Home The crystal structure of methacholine chloride, C8H18ClNO2
Article Open Access

The crystal structure of methacholine chloride, C8H18ClNO2

  • Kina Muller , Eric C. Hosten ORCID logo and Richard Betz ORCID logo
Published/Copyright: February 15, 2021

Abstract

C8H18ClNO2, monoclinic, P21/c (no. 14), a = 6.8110(5) Å, b = 8.8779(7) Å, c = 17.2774(16) Å, β = 97.582(4)°, V = 1035.59(15) Å3, Z = 4, Rgt(F) = 0.0484, wRref(F2) = 0.0922, T = 200 K.

CCDC no.: 2045354

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless block
Size:0.34 × 0.34 × 0.22 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.33 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
θmax, completeness:28.3°, 99%
N(hkl)measured, N(hkl)unique, Rint:2506, 2506, 0.027
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 1965
N(param)refined:115
Programs:Bruker [1], [2], SHELX [3], WinGX/ORTEP [4], Mercury [5], PLATON [6]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Cl10.26533 (10)0.71572 (6)0.52943 (4)0.02950 (15)
O10.3911 (2)0.10456 (17)0.76844 (9)0.0235 (4)
O20.2547 (3)0.31055 (19)0.81546 (11)0.0393 (5)
N10.2700 (3)0.1819 (2)0.58946 (11)0.0210 (4)
C10.1907 (4)0.0680 (3)0.86703 (16)0.0347 (6)
H1A0.0865490.1184630.8913920.052*
H1B0.2933080.0309800.9077100.052*
H1C0.133606−0.0169740.8355460.052*
C20.2797 (4)0.1762 (3)0.81622 (14)0.0243 (5)
C30.5027 (4)0.1968 (2)0.71945 (13)0.0220 (5)
H30.4600990.3044290.7213100.026*
C40.7198 (4)0.1824 (3)0.75162 (15)0.0313 (6)
H4A0.7651350.0798470.7427290.047*
H4B0.7375030.2035940.8077730.047*
H4C0.7973000.2544660.7251500.047*
C50.4643 (3)0.1386 (2)0.63639 (13)0.0212 (5)
H5A0.5726420.1746430.6081230.025*
H5B0.4720960.0272660.6381040.025*
C60.0962 (4)0.1179 (4)0.62296 (16)0.0450 (8)
H6A−0.0260590.1437600.5890810.068*
H6B0.0917660.1599380.6751510.068*
H6C0.1091790.0081140.6265880.068*
C70.2671 (4)0.1205 (3)0.50868 (13)0.0268 (5)
H7A0.1420030.1477660.4770710.040*
H7B0.2795540.0105700.5110680.040*
H7C0.3779360.1629210.4849920.040*
C80.2516 (5)0.3508 (3)0.58218 (17)0.0408 (7)
H8A0.3652210.3909100.5594570.061*
H8B0.2485360.3949590.6339870.061*
H8C0.1290020.3761420.5483700.061*

Source of material

The compound was obtained commercially (Merck Schuchardt). Crystals were taken directly from the product.

Experimental details

Carbon-bound H atoms were placed in calculated positions (C–H 0.99 Å for methylene groups and C–H 1.00 Å for methine groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite [3]), with U(H) set to 1.5Ueq(C).

The compound was refined as a two-component twin with a volume ratio of 21.3–78.7% (twin law 1.00 0.00 0.00, 0.00 −1.00 0.00, −0.67 0.00 −1.00).

Comment

The effect of size and steric pretense of large ions on chemical and spectroscopic properties of compounds have been a focus of research for many decades. Among the many effects that can be attributed to the spatial requirements of counterions have been the glass transition temperature in ionomers [7], surfactant modifying properties [8], the charge transfer in radical ions [9] and polymer-modified electrodes [10] as well as the structural and vibrational spectroscopic behaviour of DNA building blocks [11]. Furthermore, the benefit of chosing the adequate size of counterions to crystallize ionic compounds has been confirmed on many occasions [12]. In continuation of our interest in metrical features of large cations [13], [14], [15] the structure of the title compound has been determined. Methacholine chloride is a synthetic derivative of acetylcholine, a neurotransmitter. It is used in the bronchoprovocation test to determine the non-specific airway responsiveness. This pulmonary lung function test is one method used to assess airway responsiveness and to help diagnose asthma [16], [17], [18]. The structure of L-(+)-(S)-acetyl-β-methylcholine iodide is apparent in the literature [19].

The structure shows a propane derivative bearing an N(CH3)3 group on one of the terminal carbon atoms as well as an acetyl substituent on the central carbon atom. The positive charge caused by the tetracoordinate nitrogen atom is balanced by the presence of one cloride anion. N—C bond lengths are found in a very narrow range of 1.496(3)–1.508(3) Å with the longest bond established to the propyl chain. Carbon oxygen bond lengths of 1.461(3)° for the ethereal bond as well as 1.352(3) Å for the carbonyl group are reminiscent of similar bond lengths in other acetyl derivatives that have been deposited with the Cambridge Structural Database [20].

In the crystal, C–H⃛O as well as C–H⃛Cl contacts are apparent whose range invariably falls by more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating in them. These are supported by hydrogen atoms on two of the three nitrogen-bonded methyl groups as well as one hydrogen atom on the non-functionalized carbon atom of the central propyl chain. The latter group also gives rise to the only C–H⃛O contact that exclusively employs the keto-type oxygen atom acting as acceptor. In terms of graph-set analysis [21], the descriptor for these contacts is DDDDC11(6) on the unary level.


Corresponding author: Dr. Richard Betz, Department of Chemistry, Nelson Mandela University, Summerstrand Campus (South) University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The corresponding author thanks the National Research Foundation for financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.Search in Google Scholar

2. Bruker. SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

4. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez–Monge, L., Taylor, R., van de Streek, J., Wood, P. A. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Search in Google Scholar

6. Spek, A. L Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Search in Google Scholar

7. Enokida, J. S., Hu, W., Fang, H., Morgan, B. F., Beyer, F. L., Winter, H. H., Coughlin, E. B. Modifying the structure and dynamics of ionomers through counterion sterics. Macromolecules 2020, 53, 1767–1776; https://doi.org/10.1021/acs.macromol.9b02116.Search in Google Scholar

8. Oh, S. G., Shah, D. O. Effect of counterions on the interfacial tension and emulsion droplet size in the oil/water/dodecyl sulfate system. J. Phys. Chem. 1993, 97, 284–286; https://doi.org/10.1021/j100104a003.Search in Google Scholar

9. Piotrowiak, P., Miller, J. R. Counterion effects in intramolecular charge transfer in radical anions. J. Phys. Chem. 1993, 97, 13052–13060; https://doi.org/10.1021/j100152a004.Search in Google Scholar

10. Mathias, M. F., Haas, O. Effect of counterion type on charge transport at redox polymer-modified electrodes. J. Phys. Chem. 1993, 97, 9217–9225; https://doi.org/10.1021/j100138a025.Search in Google Scholar

11. Minguirbara, A., Vamhindi, B. S. D. R., Koyambo–Konzapa, S. J., Nsangou, M. Effects of counterions and solvents on the geometrical and vibrational features of dinucleoside-monophosphate (dNMP): case of 3′,5′-dideoxycytidine-monophosphate (dDCMP). J. Mol. Model. 2020, 26, article #99, https://doi.org/10.1007/s00894-020-04369-6.Search in Google Scholar

12. Roof, L. C., Kolis, J. W. New developments in the coordination chemistry of inorganic selenide and telluride ligands. Chem. Rev. 1993, 93, 1037–1080; https://doi.org/10.1021/cr00019a010.Search in Google Scholar

13. Hosten, E. C., Betz, R. Redetermination of the crystal structure of benzyltriethylammoniumchloride monohydrate at 200 K – localization of hydrogen atoms, C13H24ClNO. Z. Kristallogr. NCS 2015, 230, 21–22; https://doi.org/10.1515/ncrs-2014-9024.Search in Google Scholar

14. Abrahams, A., van Brecht, B., Betz, R. Bis(pyridin-2-ylmethyl)ammonium nitrate. Acta Crystallogr. 2013, E69, o661; https://doi.org/10.1107/s1600536813008593.Search in Google Scholar

15. Betz, R., Gerber, T., Hosten, E., Siddaraju, B. P., Yathirajan, H. S. Opipramol dihydrochloride. Acta Crystallogr. 2011, E67, o2994–o2995; https://doi.org/10.1107/s1600536811042280.Search in Google Scholar

16. Crapo, R. O., Casaburi, R., Coates, A. L., Enright, P. L., Hankinson, J. L., Irvin, C. G., MacIntyre, N. R., McKay, R. T., Wanger, J. S., Anderson, S. A., Cockcroft, D. W., Fish, J. E., Sterk, P. J. Guidelines for methacholine and exercise challenge testing – 1999. Am. J. Respir. Crit. Care Med. 2000, 161, 309–329; https://doi.org/10.1164/ajrccm.161.1.ats11-99.Search in Google Scholar

17. Park, I. W., Kim, S. H., Chang, E. H., Choi, B. W., Hue, S. H. A study of the bronchial provocation test with methacholine in patients with active pulmonary tubercolosis. Kor. J. Intern. Med. 1989, 4, 59–64; https://doi.org/10.3904/kjim.1989.4.1.59.Search in Google Scholar

18. Watson, B. L., Cormier, R. A., Harbeck, R. J. Effect of pH on the stability of methacholine chloride in solution. Respir. Med. 1998, 92, 588–592; https://doi.org/10.1016/s0954-6111(98)90314-6.Search in Google Scholar

19. Chothia, C., Pauling, P. The crystal and molecular structure and absolute configuration of L-(+)-(S)-acetyl-β-methylcholine iodide. Acta Crystallogr. 1978, B34, 152–155; https://doi.org/10.1107/s0567740878002502.Search in Google Scholar

20. Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. 2002, B58, 380–388; https://doi.org/10.1107/s0108768102003890.Search in Google Scholar

21. Bernstein, J., Davis, R. E., Shimoni, L., Chang, N.-L. Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem. Int. Ed. Engl. 1995, 34, 1555–1573; https://doi.org/10.1002/anie.199515551.Search in Google Scholar

Received: 2020-10-08
Accepted: 2020-11-19
Published Online: 2021-02-15
Published in Print: 2021-03-26

© 2020 Kina Muller et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 4-hydroxybenzene-1,3-diaminium dichloride, C6H10Cl2N2O
  4. The crystal structure of 3-chloropropylammonium chloride, C3H9Cl2N
  5. The crystal structure of 1-chloro-2-(dimethylamino)ethane hydrochloride, C4H11Cl2N
  6. Crystal structure of N-(2-(trifluoromethyl)phenyl)hexanamide, C13H16F3NO
  7. Redetermination of the crystal structure of para-toluidine, C7H9
  8. The crystal structure of bis(1,3-dihydroxy-2-methylpropan-2-aminium) carbonate, C9H24N2O7
  9. The crystal structure of 4-chloro-1-methylpiperidin-1-ium chloride, C6H13Cl2N
  10. Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
  11. The crystal structure of ethyl 2-amino-4-(3,5-difluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H21F2NO4
  12. Crystal structure of 6,6'‐((1E,1'E)‐(propane‐1,3‐diylbis(azaneylylidene))bis(methaneylylidene))bis(3‐bromophenol), C34H32Br4N4O4
  13. The crystal structure of (E)-2-(2-((2-picolinoylhydrazono)methyl)phenoxy)acetic acid dihydrate, C15H17N3O6
  14. Crystal structure of (E)-4-bromo-N′-(3-chloro-2-hydroxybenzylidene)benzohydrazide, C14H10BrClN2O2
  15. Crystal structure of N,N′-bis(4-bromosalicylidene) ethylene-1,2-diaminopropan, C34H32Br4N4O4
  16. Crystal structure of 4-bromo-N′-[(3-bromo-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H14Br2N2O3
  17. The crystal structure of 1,2-bis(1H-benzo[d]imidazol-2-yl)ethane-1,2-diol — N-(2-aminophenyl)-3-(1H-benzo[d]imidazol-2-yl)-2,3-dihydroxypropanamide (1/1), C32H30N8O5
  18. The crystal structure of para-trifluoromethyl-aniline hemihydrate, C14H14F6N2O
  19. Redetermination of the crystal structure of 2-amino-2-methyl-propane-1,3-diole, C4H11NO2
  20. The crystal structure of methacholine chloride, C8H18ClNO2
  21. Crystal structure of 5,7,7-trimethyl-4,6,7,8-tetrahydrocyclopenta[g]isochromen-1(3H)-one, C15H18O2
  22. Crystal structure of poly[diammine-bis(μ4-4-hydroxypyridine-3-sulfonato-κ5N:O, O′:O′′:O′′)(μ2-pyrazinyl-κ2N:N′)tetrasilver(I)], C7H8Ag2N3O4S
  23. Crystal structure of ethyl (E)-5-(((3′,6′-bis(ethylamino)-3-oxospiro[isoindoline-1,9′-xanthen]-2-yl)imino)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate — ethanol (1/1), C38H45N5O5
  24. Crystal structure of 4-bromo-N′-[(3-chloro-2-hydroxyphenyl)methylidene]benzohydrazide, C14H7Br2N2O2
  25. Redetermination of the crystal structure of 3,3,3-triphenylpropanoic acid, C21H18O2 – Deposition of hydrogen atomic coordinates
  26. Structure redetermination of dextromethorphan hydrobromide monohydrate, C18H28BrNO2 – localization of hydrogen atoms
  27. Crystal structure of tris(azido-κ1N)-(N-(2-aminoethyl)-N-methyl-1,3-propanediamine-κ3N,N′,N′′)cobalt(III), C7H19CoN12
  28. Crystal structure of tetraaqua-bis(1H-indazole-6-carboxylate-κN)cadmium (II), C16H18CdN4O8
  29. Crystal structure of dichloride-bis(1-propylimidazole-κ1N)zinc(II), C12H20Cl2N4Zn
  30. Crystal structure of (E)-resveratrol 3-O-β-D-xylopyranoside, C19H22O8
  31. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-vinyl- 1H-imidazol-3-ium) bis(hexafluoro phosphate)(V), C18H20F12N4P2
  32. Crystal structure of diaqua[bis(benzimidazol-2-yl-methyl)amine-κ3N,N′,N″]-phthalato-κ1O-nickel(II)-methanol (1/2), C26H31N5NiO8
  33. Crystal structure of 6,7-difluoro-1-methyl-3-(trifluoromethyl)quinoxalin-2(1H)-one, C10H5F5N2O
  34. Crystal structure of dichlorido-bis(1-hexyl-1H-benzotriazole-k1N)zinc(II), C24H34N6Cl2Zn
  35. The crystal structre of 2-(4-bromophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H12BBrN2
  36. Crystal structure of diethyl 3,9-bis(4-fluorophenyl)-6,12-diphenyl-3,9-diazapentacyclo[6.4.0.02,7.04,11]dodecane-1,5-dicarboxylate, C40H36F2N2O4
  37. Crystal structure of (E)-7-methoxy-2-((5-methoxypyridin-3-yl)methylene)-3,4- dihydronaphthalen-1(2H)-one, C18H17NO3
  38. Crystal structure of (E)-2-chloro-6-(((1,3-dihydroxy-2-(oxidomethyl)propan-2-yl)imino)methyl)phenolate-κ3N,O,O’)manganese(IV), C22H24Cl2MnN2O8
  39. The crystal structure of α-(meta-methoxyphenoxy)-ortho-tolylic acid, C15H14O4
  40. The crystal structure of N-(2-chloroethyl)-N,N-diethylammonium chloride, C6H15Cl2N
  41. The crystal structure of tris(2,3,4,6,7,8,9,10-octahydro-1H-pyrimido[1,2-a]azepin-5-ium) trihydrodecavanadate(V), C27H54N6O28V10
  42. Crystal structure of 1,3-bis(octyl)benzimidazolium perchlorate C23H39ClN2O4
  43. Crystal structure of tetrakis[(Z)-(2-(1-(furan-2-yl)-2-methylpropylidene)-1-phenylhydrazin-1-ido-κ2N,N′)] zirconium(IV), C56H60N8O4Zr
  44. The crystal structure of 2-(naphthalen-2-yloxy)-4-phenyl-6-(prop-2-yn-1-yloxy)-1,3,5-triazine, C22H15N3O2
  45. The crystal structure of trimethylsulfonium tris(trifluoromethylsulfonyl)methanide, C7H9F9O6S4
  46. Crystal structure of 4-bromo-N′-[3,5-dichloro-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H13BrCl2N2O3
  47. The crystal structure of 4-(4-bromophenyl)-2-(3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole, C24H16Br2FN3S
  48. The crystal structure of N-(adamantan-1-yl)-piperidine-1-carbothioamide, C16H26N2S
  49. The crystal structure of 1-phenyl-N-(4,5,6,7-tetrabromo-1,3-dioxoisoindolin-2-yl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamide-dimethylformamide (1/1) C22H10Br4N4O3S
  50. The crystal structure of benzeneseleninic acid anhydride, C12H10O3Se2
  51. The crystal structure of diphenyalmine hydrochloride antimony trichloride co-crystallizate, C12H12Cl4NSb – Localization of hydrogen atoms
  52. The crystal structure of para-nitrobenzylbromide, C7H6BrNO2 – A second polymorph and correction of 3D coordinates
  53. Crystal structure of catena-poly[(5H-pyrrolo[3,2-b:4,5-b′]dipyridine-κ2N,N′)-(μ4-hexaoxidodivanadato)dizinc(II)],C10H9N3O6V2Zn
  54. Crystal structure of N,N′-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)-κ5N,N′,N′′,N′′′,O]-tris(nitrato-κ2O,O′) cerium(III), C15H16CeN7O10
  55. Synthesis and crystal structure of oktakis(dimethylsulphoxide-κ1O)gadolinium(III) [tetrabromido-μ2-bromido-μ2-sulfido-di-μ3-sulfido-μ4-sulfido-tetracopper(I)-tungsten(VI)], C16H48O8S12Br5Cu4GdW
  56. Crystal structure of {tris((1H-benzo[d]imidazol-2- yl)methyl)amine-κ4N,N′,N′′,N′′′}-(succinato-κ2O,O′)nickel(II) – methanol (1/4), C32H41N7NiO8
  57. Crystal structure of catena-poly[trans-tetraaqua(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-k2N:N′)cobalt(II)] dinitrate – 1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol) – water (1/3/2), C72H68CoN18O12
  58. Crystal structure of bis(μ2-2-oxido-2-phenylacetate-κ3O:O,O′)-bis(1-isopropoxy-2-oxo-2-phenylethan-1-olato-κ2O,O′)-bis(propan-2-olato-κ1O)dititanium(IV), C44H52O14Ti2
  59. The crystal structure of 5-carboxy-2-(hydroxymethyl)-1H-imidazol-3-ium-4-carboxylate, C6H8N2O6
  60. The crystal structure of 2,6-dibromo-4-fluoroaniline, C6H4Br2FN
  61. The crystal structure of 4-chloro-N-(2-phenoxyphenyl)benzamide, C19H14ClNO2
  62. The crystal structure of 2-methyl-β-naphthothiazole, C12H9NS
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0526/html
Scroll to top button