Startseite Crystal structure of tetrakis[(Z)-(2-(1-(furan-2-yl)-2-methylpropylidene)-1-phenylhydrazin-1-ido-κ2N,N′)] zirconium(IV), C56H60N8O4Zr
Artikel Open Access

Crystal structure of tetrakis[(Z)-(2-(1-(furan-2-yl)-2-methylpropylidene)-1-phenylhydrazin-1-ido-κ2N,N′)] zirconium(IV), C56H60N8O4Zr

  • Xin-E. Duan ORCID logo , Yu-Hang Wang , Sheng-Di Bai , Hong-Bo Tong und Bin-Shen Liu
Veröffentlicht/Copyright: 18. Dezember 2020

Abstract

C56H60N8O4Zr, monoclinic, C2/c (no. 15), a = 24.665(4) Å, b = 18.836(3) Å, c = 25.425(6) Å, β = 114.364(4)°, V = 10760(4) Å3, Z = 8, Rgt(F) = 0.0550, wRref(F2) = 0.1239, T = 296(2) K.

CCDC no.: 1959080

One of the two crystallographically independent complexes of the title crystal structure is shown in the Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Orange needle
Size:0.40 × 0.20 × 0.20 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.26 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
θmax, completeness:30.6°, >99%
N(hkl)measured, N(hkl)unique,Rint:70,340, 16418, 0.096
Criterion for Iobs,N(hkl)gt:Iobs > 2 σ(Iobs), 8010
N(param)refined:631
Programs:Bruker [1], SHELX [2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Zr10.5000000.17470 (2)0.2500000.03224 (9)
Zr20.5000000.67922 (2)0.2500000.03385 (9)
N10.52980 (10)0.18741 (11)0.17758 (9)0.0435 (5)
N20.53430 (10)0.24986 (11)0.20820 (9)0.0413 (5)
N30.41006 (10)0.16241 (11)0.17578 (9)0.0447 (5)
N40.43023 (9)0.09892 (11)0.20547 (8)0.0389 (5)
N50.54316 (9)0.66672 (11)0.18745 (9)0.0413 (5)
N60.51822 (10)0.60330 (11)0.19563 (9)0.0425 (5)
N70.40382 (9)0.69189 (11)0.18546 (9)0.0409 (5)
N80.43674 (9)0.75353 (11)0.19318 (9)0.0416 (5)
O10.55364 (10)0.22939 (11)0.05076 (9)0.0662 (6)
O20.28033 (9)0.12933 (12)0.04402 (9)0.0730 (6)
O30.63582 (12)0.63439 (16)0.11076 (11)0.0942 (8)
C360.31193 (14)0.81302 (17)0.15305 (14)0.0606 (8)
H360.3467230.8355290.1776850.073*
C10.53193 (13)0.18085 (14)0.12788 (11)0.0483 (7)
C20.53586 (12)0.24132 (15)0.09449 (11)0.0464 (7)
C30.52078 (14)0.30992 (15)0.09359 (13)0.0585 (8)
H30.5077250.3320500.1189590.070*
C40.52840 (15)0.34225 (17)0.04708 (14)0.0689 (9)
H40.5205090.3893020.0353080.083*
C50.54893 (16)0.29258 (19)0.02357 (14)0.0760 (10)
H50.5588670.299885−0.0075460.091*
C60.58358 (12)0.29530 (14)0.22295 (11)0.0417 (6)
C70.63447 (13)0.28073 (18)0.21406 (13)0.0604 (8)
H70.6376160.2383400.1967760.072*
C80.68063 (15)0.3300 (2)0.23117 (17)0.0822 (11)
H80.7143470.3202630.2247010.099*
C90.67746 (16)0.3919 (2)0.25711 (18)0.0893 (12)
H90.7087500.4241540.2683620.107*
C100.62814 (16)0.40634 (18)0.26653 (16)0.0780 (11)
H100.6256300.4486780.2842110.094*
C110.58199 (13)0.35844 (15)0.24994 (13)0.0564 (8)
H110.5487880.3688350.2570940.068*
C120.36610 (12)0.17108 (14)0.12603 (11)0.0488 (7)
C130.33175 (12)0.11240 (15)0.09133 (11)0.0498 (7)
C140.34106 (14)0.04212 (16)0.09146 (12)0.0608 (8)
H140.3725130.0169650.1188100.073*
C150.29401 (16)0.01343 (19)0.04215 (14)0.0748 (10)
H150.288597−0.0339050.0307410.090*
C160.25958 (16)0.0673 (2)0.01582 (15)0.0829 (11)
H160.2251570.063279−0.0180460.099*
C170.39298 (11)0.05715 (13)0.22201 (10)0.0397 (6)
C180.33540 (13)0.07451 (17)0.21402 (12)0.0576 (8)
H180.3183320.1167110.1956580.069*
C190.30321 (14)0.0290 (2)0.23338 (15)0.0751 (10)
H190.2644850.0408360.2273640.090*
C200.32739 (16)−0.0324 (2)0.26092 (16)0.0783 (10)
H200.305468−0.0622810.2738980.094*
C210.38413 (15)−0.05014 (17)0.26948 (15)0.0696 (9)
H210.400820−0.0922290.2883270.084*
C220.41681 (12)−0.00601 (14)0.25035 (12)0.0510 (7)
H220.455406−0.0187080.2565070.061*
C230.58014 (12)0.67519 (14)0.16374 (11)0.0455 (6)
C240.60391 (13)0.61686 (18)0.14235 (12)0.0553 (8)
C250.60695 (14)0.54687 (18)0.15206 (15)0.0674 (9)
H250.5896190.5221740.1728520.081*
C260.6416 (2)0.5174 (3)0.1247 (2)0.1044 (16)
H260.6508860.4697430.1233960.125*
C270.6579 (2)0.5708 (3)0.1015 (2)0.1170 (18)
H270.6815740.5663100.0812480.140*
C280.48383 (11)0.55982 (13)0.14923 (11)0.0402 (6)
C290.46253 (13)0.49706 (14)0.16197 (12)0.0498 (7)
H290.4714850.4857760.2002790.060*
C300.42829 (14)0.45098 (15)0.11891 (14)0.0620 (8)
H300.4147270.4090390.1286110.074*
C310.41408 (14)0.46611 (18)0.06238 (14)0.0679 (9)
H310.3915810.4345650.0334600.081*
C320.43362 (15)0.52871 (19)0.04901 (13)0.0745 (10)
H320.4234050.5399890.0104680.089*
C330.46833 (13)0.57577 (16)0.09161 (12)0.0605 (8)
H330.4811670.6179530.0815000.073*
C340.34654 (12)0.68464 (14)0.16096 (11)0.0467 (7)
C350.30607 (12)0.74421 (18)0.14008 (13)0.0592 (8)
O40.24852 (12)0.73059 (18)0.10394 (15)0.1404 (14)
C370.2208 (2)0.7949 (4)0.0954 (3)0.167 (3)
H370.1805470.8015920.0722790.200*
C380.2566 (2)0.8457 (3)0.1232 (2)0.1115 (15)
H380.2474940.8936140.1232190.134*
C390.43033 (11)0.79833 (13)0.14698 (11)0.0403 (6)
C400.46342 (13)0.86091 (14)0.16025 (12)0.0524 (7)
H400.4878640.8711020.1985680.063*
C410.46065 (16)0.90783 (16)0.11786 (15)0.0682 (9)
H410.4832520.9491770.1277240.082*
C420.42469 (16)0.89404 (18)0.06099 (14)0.0703 (9)
H420.4221650.9262660.0323600.084*
C430.39274 (15)0.83254 (18)0.04704 (13)0.0661 (9)
H430.3688870.8228130.0084770.079*
C440.39496 (13)0.78422 (15)0.08889 (12)0.0512 (7)
H440.3729540.7424710.0783470.061*
C450.52680 (18)0.10566 (16)0.10485 (13)0.0749 (11)
H450.5172690.0752870.1311790.090*
C460.5859 (2)0.0788 (2)0.10621 (17)0.1125 (17)
H46A0.5818130.0299370.0945480.169*
H46B0.6163310.0831120.1446860.169*
H46C0.5965340.1065940.0802560.169*
C470.4756 (2)0.09755 (19)0.04524 (16)0.0989 (14)
H47A0.4390010.1113370.0470870.148*
H47B0.4729960.0489390.0330810.148*
H47C0.4827980.1272890.0180950.148*
C480.35463 (16)0.24764 (16)0.10509 (14)0.0760 (11)
H480.3873420.2758350.1328040.091*
C490.35653 (17)0.25835 (19)0.04675 (15)0.0975 (14)
H49A0.3928030.2388120.0475270.146*
H49B0.3548440.3081830.0382800.146*
H49C0.3231540.2348430.0175070.146*
C500.29720 (19)0.2758 (2)0.10759 (17)0.1083 (15)
H50A0.2636650.2499840.0806720.162*
H50B0.2927060.3253010.0977550.162*
H50C0.2993720.2696510.1458920.162*
C510.60012 (13)0.75137 (16)0.16298 (13)0.0588 (8)
H510.5833820.7791420.1853180.071*
C520.57570 (17)0.7837 (2)0.10306 (16)0.0902 (12)
H52A0.5898750.7572420.0789970.135*
H52B0.5887670.8321010.1054850.135*
H52C0.5330020.7823140.0867450.135*
C530.66762 (15)0.75982 (19)0.19359 (16)0.0862 (11)
H53A0.6859360.7380180.1708810.129*
H53B0.6817820.7373790.2307660.129*
H53C0.6775440.8093820.1983720.129*
C540.32428 (15)0.60864 (17)0.15849 (15)0.0685 (9)
H540.3592300.5797200.1809940.082*
C550.29930 (18)0.5793 (2)0.09761 (17)0.1034 (14)
H55A0.2635660.6044310.0743040.155*
H55B0.2904210.5297620.0984110.155*
H55C0.3280700.5850020.0815410.155*
C560.2812 (2)0.6001 (2)0.1869 (2)0.1130 (15)
H56A0.2994980.6170020.2259490.169*
H56B0.2711360.5508150.1868610.169*
H56C0.2457340.6269310.1658280.169*

Source of material

To a stirred solution of compound (Z)-1-(furan-2-yl-2-methyl-propylidene)-2-phenylhydrazone (1.016 g, 4.45 mmol) in diethyl ether (about 30 mL) at 0 °C, lithium diisopropylamide (0.477 g, 4.45 mmol) was added in small portions to form an orange solution. The solution was slowly warmed to room temperature and kept stirring for about 10 h. To the obtained solution, anhydrous ZrCl4 (0.259 g, 1.12 mmol) was added in small portions at −78 °C. The resulting orange-red mixture was slowly warmed to room temperature and stirred overnight. 12-crown-4 (0.784 g, 4.45 mmol) being purified by potassium mirrors in vacuo before use was added dropwise at 0 °C. The resulting orange solution was slowly warmed to room temperature and stirred overnight. The obtained mixture was filtered and concentrated in vacuo to ca. 20 mL and left at room temperature to give needle orange crystals of the title zirconium complex.

Experimental details

Hydrogen atoms were positioned geometrically (C–H = 0.93–0.98 Å). The Uiso values were set to 1.2 Ueq of the parent atoms.

Comment

Hydrazones and their corresponding complexes have gained considerable attention because of their wide applications [3], [4]. Some corresponding metal complexes have been reported and used as olefins polymerization pre-catalysts [5], [6], [7], [8], [9]. We have previously reported five 2-furyl-phenylhydrazonato ligands [(C4H3O)CR=NNHPh], which differ from one another by their differently bulky alkyl substituents [R = H, CH3, CH3CH2, (CH3)2CH and (CH3)3C] which were attached on an imine-carbon atom. Based on the X-ray crystallographic analyses and/or 1H–1H NOESY spectra of the ligands as well as the coresponding zirconium complexes, we found that the alkyl groups provided the influential steric effect on the configuration of the ligands (trans- or cis-), the unique structures as well as the intra- and intermolecular hydrogen bonding interactions of the obtained zirconium complexes [8], [9]. In addition, their corresponding mononuclear or dinuclear zirconium complexes display moderate activities towards ethylene polymerization and produced an ultra-high molecular weight with narrow polydispersity [8], [9].

In the previous paper, we have reported that the reaction of the lithium cis-1-(furan-2-yl-2-methyl-propylidene)-2-phenylhydrazonide with anhydrous ZrCl4 afforded corresponding dinuclear zirconium complexes with a lithium adduct [9]. With the expectation to remove the lithium adduct, herein, the reaction of lithium cis-1-(furan-2-yl-2-methyl-propylidene)-2-phenylhydrazonide with ZrCl4 in 2:1 ligand/metal ratio was carried out in the presence of 12-crown-4 in diethyl ether and the title mononuclear zirconium complex was obtained. It was suggested that the addition of 12-crown-4 caused the elimination of LiCl through the strong complexation of the lithium cation, resulting in the formation of the title zirconium complex and [Li(12-crown-4)]Cl [10].

For the title crystal structure, there are two similar crystallographically independent target complexes (each located on a twofold axis) and the figure illustrates one. The zirconium centers are octa coordinated by  a distorted square antiprism and coordinated with four monoanionic ligands. The bond lengths of Zr–Na [Na = phenylamido nitrogen atom, from 2.254(2) Å to 2.259(2) Å] and Zr–Ni [Ni = imine nitrogen, from 2.143(2) Å to 2.162(2) Å] are respectively longer than that in dinuclear zirconium complex of the same ligand [9]; and the bite Na–Zr–Ni angles [from 36.67(7)° to 36.68(7)° are a little bit smaller than those in the dinuclear zirconium complex of the same ligand [9]. These should have resulted from the steric crowding of four bidentate chelating ligands.


Corresponding author: Sheng-Di Bai, Institute of Applied Chemistry, Shanxi University, Taiyuan030006, P. R. China, E-mail:

Award Identifier / Grant number: 2015011015

Funding source: Key Research and Development Projects in Shanxi Province

Award Identifier / Grant number: 201803D121040

Funding source: Shanxi Province Foundation for Returenees

Award Identifier / Grant number: 2017-027

Funding source: Shanxi Key Laboratory of Functional Molecules

Funding source: Students Research Training of Shanxi University

Award Identifier / Grant number: 2020018334

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The Natural Science Foundation of Shanxi Province (2015011015), the Key Research and Development Projects in Shanxi Province (201803D121040), Shanxi Province Foundation for Returenees (2017-027), the Shanxi Key Laboratory of Functional Molecules and Students Research Training of Shanxi University (2020018334).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SMART. (Version 5.0) and SAINT (Version 6.02); Bruker AXS Inc.: Madison, WI, 2000.Suche in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

3. Shakdofa, M. M. E., Shtaiwi, M. H., Morsy, N., Abdel-rassel, T. M. A. Metal complexes of hydrazones and their biological, analytical and catalytic applications: a review. Main Group Chem. 2014, 13, 187–218. https://doi.org/10.3233/mgc-140133.Suche in Google Scholar

4. Belskaya, N. P., Dehaen, W., Bakulev, V. A. Synthesis and properties of hydrazones bearing amide, thioamide and amidine functions. Arkivoc 2010, i, 275–332. https://doi.org/10.3998/ark.5550190.0011.108.Suche in Google Scholar

5. Britovsek, G. J. P., Gibson, V. C., Kimberley, B. S., Mastroianni, S., Redshaw, C., Solan, G. A., White, A. J. P., Williams, D. J. Bis(imino)pyridyliron and cobalt complexes: the effect of nitrogen substituents on ethylene oligomerisation and polymerization. J. Chem. Soc. Dalton Trans. 2001, 1639–1644. https://doi.org/10.1039/b101173l.Suche in Google Scholar

6. Tabernero, V., Cuenca, T., Herdtweck, E. Hydrazonide titanium derivatives synthesis, characterization and catalytic activity in olefin polymerization. molecular structure of [Ti(η5-C5H4SiMe3)Cl(μ-N2CPh2)]2. J. Organomet. Chem. 2002, 663, 173–182. https://doi.org/10.1016/s0022-328x(02)01733-3.Suche in Google Scholar

7. Hou, J. X., Sun, W. H., Zhang, D. H., Chen, L. Y., Li, W., Zhao, D. F., Song, H. B. Preparation and characterization of acylhydrazone nickel(II) complexes and their catalytic behavior in vinyl polymerization of norbornene and oligomerization of ethylene. J. Mol. Catal. A Chem. 2005, 231, 221–233. https://doi.org/10.1016/j.molcata.2005.01.009.Suche in Google Scholar

8. Duan, X. E., Xing, Q. F., Dong, Z. M., Chao, J. B., Bai, S. D., Liu, D. S., Sun, W. H. Trichlorozirconium 2-hydrazonides: synthesis, characterization and their catalytic behavior toward ethylene polymerization. Chin. J. Polym. Sci. 2016, 34, 390–398. https://doi.org/10.1007/s10118-016-1768-6.Suche in Google Scholar

9. Duan, X. E., Yuan, B., Li, R., Vignesh, A., Bariashir, C., Li, Z. L., Bai, S. D., Ma, Y. P., Chao, J. B., Tong, H. B., Sun, W. H. Alkyl substituents triggered an unexpected formation of mono- and dinuclear zirconium hydrazonate complexes: synthesis, characterization and their catalytic behavior toward ethylene polymerization. Appl. Organomet. Chem. 2020, 34, e5586. https://doi.org/10.1002/aoc.5586.Suche in Google Scholar

10. Zauliczny, M., Grubba, R., Ponikiewski, Ł., Pikies, J. Phosphanylphosphido and phosphanylphosphinidene complexes of zirconium(IV) supported by bidentate N,N ligands. Polyhedron 2017, 123, 353–360. https://doi.org/10.1016/j.poly.2016.12.005.Suche in Google Scholar

Received: 2020-11-04
Accepted: 2020-12-04
Published Online: 2020-12-18
Published in Print: 2021-03-26

© 2020 Xin-E. Duan et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 4-hydroxybenzene-1,3-diaminium dichloride, C6H10Cl2N2O
  4. The crystal structure of 3-chloropropylammonium chloride, C3H9Cl2N
  5. The crystal structure of 1-chloro-2-(dimethylamino)ethane hydrochloride, C4H11Cl2N
  6. Crystal structure of N-(2-(trifluoromethyl)phenyl)hexanamide, C13H16F3NO
  7. Redetermination of the crystal structure of para-toluidine, C7H9
  8. The crystal structure of bis(1,3-dihydroxy-2-methylpropan-2-aminium) carbonate, C9H24N2O7
  9. The crystal structure of 4-chloro-1-methylpiperidin-1-ium chloride, C6H13Cl2N
  10. Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
  11. The crystal structure of ethyl 2-amino-4-(3,5-difluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H21F2NO4
  12. Crystal structure of 6,6'‐((1E,1'E)‐(propane‐1,3‐diylbis(azaneylylidene))bis(methaneylylidene))bis(3‐bromophenol), C34H32Br4N4O4
  13. The crystal structure of (E)-2-(2-((2-picolinoylhydrazono)methyl)phenoxy)acetic acid dihydrate, C15H17N3O6
  14. Crystal structure of (E)-4-bromo-N′-(3-chloro-2-hydroxybenzylidene)benzohydrazide, C14H10BrClN2O2
  15. Crystal structure of N,N′-bis(4-bromosalicylidene) ethylene-1,2-diaminopropan, C34H32Br4N4O4
  16. Crystal structure of 4-bromo-N′-[(3-bromo-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H14Br2N2O3
  17. The crystal structure of 1,2-bis(1H-benzo[d]imidazol-2-yl)ethane-1,2-diol — N-(2-aminophenyl)-3-(1H-benzo[d]imidazol-2-yl)-2,3-dihydroxypropanamide (1/1), C32H30N8O5
  18. The crystal structure of para-trifluoromethyl-aniline hemihydrate, C14H14F6N2O
  19. Redetermination of the crystal structure of 2-amino-2-methyl-propane-1,3-diole, C4H11NO2
  20. The crystal structure of methacholine chloride, C8H18ClNO2
  21. Crystal structure of 5,7,7-trimethyl-4,6,7,8-tetrahydrocyclopenta[g]isochromen-1(3H)-one, C15H18O2
  22. Crystal structure of poly[diammine-bis(μ4-4-hydroxypyridine-3-sulfonato-κ5N:O, O′:O′′:O′′)(μ2-pyrazinyl-κ2N:N′)tetrasilver(I)], C7H8Ag2N3O4S
  23. Crystal structure of ethyl (E)-5-(((3′,6′-bis(ethylamino)-3-oxospiro[isoindoline-1,9′-xanthen]-2-yl)imino)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate — ethanol (1/1), C38H45N5O5
  24. Crystal structure of 4-bromo-N′-[(3-chloro-2-hydroxyphenyl)methylidene]benzohydrazide, C14H7Br2N2O2
  25. Redetermination of the crystal structure of 3,3,3-triphenylpropanoic acid, C21H18O2 – Deposition of hydrogen atomic coordinates
  26. Structure redetermination of dextromethorphan hydrobromide monohydrate, C18H28BrNO2 – localization of hydrogen atoms
  27. Crystal structure of tris(azido-κ1N)-(N-(2-aminoethyl)-N-methyl-1,3-propanediamine-κ3N,N′,N′′)cobalt(III), C7H19CoN12
  28. Crystal structure of tetraaqua-bis(1H-indazole-6-carboxylate-κN)cadmium (II), C16H18CdN4O8
  29. Crystal structure of dichloride-bis(1-propylimidazole-κ1N)zinc(II), C12H20Cl2N4Zn
  30. Crystal structure of (E)-resveratrol 3-O-β-D-xylopyranoside, C19H22O8
  31. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-vinyl- 1H-imidazol-3-ium) bis(hexafluoro phosphate)(V), C18H20F12N4P2
  32. Crystal structure of diaqua[bis(benzimidazol-2-yl-methyl)amine-κ3N,N′,N″]-phthalato-κ1O-nickel(II)-methanol (1/2), C26H31N5NiO8
  33. Crystal structure of 6,7-difluoro-1-methyl-3-(trifluoromethyl)quinoxalin-2(1H)-one, C10H5F5N2O
  34. Crystal structure of dichlorido-bis(1-hexyl-1H-benzotriazole-k1N)zinc(II), C24H34N6Cl2Zn
  35. The crystal structre of 2-(4-bromophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H12BBrN2
  36. Crystal structure of diethyl 3,9-bis(4-fluorophenyl)-6,12-diphenyl-3,9-diazapentacyclo[6.4.0.02,7.04,11]dodecane-1,5-dicarboxylate, C40H36F2N2O4
  37. Crystal structure of (E)-7-methoxy-2-((5-methoxypyridin-3-yl)methylene)-3,4- dihydronaphthalen-1(2H)-one, C18H17NO3
  38. Crystal structure of (E)-2-chloro-6-(((1,3-dihydroxy-2-(oxidomethyl)propan-2-yl)imino)methyl)phenolate-κ3N,O,O’)manganese(IV), C22H24Cl2MnN2O8
  39. The crystal structure of α-(meta-methoxyphenoxy)-ortho-tolylic acid, C15H14O4
  40. The crystal structure of N-(2-chloroethyl)-N,N-diethylammonium chloride, C6H15Cl2N
  41. The crystal structure of tris(2,3,4,6,7,8,9,10-octahydro-1H-pyrimido[1,2-a]azepin-5-ium) trihydrodecavanadate(V), C27H54N6O28V10
  42. Crystal structure of 1,3-bis(octyl)benzimidazolium perchlorate C23H39ClN2O4
  43. Crystal structure of tetrakis[(Z)-(2-(1-(furan-2-yl)-2-methylpropylidene)-1-phenylhydrazin-1-ido-κ2N,N′)] zirconium(IV), C56H60N8O4Zr
  44. The crystal structure of 2-(naphthalen-2-yloxy)-4-phenyl-6-(prop-2-yn-1-yloxy)-1,3,5-triazine, C22H15N3O2
  45. The crystal structure of trimethylsulfonium tris(trifluoromethylsulfonyl)methanide, C7H9F9O6S4
  46. Crystal structure of 4-bromo-N′-[3,5-dichloro-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H13BrCl2N2O3
  47. The crystal structure of 4-(4-bromophenyl)-2-(3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole, C24H16Br2FN3S
  48. The crystal structure of N-(adamantan-1-yl)-piperidine-1-carbothioamide, C16H26N2S
  49. The crystal structure of 1-phenyl-N-(4,5,6,7-tetrabromo-1,3-dioxoisoindolin-2-yl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamide-dimethylformamide (1/1) C22H10Br4N4O3S
  50. The crystal structure of benzeneseleninic acid anhydride, C12H10O3Se2
  51. The crystal structure of diphenyalmine hydrochloride antimony trichloride co-crystallizate, C12H12Cl4NSb – Localization of hydrogen atoms
  52. The crystal structure of para-nitrobenzylbromide, C7H6BrNO2 – A second polymorph and correction of 3D coordinates
  53. Crystal structure of catena-poly[(5H-pyrrolo[3,2-b:4,5-b′]dipyridine-κ2N,N′)-(μ4-hexaoxidodivanadato)dizinc(II)],C10H9N3O6V2Zn
  54. Crystal structure of N,N′-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)-κ5N,N′,N′′,N′′′,O]-tris(nitrato-κ2O,O′) cerium(III), C15H16CeN7O10
  55. Synthesis and crystal structure of oktakis(dimethylsulphoxide-κ1O)gadolinium(III) [tetrabromido-μ2-bromido-μ2-sulfido-di-μ3-sulfido-μ4-sulfido-tetracopper(I)-tungsten(VI)], C16H48O8S12Br5Cu4GdW
  56. Crystal structure of {tris((1H-benzo[d]imidazol-2- yl)methyl)amine-κ4N,N′,N′′,N′′′}-(succinato-κ2O,O′)nickel(II) – methanol (1/4), C32H41N7NiO8
  57. Crystal structure of catena-poly[trans-tetraaqua(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-k2N:N′)cobalt(II)] dinitrate – 1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol) – water (1/3/2), C72H68CoN18O12
  58. Crystal structure of bis(μ2-2-oxido-2-phenylacetate-κ3O:O,O′)-bis(1-isopropoxy-2-oxo-2-phenylethan-1-olato-κ2O,O′)-bis(propan-2-olato-κ1O)dititanium(IV), C44H52O14Ti2
  59. The crystal structure of 5-carboxy-2-(hydroxymethyl)-1H-imidazol-3-ium-4-carboxylate, C6H8N2O6
  60. The crystal structure of 2,6-dibromo-4-fluoroaniline, C6H4Br2FN
  61. The crystal structure of 4-chloro-N-(2-phenoxyphenyl)benzamide, C19H14ClNO2
  62. The crystal structure of 2-methyl-β-naphthothiazole, C12H9NS
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0571/html
Button zum nach oben scrollen