Startseite Crystal structure of (E)-7-methoxy-2-((5-methoxypyridin-3-yl)methylene)-3,4- dihydronaphthalen-1(2H)-one, C18H17NO3
Artikel Open Access

Crystal structure of (E)-7-methoxy-2-((5-methoxypyridin-3-yl)methylene)-3,4- dihydronaphthalen-1(2H)-one, C18H17NO3

  • Ming-Zhu Luan ORCID logo und Qing-Guo Meng
Veröffentlicht/Copyright: 21. Dezember 2020

Abstract

C18H17NO3, triclinic, P1 (no. 2), a = 7.3950(5) Å, b = 8.6697(5) Å, c = 11.6813(9) Å, α = 85.457(6)°, β = 76.712(6)°, γ = 82.759(5)°, V = 722.07(9) Å3, Z = 2, Rgt(F) = 0.0502, wRref(F2) = 0.1342, T = 99.9(3) K.

CCDC no.: 2040090

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless block
Size:0.14 × 0.13 × 0.11 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.09 mm−1
Diffractometer, scan mode:SuperNova,
θmax, completeness:25.5°, >99%
N(hkl)measured, N(hkl)unique, Rint:4628, 2684, 0.032
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2178
N(param)refined:202
Programs:CrysAlisPRO [1], SHELX [2], [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.2881 (2)0.25272 (19)0.07345 (14)0.0208 (4)
C20.2992 (2)0.18244 (18)0.19352 (14)0.0198 (4)
C30.2340 (2)0.28930 (18)0.29461 (14)0.0227 (4)
H3A0.2705530.2396930.3644860.027*
H3B0.0987420.3100150.3117710.027*
C40.3209 (3)0.44212 (19)0.26202 (15)0.0244 (4)
H4A0.2732270.5127340.3251770.029*
H4B0.4553970.4220680.2526540.029*
C50.2496 (2)0.67721 (19)0.13078 (15)0.0256 (4)
H50.2559050.7398610.1904770.031*
C60.2135 (2)0.74763 (19)0.02628 (16)0.0262 (4)
H60.1970580.8555660.0161200.031*
C70.2021 (2)0.65511 (19)−0.06287 (14)0.0223 (4)
C80.2267 (2)0.49447 (19)−0.04637 (15)0.0219 (4)
H80.2182290.432477−0.1059550.026*
C90.2639 (2)0.42506 (18)0.05856 (14)0.0194 (4)
C100.2766 (2)0.51708 (19)0.14944 (15)0.0219 (4)
C110.3701 (2)0.03352 (19)0.20258 (15)0.0208 (4)
H110.420132−0.0153970.1323930.025*
C120.3774 (2)−0.06131 (18)0.31234 (15)0.0212 (4)
C130.2249 (2)−0.0550 (2)0.40799 (15)0.0261 (4)
H130.1206970.0149930.4024830.031*
C140.3712 (3)−0.2411 (2)0.51501 (16)0.0314 (5)
H140.370778−0.3015740.5844730.038*
C150.5304 (2)−0.25706 (19)0.42443 (15)0.0249 (4)
C160.5327 (2)−0.16791 (18)0.32063 (15)0.0220 (4)
H160.635593−0.1787140.2576180.026*
C170.8485 (3)−0.3635 (3)0.36896 (19)0.0473 (6)
H17A0.841206−0.3995770.2947230.071*
H17B0.939487−0.4315230.4010590.071*
H17C0.884841−0.2599220.3575870.071*
C180.1466 (3)0.87790 (19)−0.18855 (17)0.0292 (5)
H18A0.0418790.923116−0.1317600.044*
H18B0.1271340.904731−0.2664760.044*
H18C0.2585280.917046−0.1804400.044*
N10.2198 (2)−0.14418 (18)0.50756 (13)0.0325 (4)
O10.16465 (17)0.71244 (13)−0.16914 (10)0.0289 (3)
O20.29442 (17)0.17020 (13)−0.00849 (10)0.0271 (3)
O30.67215 (18)−0.36274 (15)0.44767 (11)0.0355 (4)

Source of material

5 mL (25%) of a sodium hydroxide aqueous solution was added dropwise to the mixture of 7-methoxy-3,4-dihydronaphthalen-1(2H)-one and 5-methoxy-3-pyridinecarboxaldehyde in 10 mL methanol and stirred at room temperature for 3 h (monitored by TLC, 254 nm). The mixture was filtered and subsequently dissolved with ethyl acetate, and the organic solution was washed with water and brine, and finally dried over anhydrous sodium sulfate. After filtration, the ethyl acetate was condensed in vacuo to yield a white solid, which was purified by silica-gel column chromatography (petroleum ether: ethyl acetate = 2:1, v/v). The title compound was recrystallized from dichloromethane and methanol (1:1, v/v) system to attain suitable crystals.

Experimental details

The H atoms were placed in idealized positions and treated as riding on their parent atoms, with d(C–H) = 0.97 Å (methylene), Uiso(H) = 1.2Ueq(C), d(C–H) = 0.93 Å (aromatic), Uiso(H) = 1.2Ueq(C), and d(C–H) = 0.96 Å (methyl), Uiso(H) = 1.5Ueq(C).

Comment

Neuroinflammation mediated by overactivated microglia (pro-inflammatory M1 phenotype) plays a key role in many inflammatory neurodegenerative diseases in the central nervous system (CNS) [4], [5], [6]. Studies have shown that the activation of NF-κB is the result of potential inflammation and the expression of pro-inflammatory cytokines nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 can be down-regulated by inhibiting the activation of NF-κB, and play antineuroinflammatory effects on activated microglial cells [7], [8], [9], [10], [11]. Therefore, the development of a NF-κB inhibitor with anti-neuroinflammatory activities and low toxicity is an effective therapeutic strategy for treating inflammatory neurodegenerative CNS diseases, which is of great significance [12], [13].

3,4–Dihydronaphthalen-1(2H)-one (DHN) derivatives with anti-tumor and anti-inflammatory activities have been studied as new allergic and inflammatory responses modifiers for the treatment of skin diseases and cancers, and have been developed as anti-inflammatory drugs to stabilize mast cells [14], [15]. However, the development of DHN derivatives as anti-neuroinflammatory drugs is rare. Our group synthesized some of these compounds and studied their anti-neuroinflammatory activity. The results showed that the fluorine-substituted compounds had better activity [16], [17]. In this study, a new benzylidene-substituted DHN derivative, which may have anti-neuroinflammatory activity was designed and synthesized by Claisen–Schmidt condensation reaction (see the figure).

Single-crystal structure analysis revealed that the title compound crystallized in the triclinic space group P1. The ORTEP diagram is presented in the Figure. Bond lengths and angles are all in the expected ranges [18], [19]. There is only one drug molecule in the asymmetric unit. The structure shows that the constitution at the C(2)=C(11) olefinic bond adopts the E stereochemistry [20]. Because of the distorting effect of 3,4-dihydronaphthalen-1(2H)-one, the 7-methoxyphenyl and 5-methoxy-3-pyridinyl groups are not coplanar to each other, with a dihedral angle of approximately 67.7(2)°. This twisted configuration may increase interactions with bioactive molecules with the aim of creating more potent anti-neuroinflammatory activity [21].


Corresponding author: Qing-Guo Meng, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China, E-mail:

Funding source: Science and Technology Innovation Development Plan of Yantai

Award Identifier / Grant number: 2020XDRH105

Award Identifier / Grant number: 81473104

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Science and Technology Innovation Development Plan of Yantai (No. 2020XDRH105) and the National Natural Science Foundation of China (No. 81473104).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku OD. CrysAlisPRO; Rigaku Oxford Diffraction Ltd.: Yarnton, Oxfordshire, England, 2017.Suche in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Goldmann, T., Prinz, M. Role of microglia in CNS autoimmunity. Clin. Dev. Immunol. 2013, 2013, 208093; https://doi.org/10.1155/2013/208093.Suche in Google Scholar

5. Lee, D. S., Kwon, K. H., Cheong, S. H. Taurine chloramine suppresses LPS-induced neuroinflammatory responses through Nrf2-mediated heme oxygenase-1 expression in mouse BV2 microglial cells. Adv. Exp. Med. Biol. 2017, 975, 131–143; https://doi.org/10.1007/978-94-024-1079-2_12.Suche in Google Scholar

6. Gao, C. L., Hou, G. G., Liu, J., Ru, T., Xu, Y. Z., Zhao, S. Y., Ye, H., Zhang, L. Y., Chen, K. X., Guo, Y. W., Pang, T., Li, X. W. Synthesis and target identification of benzoxepane derivatives as potential anti-neuroinflammatory agents for ischemic stroke. Angew. Chem. Int. Ed. 2020, 59, 2429–2439; https://doi.org/10.1002/anie.201912489.Suche in Google Scholar

7. Wang, J. Z., Wang, H. Y., Mou, X. D., Luan, M. Z., Zhang, X. F., He, X. T., Zhao, F. L., Meng, Q. G. The advances on the protective effects of ginsenosides on myocardial ischemia and ischemia-reperfusion injury. Mini–Rev. Med. Chem. 2020, 20, 1610–1618; https://doi.org/10.2174/1389557520666200619115444.Suche in Google Scholar

8. Zhang, J. Q., Zhang, Q., Xu, Y. R., Li, H. X., Zhao, F. L., Wang, C. M., Liu, Z., Liu, P., Liu, Y. N., Meng, Q. G., Zhao, F. Synthesis and in vitro anti-inflammatory activity of C20 epimeric ocotillol-type triterpenes and protopanaxadiol. Planta Med. 2019, 85, 292–301. https://doi.org/10.1055/a-0770-0994.Suche in Google Scholar

9. Yang, Q. W., Wang, N., Zhang, J., Chen, G., Xu, H., Meng, Q. G., Du, Y., Yang, X., Fan, H. Y. In vitro and in silico evaluation of stereoselective effect of ginsenosideisomers on platelet P2Y12 receptor. Phytomedicine 2019, 64, 152899; https://doi.org/10.1016/j.phymed.2019.152899.Suche in Google Scholar

10. Wang, C. M., Liu, J., Deng, J. Q., Wang, J. Z., Weng, W. Z., Chu, H. X., Meng, Q. G. Advances in the chemistry, pharmacological diversity, and metabolism of 20(R)-ginseng saponins. J. Ginseng Res. 2020, 44, 14–23; https://doi.org/10.1016/j.jgr.2019.01.005.Suche in Google Scholar

11. Liu, J., Xu, Y. R., Yang, J. J., Wang, W. Z., Zhang, J. Q., Zhang, R. Z., Meng, Q. G. Discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins. J. Ginseng Res. 2017, 41, 373–378; https://doi.org/10.1016/j.jgr.2017.01.001.Suche in Google Scholar

12. Li, N., Xin, W. Y., Yao, B. R., Cong, W., Wang, C. H., Hou, G. G. N-phenylsulfonyl-3,5-bis(arylidene)-4-piperidone derivatives as activation NF-κB inhibitors in hepatic carcinoma cell lines. Eur. J. Med. Chem. 2018, 155, 531–544; https://doi.org/10.1016/j.ejmech.2018.06.027.Suche in Google Scholar

13. Sun, Y., Gao, Z. F., Yan, W. B., Yao, B. R., Xin, W. Y., Wang, C. H., Meng, Q. G., Hou, G. G. Discovery of novel NF-κB inhibitor based on scaffold hopping: 1,4,5,6,7,8-hexahydropyrido[4,3-d]pyrimidine. Eur. J. Med. Chem. 2020, 198, 112366; https://doi.org/10.1016/j.ejmech.2020.112366.Suche in Google Scholar

14. Barlow, J. W., Zhang, T., Woods, O., Byrne, A. J., Walsh, J. J. Novel mast cell-stabilising amine derivatives of 3,4 dihydronaphthalen-1(2H)-one and 6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one. Med. Chem. 2011, 7, 213–223; https://doi.org/10.2174/157340611795564222.Suche in Google Scholar

15. Kirby, A. J., Le, L. R., Maharlouie, F., Mason, P., Nicholls, P. J., Smith, H. J., Simons, C. Inhibition of retinoic acid metabolising enzymes by 2-(4-aminophenylmethyl)-6-hydroxy-3,4-dihydronaphthalen-1(2H)-one and related compounds. J. Enzym. Inhib. Med. Chem. 2003, 18, 27–33; https://doi.org/10.1080/1475636021000049221.Suche in Google Scholar

16. Sun, Y., Zhou, Y. Q., Liu, Y. K., Zhang, H. Q., Hou, G. G., Meng, Q. G., Hou, Y. Potential anti-neuroinflammatory NF-κB inhibitors based on 3,4-dihydronaphthalen-1(2H)-one derivatives. J. Enzym. Inhib. Med. Chem. 2020, 35, 1631–1640; https://doi.org/10.1080/14756366.2020.1804899.Suche in Google Scholar

17. Sun, Y., Gao, Z. F., Wang, C. H., Hou, G. G. Synthesis, crystal structures and anti-inflammatory activity of fluorine-substituted 1,4,5,6-tetrahydrobenzo[h]quinazolin-2-amine derivatives. Acta Crystallogr. 2019, C75, 1157–1165; https://doi.org/10.1107/s2053229619010118.Suche in Google Scholar

18. Zingales, S. K., Moore, M. E., Goetz, A. D., Padgett, C. W. Crystal structure of (E)-2-[(2-bromopyridin-3-yl)methylidene]-6-methoxy-3,4-dihydronaphthalen-1(2H)-one and 3-[(E)-(6-methoxy-1-oxo-1,2,3,4-tetrahydronaphthalen-2-ylidene)methyl]pyridin-2(1H)-one. Acta Crystallogr. 2016, E72, 955–958; https://doi.org/10.1107/s2056989016009300.Suche in Google Scholar

19. Luan, M., Wang, H., Zhang, M., Song, J., Xu, Y., Zhao, F., Meng, Q. Crystal structure of (E)-2-(4-fluoro-2-(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2. Z. Kristallogr. NCS 2020, published online ahead of print; https://doi.org/10.1515/ncrs-2020–0484.10.1515/ncrs-2020-0484Suche in Google Scholar

20. Yao, B. R., Sun, Y., Chen, S. L., Suo, H. D., Zhang, Y. L., Wei, H., Wang, C. H., Zhao, F., Cong, W., Xin, W. Y., Hou, G. G. Dissymmetric pyridyl-substituted 3,5-bis(arylidene)-4-piperidones as anti-hepatoma agents by inhibiting NF-κB pathway activation. Eur. J. Med. Chem. 2019, 167, 187–199; https://doi.org/10.1016/j.ejmech.2019.02.020.Suche in Google Scholar

21. Li, N., Yao, B. Y., Wang, C. H., Meng, Q. G., Hou, G. G. Synthesis, crystal structure and activity evaluation of novel 3,4-dihydro-1-benzoxepin-5(2H)-one derivatives as protein-tyrosine kinase (PTK) inhibitors. Acta Crystallogr. 2017, C73, 1003–1009; https://doi.org/10.1107/s2053229617015145.Suche in Google Scholar

Received: 2020-11-17
Accepted: 2020-12-04
Published Online: 2020-12-21
Published in Print: 2021-03-26

© 2020 Ming-Zhu Luan and Qing-Guo Meng, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 4-hydroxybenzene-1,3-diaminium dichloride, C6H10Cl2N2O
  4. The crystal structure of 3-chloropropylammonium chloride, C3H9Cl2N
  5. The crystal structure of 1-chloro-2-(dimethylamino)ethane hydrochloride, C4H11Cl2N
  6. Crystal structure of N-(2-(trifluoromethyl)phenyl)hexanamide, C13H16F3NO
  7. Redetermination of the crystal structure of para-toluidine, C7H9
  8. The crystal structure of bis(1,3-dihydroxy-2-methylpropan-2-aminium) carbonate, C9H24N2O7
  9. The crystal structure of 4-chloro-1-methylpiperidin-1-ium chloride, C6H13Cl2N
  10. Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
  11. The crystal structure of ethyl 2-amino-4-(3,5-difluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H21F2NO4
  12. Crystal structure of 6,6'‐((1E,1'E)‐(propane‐1,3‐diylbis(azaneylylidene))bis(methaneylylidene))bis(3‐bromophenol), C34H32Br4N4O4
  13. The crystal structure of (E)-2-(2-((2-picolinoylhydrazono)methyl)phenoxy)acetic acid dihydrate, C15H17N3O6
  14. Crystal structure of (E)-4-bromo-N′-(3-chloro-2-hydroxybenzylidene)benzohydrazide, C14H10BrClN2O2
  15. Crystal structure of N,N′-bis(4-bromosalicylidene) ethylene-1,2-diaminopropan, C34H32Br4N4O4
  16. Crystal structure of 4-bromo-N′-[(3-bromo-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H14Br2N2O3
  17. The crystal structure of 1,2-bis(1H-benzo[d]imidazol-2-yl)ethane-1,2-diol — N-(2-aminophenyl)-3-(1H-benzo[d]imidazol-2-yl)-2,3-dihydroxypropanamide (1/1), C32H30N8O5
  18. The crystal structure of para-trifluoromethyl-aniline hemihydrate, C14H14F6N2O
  19. Redetermination of the crystal structure of 2-amino-2-methyl-propane-1,3-diole, C4H11NO2
  20. The crystal structure of methacholine chloride, C8H18ClNO2
  21. Crystal structure of 5,7,7-trimethyl-4,6,7,8-tetrahydrocyclopenta[g]isochromen-1(3H)-one, C15H18O2
  22. Crystal structure of poly[diammine-bis(μ4-4-hydroxypyridine-3-sulfonato-κ5N:O, O′:O′′:O′′)(μ2-pyrazinyl-κ2N:N′)tetrasilver(I)], C7H8Ag2N3O4S
  23. Crystal structure of ethyl (E)-5-(((3′,6′-bis(ethylamino)-3-oxospiro[isoindoline-1,9′-xanthen]-2-yl)imino)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate — ethanol (1/1), C38H45N5O5
  24. Crystal structure of 4-bromo-N′-[(3-chloro-2-hydroxyphenyl)methylidene]benzohydrazide, C14H7Br2N2O2
  25. Redetermination of the crystal structure of 3,3,3-triphenylpropanoic acid, C21H18O2 – Deposition of hydrogen atomic coordinates
  26. Structure redetermination of dextromethorphan hydrobromide monohydrate, C18H28BrNO2 – localization of hydrogen atoms
  27. Crystal structure of tris(azido-κ1N)-(N-(2-aminoethyl)-N-methyl-1,3-propanediamine-κ3N,N′,N′′)cobalt(III), C7H19CoN12
  28. Crystal structure of tetraaqua-bis(1H-indazole-6-carboxylate-κN)cadmium (II), C16H18CdN4O8
  29. Crystal structure of dichloride-bis(1-propylimidazole-κ1N)zinc(II), C12H20Cl2N4Zn
  30. Crystal structure of (E)-resveratrol 3-O-β-D-xylopyranoside, C19H22O8
  31. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-vinyl- 1H-imidazol-3-ium) bis(hexafluoro phosphate)(V), C18H20F12N4P2
  32. Crystal structure of diaqua[bis(benzimidazol-2-yl-methyl)amine-κ3N,N′,N″]-phthalato-κ1O-nickel(II)-methanol (1/2), C26H31N5NiO8
  33. Crystal structure of 6,7-difluoro-1-methyl-3-(trifluoromethyl)quinoxalin-2(1H)-one, C10H5F5N2O
  34. Crystal structure of dichlorido-bis(1-hexyl-1H-benzotriazole-k1N)zinc(II), C24H34N6Cl2Zn
  35. The crystal structre of 2-(4-bromophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H12BBrN2
  36. Crystal structure of diethyl 3,9-bis(4-fluorophenyl)-6,12-diphenyl-3,9-diazapentacyclo[6.4.0.02,7.04,11]dodecane-1,5-dicarboxylate, C40H36F2N2O4
  37. Crystal structure of (E)-7-methoxy-2-((5-methoxypyridin-3-yl)methylene)-3,4- dihydronaphthalen-1(2H)-one, C18H17NO3
  38. Crystal structure of (E)-2-chloro-6-(((1,3-dihydroxy-2-(oxidomethyl)propan-2-yl)imino)methyl)phenolate-κ3N,O,O’)manganese(IV), C22H24Cl2MnN2O8
  39. The crystal structure of α-(meta-methoxyphenoxy)-ortho-tolylic acid, C15H14O4
  40. The crystal structure of N-(2-chloroethyl)-N,N-diethylammonium chloride, C6H15Cl2N
  41. The crystal structure of tris(2,3,4,6,7,8,9,10-octahydro-1H-pyrimido[1,2-a]azepin-5-ium) trihydrodecavanadate(V), C27H54N6O28V10
  42. Crystal structure of 1,3-bis(octyl)benzimidazolium perchlorate C23H39ClN2O4
  43. Crystal structure of tetrakis[(Z)-(2-(1-(furan-2-yl)-2-methylpropylidene)-1-phenylhydrazin-1-ido-κ2N,N′)] zirconium(IV), C56H60N8O4Zr
  44. The crystal structure of 2-(naphthalen-2-yloxy)-4-phenyl-6-(prop-2-yn-1-yloxy)-1,3,5-triazine, C22H15N3O2
  45. The crystal structure of trimethylsulfonium tris(trifluoromethylsulfonyl)methanide, C7H9F9O6S4
  46. Crystal structure of 4-bromo-N′-[3,5-dichloro-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H13BrCl2N2O3
  47. The crystal structure of 4-(4-bromophenyl)-2-(3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole, C24H16Br2FN3S
  48. The crystal structure of N-(adamantan-1-yl)-piperidine-1-carbothioamide, C16H26N2S
  49. The crystal structure of 1-phenyl-N-(4,5,6,7-tetrabromo-1,3-dioxoisoindolin-2-yl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamide-dimethylformamide (1/1) C22H10Br4N4O3S
  50. The crystal structure of benzeneseleninic acid anhydride, C12H10O3Se2
  51. The crystal structure of diphenyalmine hydrochloride antimony trichloride co-crystallizate, C12H12Cl4NSb – Localization of hydrogen atoms
  52. The crystal structure of para-nitrobenzylbromide, C7H6BrNO2 – A second polymorph and correction of 3D coordinates
  53. Crystal structure of catena-poly[(5H-pyrrolo[3,2-b:4,5-b′]dipyridine-κ2N,N′)-(μ4-hexaoxidodivanadato)dizinc(II)],C10H9N3O6V2Zn
  54. Crystal structure of N,N′-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)-κ5N,N′,N′′,N′′′,O]-tris(nitrato-κ2O,O′) cerium(III), C15H16CeN7O10
  55. Synthesis and crystal structure of oktakis(dimethylsulphoxide-κ1O)gadolinium(III) [tetrabromido-μ2-bromido-μ2-sulfido-di-μ3-sulfido-μ4-sulfido-tetracopper(I)-tungsten(VI)], C16H48O8S12Br5Cu4GdW
  56. Crystal structure of {tris((1H-benzo[d]imidazol-2- yl)methyl)amine-κ4N,N′,N′′,N′′′}-(succinato-κ2O,O′)nickel(II) – methanol (1/4), C32H41N7NiO8
  57. Crystal structure of catena-poly[trans-tetraaqua(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-k2N:N′)cobalt(II)] dinitrate – 1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol) – water (1/3/2), C72H68CoN18O12
  58. Crystal structure of bis(μ2-2-oxido-2-phenylacetate-κ3O:O,O′)-bis(1-isopropoxy-2-oxo-2-phenylethan-1-olato-κ2O,O′)-bis(propan-2-olato-κ1O)dititanium(IV), C44H52O14Ti2
  59. The crystal structure of 5-carboxy-2-(hydroxymethyl)-1H-imidazol-3-ium-4-carboxylate, C6H8N2O6
  60. The crystal structure of 2,6-dibromo-4-fluoroaniline, C6H4Br2FN
  61. The crystal structure of 4-chloro-N-(2-phenoxyphenyl)benzamide, C19H14ClNO2
  62. The crystal structure of 2-methyl-β-naphthothiazole, C12H9NS
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0602/html
Button zum nach oben scrollen