol (1/1), C38H45N5O5
  24. Crystal structure of 4-bromo-N′-[(3-chloro-2-hydroxyphenyl)methylidene]benzohydrazide, C14H7Br2N2O2
  25. Redetermination of the crystal structure of 3,3,3-triphenylpropanoic acid, C21H18O2 – Deposition of hydrogen atomic coordinates
  26. Structure redetermination of dextromethorphan hydrobromide monohydrate, C18H28BrNO2 – localization of hydrogen atoms
  27. Crystal structure of tris(azido-κ1N)-(N-(2-aminoethyl)-N-methyl-1,3-propanediamine-κ3N,N′,N′′)cobalt(III), C7H19CoN12
  28. Crystal structure of tetraaqua-bis(1H-indazole-6-carboxylate-κN)cadmium (II), C16H18CdN4O8
  29. Crystal structure of dichloride-bis(1-propylimidazole-κ1N)zinc(II), C12H20Cl2N4Zn
  30. Crystal structure of (E)-resveratrol 3-O-β-D-xylopyranoside, C19H22O8
  31. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-vinyl- 1H-imidazol-3-ium) bis(hexafluoro phosphate)(V), C18H20F12N4P2
  32. Crystal structure of diaqua[bis(benzimidazol-2-yl-methyl)amine-κ3N,N′,N″]-phthalato-κ1O-nickel(II)-methanol (1/2), C26H31N5NiO8
  33. Crystal structure of 6,7-difluoro-1-methyl-3-(trifluoromethyl)quinoxalin-2(1H)-one, C10H5F5N2O
  34. Crystal structure of dichlorido-bis(1-hexyl-1H-benzotriazole-k1N)zinc(II), C24H34N6Cl2Zn
  35. The crystal structre of 2-(4-bromophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H12BBrN2
  36. Crystal structure of diethyl 3,9-bis(4-fluorophenyl)-6,12-diphenyl-3,9-diazapentacyclo[6.4.0.02,7.04,11]dodecane-1,5-dicarboxylate, C40H36F2N2O4
  37. Crystal structure of (E)-7-methoxy-2-((5-methoxypyridin-3-yl)methylene)-3,4- dihydronaphthalen-1(2H)-one, C18H17NO3
  38. Crystal structure of (E)-2-chloro-6-(((1,3-dihydroxy-2-(oxidomethyl)propan-2-yl)imino)methyl)phenolate-κ3N,O,O’)manganese(IV), C22H24Cl2MnN2O8
  39. The crystal structure of α-(meta-methoxyphenoxy)-ortho-tolylic acid, C15H14O4
  40. The crystal structure of N-(2-chloroethyl)-N,N-diethylammonium chloride, C6H15Cl2N
  41. The crystal structure of tris(2,3,4,6,7,8,9,10-octahydro-1H-pyrimido[1,2-a]azepin-5-ium) trihydrodecavanadate(V), C27H54N6O28V10
  42. Crystal structure of 1,3-bis(octyl)benzimidazolium perchlorate C23H39ClN2O4
  43. Crystal structure of tetrakis[(Z)-(2-(1-(furan-2-yl)-2-methylpropylidene)-1-phenylhydrazin-1-ido-κ2N,N′)] zirconium(IV), C56H60N8O4Zr
  44. The crystal structure of 2-(naphthalen-2-yloxy)-4-phenyl-6-(prop-2-yn-1-yloxy)-1,3,5-triazine, C22H15N3O2
  45. The crystal structure of trimethylsulfonium tris(trifluoromethylsulfonyl)methanide, C7H9F9O6S4
  46. Crystal structure of 4-bromo-N′-[3,5-dichloro-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H13BrCl2N2O3
  47. The crystal structure of 4-(4-bromophenyl)-2-(3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole, C24H16Br2FN3S
  48. The crystal structure of N-(adamantan-1-yl)-piperidine-1-carbothioamide, C16H26N2S
  49. The crystal structure of 1-phenyl-N-(4,5,6,7-tetrabromo-1,3-dioxoisoindolin-2-yl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamide-dimethylformamide (1/1) C22H10Br4N4O3S
  50. The crystal structure of benzeneseleninic acid anhydride, C12H10O3Se2
  51. The crystal structure of diphenyalmine hydrochloride antimony trichloride co-crystallizate, C12H12Cl4NSb – Localization of hydrogen atoms
  52. The crystal structure of para-nitrobenzylbromide, C7H6BrNO2 – A second polymorph and correction of 3D coordinates
  53. Crystal structure of catena-poly[(5H-pyrrolo[3,2-b:4,5-b′]dipyridine-κ2N,N′)-(μ4-hexaoxidodivanadato)dizinc(II)],C10H9N3O6V2Zn
  54. Crystal structure of N,N′-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)-κ5N,N′,N′′,N′′′,O]-tris(nitrato-κ2O,O′) cerium(III), C15H16CeN7O10
  55. Synthesis and crystal structure of oktakis(dimethylsulphoxide-κ1O)gadolinium(III) [tetrabromido-μ2-bromido-μ2-sulfido-di-μ3-sulfido-μ4-sulfido-tetracopper(I)-tungsten(VI)], C16H48O8S12Br5Cu4GdW
  56. Crystal structure of {tris((1H-benzo[d]imidazol-2- yl)methyl)amine-κ4N,N′,N′′,N′′′}-(succinato-κ2O,O′)nickel(II) – methanol (1/4), C32H41N7NiO8
  57. Crystal structure of catena-poly[trans-tetraaqua(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-k2N:N′)cobalt(II)] dinitrate – 1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol) – water (1/3/2), C72H68CoN18O12
  58. Crystal structure of bis(μ2-2-oxido-2-phenylacetate-κ3O:O,O′)-bis(1-isopropoxy-2-oxo-2-phenylethan-1-olato-κ2O,O′)-bis(propan-2-olato-κ1O)dititanium(IV), C44H52O14Ti2
  59. The crystal structure of 5-carboxy-2-(hydroxymethyl)-1H-imidazol-3-ium-4-carboxylate, C6H8N2O6
  60. The crystal structure of 2,6-dibromo-4-fluoroaniline, C6H4Br2FN
  61. The crystal structure of 4-chloro-N-(2-phenoxyphenyl)benzamide, C19H14ClNO2
  62. The crystal structure of 2-methyl-β-naphthothiazole, C12H9NS
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0590/html
Button zum nach oben scrollen