Home The crystal structure of benzeneseleninic acid anhydride, C12H10O3Se2
Article Open Access

The crystal structure of benzeneseleninic acid anhydride, C12H10O3Se2

  • Eric C. Hosten ORCID logo and Richard Betz ORCID logo EMAIL logo
Published/Copyright: February 11, 2021

Abstract

C12H10O3Se2, triclinic, P1 (no. 2), a = 9.1794(3) Å, b = 11.5706(5) Å, c = 12.3976(5) Å, α = 85.291(2)°, β = 72.198(2)°, γ = 74.084(2)°, V = 1205.65(8) Å3, Z = 4, Rgt(F) = 0.0275, wRref(F2) = 0.0698, T = 200 K.

CCDC no.: 2049011

The molecular structure is shown in the Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless rod
Size:0.52 × 0.11 × 0.07 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:6.13 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
θmax, completeness:28.4°, >99%
N(hkl)measured, N(hkl)unique, Rint:20,955, 6011, 0.028
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 4555
N(param)refined:307
Programs:Bruker [1], [2], SHELX [3], WinGX/ORTEP [4], Mercury [5], PLATON [6]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Se110.64277(3)0.65469(3)0.47094(3)0.01928(8)
Se120.33592(3)0.62604(3)0.64134(3)0.01874(8)
Se210.17898(3)0.62597(3)0.40703(2)0.01887(8)
Se220.02400(3)0.46463(3)0.31419(2)0.01857(8)
O110.8000(3)0.6490(2)0.51098(19)0.0297(5)
O120.1820(2)0.7164(2)0.60964(19)0.0271(5)
O130.4814(3)0.7146(2)0.59715(19)0.0258(5)
O210.3711(2)0.5719(2)0.3776(2)0.0284(5)
O22−0.1338(2)0.5356(2)0.27528(18)0.0253(5)
O230.1410(3)0.5736(2)0.28425(18)0.0266(5)
C1110.6136(4)0.8058(3)0.3909(3)0.0219(6)
C1120.4707(4)0.8936(3)0.4206(3)0.0338(8)
H1120.3830850.8800110.4800270.041*
C1130.4578(5)1.0009(3)0.3623(4)0.0399(9)
H1130.3608851.0620790.3825930.048*
C1140.5834(5)1.0204(3)0.2753(3)0.0397(9)
H1140.5739201.0950190.2363920.048*
C1150.7235(5)0.9309(4)0.2446(3)0.0425(9)
H1150.8090760.9435580.1828300.051*
C1160.7408(4)0.8236(3)0.3023(3)0.0327(8)
H1160.8380630.7628970.2818600.039*
C1210.2900(4)0.6619(3)0.7986(3)0.0221(6)
C1220.1924(4)0.7719(3)0.8402(3)0.0276(7)
H1220.1552330.8322370.7909990.033*
C1230.1490(5)0.7931(4)0.9564(3)0.0391(9)
H1230.0827180.8687950.9871310.047*
C1240.2023(5)0.7043(4)1.0261(3)0.0447(10)
H1240.1698920.7183161.1054370.054*
C1250.3017(5)0.5954(4)0.9833(3)0.0429(10)
H1250.3388520.5355061.0327980.051*
C1260.3478(4)0.5728(3)0.8685(3)0.0316(8)
H1260.4173620.4980260.8379680.038*
C2110.1595(4)0.7863(3)0.3461(3)0.0210(6)
C2120.0258(4)0.8756(3)0.3963(3)0.0329(8)
H212−0.0544300.8583490.4598530.039*
C2130.0110(5)0.9907(3)0.3524(4)0.0426(10)
H213−0.0795071.0535750.3864910.051*
C2140.1268(5)1.0140(3)0.2598(4)0.0387(9)
H2140.1156411.0930920.2297160.046*
C2150.2589(5)0.9239(3)0.2101(4)0.0411(9)
H2150.3376370.9405980.1451980.049*
C2160.2770(4)0.8090(3)0.2544(3)0.0292(7)
H2160.3693610.7468660.2219380.035*
C2210.1526(3)0.3731(3)0.1791(3)0.0205(6)
C2220.3017(4)0.2991(3)0.1762(3)0.0304(8)
H2220.3403710.2930750.2398020.037*
C2230.3915(4)0.2350(4)0.0788(3)0.0381(9)
H2230.4940580.1848120.0746500.046*
C2240.3340(4)0.2429(3)−0.0131(3)0.0346(8)
H2240.3966690.197398−0.0795760.042*
C2250.1860(4)0.3167(3)−0.0089(3)0.0317(8)
H2250.1474870.322856−0.0726230.038*
C2260.0937(4)0.3817(3)0.0885(3)0.0255(7)
H226−0.0090630.4315510.0927050.031*

Source of material

The compound was obtained commercially (Sigma Aldrich). Crystals suitable for the diffraction study were taken directly from the provided product.

Experimental details

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Comment

The Baeyer–Villiger reaction is a useful method to convert ketones into esters. A number of substrates in this context benefit significantly from the catalytic action of seleninic acids [7], [8], [9]. In continuation of our interest in structure-property relationships of esters [10], [11], [12], [13], [14] a preparative study aimed at the synthesis of novel esters was initiated. To prevent accidental isolation of the anhydride of benzeneseleninic acid (that was used as a precursor to generate the catalytically-active benzeneseleninic acid in situ) it was subjected to a diffraction study. The molecular and crystal structures of methylseleninic acid [15] and benzeneseleninic acid [16] have been reported in the literature. Only one report about the structure of a seleninic acid anhydride has appeared in print so far [17].

The structure solution shows the presence of two complete molecules of the title compound in the asymmetric unit. Se–O bond lengths for the formal Se=O double bonds cover a narrow range of only 1.635(2)–1.648(2) Å as well as an equally small range of 1.818(2)–1.843(2) Å for the Se–O single bonds. C–Se bonds are found in between 1.920(3)–1.932(3) Å. All mentioned atomic distances are in good agreement with corresponding values reported for comparable compounds as found in the Cambridge Structural Database [18]. The least-squares planes as defined by the non-hydrogen atoms of the aromatic moieties within the two individual molecules enclose angles of 48.1(2)° and 68.76(19)°, respectively.

In the crystal, C–H⋯O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating in them are observed. These are established between one of the hydrogen atoms on each of the two molecules present in the asymmetric unit as donors as well as – invariably – one of the formally double-bonded oxygen atoms on each of the two molecules present in the asymmetric unit as acceptors. In one case, the hydrogen atom is found in the ortho, in the other case in the meta position to the selenium atom the phenyl group is bonded to. The donor-acceptor interaction exclusively appears in between the two symmetry-independend molecules. In terms of graph-set analysis [19], [20], the descriptor for these contacts is DD level and C22(15) at the binary level. In total, the two molecules are connected to infinite strands along the crystallographic a axis. Furthermore, dispersive Se⋯O contacts whose range falls by up to more than 0.6 Å below the sum of van-der–Waals radii of the two chalcogen atoms are apparent. A number of potential C–H⋯π interactions actually exhibit D–H⋯A angles that deviate significantly from a linear arrangement. π -Stacking is not a prominent feature as the shortest distance between two centers of gravity was measured at 4.346(3) Å.


Corresponding author: Richard Betz, Department of Chemistry, Nelson MandelaUniversity, Summerstrand Campus (South), University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The corresponding author thanks the National Research Foundation for financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.Search in Google Scholar

2. Bruker. SADABS; AXS Inc.: Madison, Wisconsin, USA, 2008.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

4. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Search in Google Scholar

6. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Search in Google Scholar

7. ten Brink, G. J., Fernandes, B. C. M., van Vliet, M. C. A., Arends, I. W. C. E., Sheldon, R. A. Selenium catalyzed oxidations with aqueous hydrogen peroxide. Part I. Epoxidation reactions in homogeneous solution. J. Chem. Soc. 2001, 224–228; https://doi.org/10.1039/b008198l.Search in Google Scholar

8. ten Brink, G. J., Vis, J. M., Arends, I. W. C. E., Sheldon, R. A. Selenium-catalyzed oxidations with aqueous hydrogen peroxide. 2. Baeyer–Villiger reactions in homogeneous solution. J. Org. Chem. 2001, 66, 2429–2433; https://doi.org/10.1021/jo0057710.Search in Google Scholar

9. Mercier, E. A., Smith, C. D., Parvez, M., Back, T. G. Cyclic seleninate esters as catalysts for the oxidation of sulfides to sulfoxides, epoxidation of alkenes, and conversion of enamines to α-hydroxyketones. J. Org. Chem. 2012, 77, 3508–3517; https://doi.org/10.1021/jo300313v.Search in Google Scholar

10. Betz, R., Herdlicka, S., Klüfers, P. Ethyl dicyclohexylglycolate. Acta Crystallogr. 2007, E63, o3916; https://doi.org/10.1107/s1600536807041554.Search in Google Scholar

11. Garudachari, B., Isloor, A. M., Satyanarayan, M. N., Gerber, T., Hosten, E., Betz, R. Diethyl 2-{[2-(trifluoromethyl)anilino]methylidene}propanedioate. Acta Crystallogr. 2012, E68, o514–o515; https://doi.org/10.1107/s1600536812002590.Search in Google Scholar

12. Isloor, A. M., Rai, U. S., Shetty, P., Gerber, T., Hosten, E., Betz, R. Methyl 2-[(2-methylphenoxy)methyl]benzoate. Acta Crystallogr. 2012, E68, o728; https://doi.org/10.1107/s1600536812005995.Search in Google Scholar

13. Odame, F., Hosten, E. C., Tshentu, Z. R., Betz, R. Crystal structure of 3,5-diazamethyl-2-methyl-6-oxo-6-phenyl-4-thioxohexanoate, at 200 K, C12H14N2O3S. Z. Kristallogr. NCS 2015, 230, 9–10; https://doi.org/10.1515/ncrs-2014-0217.Search in Google Scholar

14. Betz, R., Gerber, T., Schalekamp, H., Hosten, E. Refinement of the crystal structure of L-valinemethylester hydrochloride, C6H13NO2⋅HCl, at 200 K. Z. Kristallogr. NCS 2011, 226, 637–638; https://doi.org/10.1524/ncrs.2011.0286.Search in Google Scholar

15. Nakahima, Y., Shimizu, T., Hirabayashi, K., Kamigata, N., Yasui, M., Nakazato, M., Iwasaki, F. Isolation, absolute configuration, and chiral crystallization of optically active seleninic acid. Tetrahedron Lett. 2004, 45, 2301–2303.10.1016/j.tetlet.2004.01.107Search in Google Scholar

16. Bryden, J. H., McCullough, J. D. The crystal structure of benzeneseleninic acid. Acta Crystallogr. 1954, 7, 833–838; https://doi.org/10.1107/s0365110x54002551.Search in Google Scholar

17. Gould, E. S., Post, B. The crystal structure of trans- ethanediseleninic anhydride. J. Am. Chem. Soc. 1956, 78, 5161–5164; https://doi.org/10.1021/ja01601a007.Search in Google Scholar

18. Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. 2002, B58, 380–388; https://doi.org/10.1107/s0108768102003890.Search in Google Scholar

19. Bernstein, J., Davis, R. E., Shimoni, L., Chang, N.-L. Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555–1573; https://doi.org/10.1002/anie.199515551.Search in Google Scholar

20. Etter, M. C., MacDonald, J. C., Bernstein, J. Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr. 1990, B46, 256–262; https://doi.org/10.1107/s0108768189012929.Search in Google Scholar

Received: 2020-11-01
Accepted: 2020-12-08
Published Online: 2021-02-11
Published in Print: 2021-03-26

© 2020 Eric C. Hosten and Richard Betz, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 4-hydroxybenzene-1,3-diaminium dichloride, C6H10Cl2N2O
  4. The crystal structure of 3-chloropropylammonium chloride, C3H9Cl2N
  5. The crystal structure of 1-chloro-2-(dimethylamino)ethane hydrochloride, C4H11Cl2N
  6. Crystal structure of N-(2-(trifluoromethyl)phenyl)hexanamide, C13H16F3NO
  7. Redetermination of the crystal structure of para-toluidine, C7H9
  8. The crystal structure of bis(1,3-dihydroxy-2-methylpropan-2-aminium) carbonate, C9H24N2O7
  9. The crystal structure of 4-chloro-1-methylpiperidin-1-ium chloride, C6H13Cl2N
  10. Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
  11. The crystal structure of ethyl 2-amino-4-(3,5-difluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H21F2NO4
  12. Crystal structure of 6,6'‐((1E,1'E)‐(propane‐1,3‐diylbis(azaneylylidene))bis(methaneylylidene))bis(3‐bromophenol), C34H32Br4N4O4
  13. The crystal structure of (E)-2-(2-((2-picolinoylhydrazono)methyl)phenoxy)acetic acid dihydrate, C15H17N3O6
  14. Crystal structure of (E)-4-bromo-N′-(3-chloro-2-hydroxybenzylidene)benzohydrazide, C14H10BrClN2O2
  15. Crystal structure of N,N′-bis(4-bromosalicylidene) ethylene-1,2-diaminopropan, C34H32Br4N4O4
  16. Crystal structure of 4-bromo-N′-[(3-bromo-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H14Br2N2O3
  17. The crystal structure of 1,2-bis(1H-benzo[d]imidazol-2-yl)ethane-1,2-diol — N-(2-aminophenyl)-3-(1H-benzo[d]imidazol-2-yl)-2,3-dihydroxypropanamide (1/1), C32H30N8O5
  18. The crystal structure of para-trifluoromethyl-aniline hemihydrate, C14H14F6N2O
  19. Redetermination of the crystal structure of 2-amino-2-methyl-propane-1,3-diole, C4H11NO2
  20. The crystal structure of methacholine chloride, C8H18ClNO2
  21. Crystal structure of 5,7,7-trimethyl-4,6,7,8-tetrahydrocyclopenta[g]isochromen-1(3H)-one, C15H18O2
  22. Crystal structure of poly[diammine-bis(μ4-4-hydroxypyridine-3-sulfonato-κ5N:O, O′:O′′:O′′)(μ2-pyrazinyl-κ2N:N′)tetrasilver(I)], C7H8Ag2N3O4S
  23. Crystal structure of ethyl (E)-5-(((3′,6′-bis(ethylamino)-3-oxospiro[isoindoline-1,9′-xanthen]-2-yl)imino)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate — ethanol (1/1), C38H45N5O5
  24. Crystal structure of 4-bromo-N′-[(3-chloro-2-hydroxyphenyl)methylidene]benzohydrazide, C14H7Br2N2O2
  25. Redetermination of the crystal structure of 3,3,3-triphenylpropanoic acid, C21H18O2 – Deposition of hydrogen atomic coordinates
  26. Structure redetermination of dextromethorphan hydrobromide monohydrate, C18H28BrNO2 – localization of hydrogen atoms
  27. Crystal structure of tris(azido-κ1N)-(N-(2-aminoethyl)-N-methyl-1,3-propanediamine-κ3N,N′,N′′)cobalt(III), C7H19CoN12
  28. Crystal structure of tetraaqua-bis(1H-indazole-6-carboxylate-κN)cadmium (II), C16H18CdN4O8
  29. Crystal structure of dichloride-bis(1-propylimidazole-κ1N)zinc(II), C12H20Cl2N4Zn
  30. Crystal structure of (E)-resveratrol 3-O-β-D-xylopyranoside, C19H22O8
  31. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-vinyl- 1H-imidazol-3-ium) bis(hexafluoro phosphate)(V), C18H20F12N4P2
  32. Crystal structure of diaqua[bis(benzimidazol-2-yl-methyl)amine-κ3N,N′,N″]-phthalato-κ1O-nickel(II)-methanol (1/2), C26H31N5NiO8
  33. Crystal structure of 6,7-difluoro-1-methyl-3-(trifluoromethyl)quinoxalin-2(1H)-one, C10H5F5N2O
  34. Crystal structure of dichlorido-bis(1-hexyl-1H-benzotriazole-k1N)zinc(II), C24H34N6Cl2Zn
  35. The crystal structre of 2-(4-bromophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H12BBrN2
  36. Crystal structure of diethyl 3,9-bis(4-fluorophenyl)-6,12-diphenyl-3,9-diazapentacyclo[6.4.0.02,7.04,11]dodecane-1,5-dicarboxylate, C40H36F2N2O4
  37. Crystal structure of (E)-7-methoxy-2-((5-methoxypyridin-3-yl)methylene)-3,4- dihydronaphthalen-1(2H)-one, C18H17NO3
  38. Crystal structure of (E)-2-chloro-6-(((1,3-dihydroxy-2-(oxidomethyl)propan-2-yl)imino)methyl)phenolate-κ3N,O,O’)manganese(IV), C22H24Cl2MnN2O8
  39. The crystal structure of α-(meta-methoxyphenoxy)-ortho-tolylic acid, C15H14O4
  40. The crystal structure of N-(2-chloroethyl)-N,N-diethylammonium chloride, C6H15Cl2N
  41. The crystal structure of tris(2,3,4,6,7,8,9,10-octahydro-1H-pyrimido[1,2-a]azepin-5-ium) trihydrodecavanadate(V), C27H54N6O28V10
  42. Crystal structure of 1,3-bis(octyl)benzimidazolium perchlorate C23H39ClN2O4
  43. Crystal structure of tetrakis[(Z)-(2-(1-(furan-2-yl)-2-methylpropylidene)-1-phenylhydrazin-1-ido-κ2N,N′)] zirconium(IV), C56H60N8O4Zr
  44. The crystal structure of 2-(naphthalen-2-yloxy)-4-phenyl-6-(prop-2-yn-1-yloxy)-1,3,5-triazine, C22H15N3O2
  45. The crystal structure of trimethylsulfonium tris(trifluoromethylsulfonyl)methanide, C7H9F9O6S4
  46. Crystal structure of 4-bromo-N′-[3,5-dichloro-2-hydroxyphenyl)methylidene]benzohydrazide methanol solvate, C15H13BrCl2N2O3
  47. The crystal structure of 4-(4-bromophenyl)-2-(3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole, C24H16Br2FN3S
  48. The crystal structure of N-(adamantan-1-yl)-piperidine-1-carbothioamide, C16H26N2S
  49. The crystal structure of 1-phenyl-N-(4,5,6,7-tetrabromo-1,3-dioxoisoindolin-2-yl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamide-dimethylformamide (1/1) C22H10Br4N4O3S
  50. The crystal structure of benzeneseleninic acid anhydride, C12H10O3Se2
  51. The crystal structure of diphenyalmine hydrochloride antimony trichloride co-crystallizate, C12H12Cl4NSb – Localization of hydrogen atoms
  52. The crystal structure of para-nitrobenzylbromide, C7H6BrNO2 – A second polymorph and correction of 3D coordinates
  53. Crystal structure of catena-poly[(5H-pyrrolo[3,2-b:4,5-b′]dipyridine-κ2N,N′)-(μ4-hexaoxidodivanadato)dizinc(II)],C10H9N3O6V2Zn
  54. Crystal structure of N,N′-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)-κ5N,N′,N′′,N′′′,O]-tris(nitrato-κ2O,O′) cerium(III), C15H16CeN7O10
  55. Synthesis and crystal structure of oktakis(dimethylsulphoxide-κ1O)gadolinium(III) [tetrabromido-μ2-bromido-μ2-sulfido-di-μ3-sulfido-μ4-sulfido-tetracopper(I)-tungsten(VI)], C16H48O8S12Br5Cu4GdW
  56. Crystal structure of {tris((1H-benzo[d]imidazol-2- yl)methyl)amine-κ4N,N′,N′′,N′′′}-(succinato-κ2O,O′)nickel(II) – methanol (1/4), C32H41N7NiO8
  57. Crystal structure of catena-poly[trans-tetraaqua(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-k2N:N′)cobalt(II)] dinitrate – 1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol) – water (1/3/2), C72H68CoN18O12
  58. Crystal structure of bis(μ2-2-oxido-2-phenylacetate-κ3O:O,O′)-bis(1-isopropoxy-2-oxo-2-phenylethan-1-olato-κ2O,O′)-bis(propan-2-olato-κ1O)dititanium(IV), C44H52O14Ti2
  59. The crystal structure of 5-carboxy-2-(hydroxymethyl)-1H-imidazol-3-ium-4-carboxylate, C6H8N2O6
  60. The crystal structure of 2,6-dibromo-4-fluoroaniline, C6H4Br2FN
  61. The crystal structure of 4-chloro-N-(2-phenoxyphenyl)benzamide, C19H14ClNO2
  62. The crystal structure of 2-methyl-β-naphthothiazole, C12H9NS
Downloaded on 22.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0560/html?lang=en
Scroll to top button