Home Crystal structure of fac-tricarbonyl-morpholine-κN-(morpholinocarbamodithioato-κ2S,S′)rhenium(I), C12H17N2O5ReS2
Article Open Access

Crystal structure of fac-tricarbonyl-morpholine-κN-(morpholinocarbamodithioato-κ2S,S′)rhenium(I), C12H17N2O5ReS2

  • See Mun Lee , Kong Mun Lo , Peter J. Heard and Edward R.T. Tiekink EMAIL logo
Published/Copyright: August 17, 2019

Abstract

C12H17N2O5ReS2, monoclinic, P21/c (no. 14), a = 11.99393(5) Å, b = 20.48791(11) Å, c = 13.67105(6) Å, β = 103.3351(5)°, V = 3268.82(3) Å3, Z = 8, Rgt(F) = 0.0238, wRref(F2) = 0.0629, T = 100(2) K.

CCDC no.: 1945655

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Yellow prism
Size:0.13 × 0.05 × 0.02 mm
Wavelength:Cu Kα radiation (1.54184 Å)
μ:17.2 mm−1
Diffractometer, scan mode:XtaLAB Synergy, ω
θmax, completeness:67.1°, >99%
N(hkl)measured, N(hkl)unique, Rint:75890, 5849, 0.042
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 5661
N(param)refined:440
Programs:CrysAlisPRO [1], SHELX [2], [3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Re10.48067(2)0.73918(2)0.62120(2)0.02259(6)
S10.39428(8)0.68948(5)0.45420(7)0.0261(2)
S20.61086(8)0.65141(5)0.58504(7)0.0247(2)
O10.5279(3)0.4847(2)0.2837(3)0.0533(10)
O20.6772(3)0.91468(16)0.4634(2)0.0370(7)
O30.6276(2)0.78483(16)0.8243(2)0.0308(7)
O40.2926(3)0.8413(2)0.6212(3)0.0474(9)
O50.3492(2)0.64913(17)0.7346(2)0.0324(7)
N10.5227(3)0.59232(19)0.4082(3)0.0275(8)
N20.5747(3)0.79975(18)0.5290(3)0.0258(7)
H2N0.590(4)0.7689(19)0.477(3)0.031*
C10.5112(3)0.6384(2)0.4735(3)0.0252(8)
C20.6266(4)0.5533(2)0.4203(4)0.0340(10)
H2A0.6673380.5522360.4920870.041*
H2B0.6782030.5730080.3815240.041*
C30.5958(5)0.4855(3)0.3839(4)0.0466(13)
H3A0.6668420.4602320.3869270.056*
H3B0.5529570.4641240.4288940.056*
C40.4233(4)0.5173(3)0.2802(4)0.0414(11)
H4A0.3828230.4959440.3270750.050*
H4B0.3739060.5142260.2115230.050*
C50.4442(4)0.5871(2)0.3085(3)0.0335(10)
H5A0.4779600.6095060.2579530.040*
H5B0.3706750.6087220.3094980.040*
C60.5058(4)0.8535(2)0.4707(3)0.0333(10)
H6A0.4837840.8849550.5178660.040*
H6B0.4346480.8351520.4279930.040*
C70.5715(4)0.8888(3)0.4052(4)0.0415(12)
H7A0.5878900.8581940.3541880.050*
H7B0.5240590.9248060.3694220.050*
C80.7465(4)0.8633(2)0.5144(3)0.0317(9)
H8A0.8195790.8814510.5537660.038*
H8B0.7644640.8323760.4644640.038*
C90.6864(3)0.8270(2)0.5842(3)0.0270(9)
H9A0.7361240.7910930.6174920.032*
H9B0.6734590.8572330.6369860.032*
C100.5713(3)0.7685(2)0.7466(3)0.0261(9)
C110.3640(4)0.8039(3)0.6214(3)0.0356(11)
C120.3993(3)0.6823(2)0.6922(3)0.0292(10)
Re20.01513(2)0.82852(2)0.81780(2)0.02181(6)
S30.14641(8)0.73251(5)0.85210(8)0.0263(2)
S4−0.10187(8)0.72578(5)0.79761(8)0.0248(2)
O70.0080(3)0.9214(3)1.1137(4)0.0725(15)
O8−0.1807(3)0.92886(16)0.7724(3)0.0378(8)
O90.1889(3)0.94130(17)0.8542(4)0.0554(11)
O100.0256(3)0.82962(16)0.5961(2)0.0349(7)
N40.0112(3)0.81202(19)0.9809(3)0.0276(8)
H4N0.010(4)0.7635(5)0.981(4)0.033*
C130.0261(4)0.6835(2)0.8313(4)0.0317(10)
O6a0.0444(4)0.48871(19)0.8925(4)0.0825(17)
N3a0.0316(4)0.6191(2)0.8434(6)0.075(2)
C14a0.1338(7)0.5786(4)0.8489(8)0.040(2)
H14Aa0.2044860.6053890.8629790.047*
H14Ba0.1289740.5538670.7858390.047*
C15a0.1300(8)0.5336(4)0.9358(7)0.046(3)
H15Aa0.2045240.5115440.9609960.055*
H15Ba0.1090650.5576580.9917870.055*
C16a−0.0663(6)0.5248(4)0.8848(8)0.043(3)
H16Aa−0.0676340.5457820.9498260.052*
H16Ba−0.1320510.4945010.8667560.052*
C17a−0.0727(7)0.5758(4)0.8041(8)0.041(2)
H17Aa−0.1445120.6012180.7945860.049*
H17Ba−0.0687590.5553050.7393830.049*
O6′b0.0444(4)0.48871(19)0.8925(4)0.0825(17)
N3′b0.0316(4)0.6191(2)0.8434(6)0.075(2)
C14′b0.1437(8)0.5946(5)0.9098(10)0.036(3)
H14Cb0.2100630.6190700.8970100.043*
H14Db0.1432160.5980530.9819080.043*
C15′b0.1458(10)0.5250(5)0.8779(12)0.058(5)
H15Cb0.1483320.5232790.8060740.070*
H15Db0.2161200.5038100.9173510.070*
C16′b−0.0427(9)0.5179(5)0.8204(8)0.047(4)
H16Cb−0.1133060.4911680.8073440.057*
H16Db−0.0187770.5245250.7564740.057*
C17′b−0.0609(10)0.5822(5)0.8676(11)0.038(3)
H17Cb−0.1366340.6013420.8366190.046*
H17Db−0.0525310.5782500.9411070.046*
C180.1134(4)0.8333(3)1.0592(4)0.0358(11)
H18A0.1839290.8232061.0361870.043*
H18B0.1162270.8087001.1220710.043*
C190.1091(4)0.9054(3)1.0798(5)0.0573(16)
H19A0.1777730.9181751.1317710.069*
H19B0.1097610.9301791.0177630.069*
C20−0.0912(4)0.9043(3)1.0381(5)0.0591(18)
H20A−0.0914400.9292030.9760680.071*
H20B−0.1607540.9163861.0612900.071*
C21−0.0943(4)0.8317(3)1.0148(4)0.0378(11)
H21A−0.0990350.8065561.0756350.045*
H21B−0.1631980.8215410.9614140.045*
C22−0.1065(3)0.8910(2)0.7906(3)0.0285(9)
C230.1239(4)0.8982(2)0.8422(4)0.0380(11)
C240.0213(3)0.83015(19)0.6804(4)0.0265(9)
  1. aOccupancy: 0.578(10), bOccupancy: 0.422(10).

Source of material

All chemicals and solvents were used as purchased without purification. The melting point was determined using a Melt-temp II digital melting point apparatus and was uncorrected. The solid-state IR spectrum was obtained on a Bruker Vertex 70v FTIR Spectrometer from 4000 to 400 cm−1. The 1H and 13C{1H} NMR spectra were recorded at room temperature in DMSO-d6 solution on a Bruker Ascend 400 MHz NMR spectrometer with chemical shifts relative to tetramethylsilane. Bromopentacarbonylrhenium was prepared from the reaction of a 1:1 molar ratio of Re2(CO)10 (Merck) and Br2 (Panreac) in dichloromethane at 273 K. White solids were obtained from the slow evaporation of the solvent. The solids were recrystallised in acetone before use. The dithiocarbamate ligand was prepared in situ (methanol) from the reaction of CS2 (Panreac 0.25 mmol) with morpholine (Merck, 0.25 mmol) and NaOH (0.02 mL; 50% w/v); CS2 was added dropwise into the methanolic solution (15 mL). The resulting mixture was kept at 273 K for 0.5 h. Bromopentacarbonylrhenium (I) (0.25 mmol, 0.102 g) in methanol (10 mL) was added to the prepared sodium morpholinedithiocarbamate. The resulting mixture was stirred under reflux for 2 h. The filtrate was evaporated slowly until a yellow precipitate was formed. The precipitate was recrystallised from methanol-dichloromethane by slow evaporation to yield yellow crystals. Yield: 0.091 g, 70.1%; M.pt: 493–495 K. IR (cm−1): 2006 (s) ν(CO), 1988(vs, br) ν(CO), 1511(s) ν(CN), 1112(s) ν(CO), 1024 (m) ν(CS), 999 ν(CS). 1H NMR (DMSO-d6): δ 3.58–3.76 (m, 4H, CH2N), 3.78–3.82 (m, 4H, CH2O). 13C{1H} NMR (DMSO-d6): δ 47.0 (C—N), 47.1 (C—N), 65.6 (C—O), 65.8 (C—O), 195.7 (C—S), 195.8, 211.4, 212.8 (CO).

Experimental details

The C-bound H atoms were geometrically placed (C—H = 0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The carbon atoms of the N3-morpholine ring were disordered over two positions. The O—C, N—C and C—C bond lengths were refined with distance restraints of 1.41 ± 0.01, 1.45 ± 0.01 and 1.50 ± 0.01 Å, respectively. All atoms of the ring were refined anisotropically and the site occupancy of the major component refined to 0.578(10). Owing to poor agreement, two reflections, i.e. (2 0 0) and (−11 1 10), were omitted from the final cycles of refinement. The maximum and minimum residual electron density peaks of 2.89 and 1.94 e Å−3, respectively, were located 0.78 and 0.66 Å from the Re1 atom, respectively.

Comment

During on-going studies of the structural chemistry of binuclear molecules of the general formula [(CO)3Re(S2CNR2)]2, for R = Et [5], n-Pr [6] and n-Bu [7], crystalline side-products have been isolated whereby the incorporation of a coordinating solvent molecule results in the isolation of a mononuclear species, such as is the case of the recent report of the structure of (CO)3Re(S2CNMe2)(N≡CMe) [8]. Herein, the crystal and molecular structures of a closely related species recently isolated in this research programme, namely (CO)3Re[S2CN(CH2CH2)2O]N(CH2CH2)2O, (I), are described.

Two independent molecules comprise the asymmetric unit of (I) and these are shown in the figure (50% displacement ellipsoids; for the second independent molecule, lower image, only the major component of the disorder is shown). In terms of the coordination geometry, the molecules are quite similar and each comprises a chelating dithiocarbamate ligand, three carbonyl groups and an nitrogen-bound morpholine molecule. The carbonyls occupy facial positions in the resultant C3NS2 donor set which defines an approximate octahedral geometry. The dithiocarbamate ligand coordinates symmetrically with Re1—S1 = 2.4963(10) Å and Re1—S2 = 2.5044(10) Å, and this symmetry is reflected in the equivalence in the associated C—S bond lengths, that is C1—S1 = 1.720(4) Å and C1—S2 = 1.727(4) Å [for the Re2-containing molecule: Re2—S3 = 2.4956(10) Å, Re2—S4 = 2.5095(10) Å, C13—S3 = 1.727(5) Å and C13—S4 = 1.730(4) Å]. The Re—N bond lengths, i.e. Re1—N2 2.249(4) Å and Re2—N4 2.267(4) Å, are equal within experimental error. The deviations from the ideal geometry relate to the acute chelate angle [S1—Re1—S2 = 70.90(3)° and S3—Re2—S4 = 70.86(3)°] and the maximum deviations in the trans angles are found in (carbonyl)C—Re—S(thiolate) angles in each independent molecule [C11—Re1—S2 = 168.43(13)° and C22—Re2—S3 = 169.87(13)°]. From the figure, the most obvious difference between the structures is found in the relative orientations of the nitrogen-bound morpholine molecules; each has a chair conformation. To a first approximation, in the Re1-molecule this group can be considered orthogonal to the ReS2C chelate ring but, parallel to the ring in the Re2-molecule and folded over towards the two carbonyl groups co-planar with the chelate ring. With reference to the six-membered morpholine ring, the Re1 occupies an axial position whereas the Re2 atom occupies an equatorial position. The observed coordination geometries in the title compound match literature precedents [8], [9].

The most prominent feature of the molecular packing is the formation of zig-zag (glide symmetry) supramolecular chains along the c-axis as the morpholine-N—H atoms participate in N—H⋯O(carbonyl) interactions [N2—H2n⋯O3i: H2n⋯O3i = 2.49(4) Å, N2⋯O3i = 3.472(5) Å with an angle at H2n = 167(3)° and N4—H4n⋯O10ii: H4n⋯O10ii 2.45(3) Å, N4⋯O10ii = 3.287(5) Å with angle at H4n = 141(4)° for symmetry operations (i) x, 3/2 − y, −1/2 + z and (ii) x, 3/2 − y, 1/2 + z]. The chains comprise Re1- or Re2-containing molecules exclusively. Globally, like-molecules assemble into layers and these stack, alternating along the a-axis. A substantial number of weak C—H⋯O(carbonyl) interactions are evident in the crystal. The most prominent contact in the layers comprising Re1-molecules are coordinated-morpholine-C—H⋯O(carbonyl) interactions [C7—H7b⋯O1iii: H7b⋯O1iii = 2.38 Å, C7⋯O1iii = 3.245(7) Å with angle at H7b = 145° for (iii) 1 − x, 1/2 + y, 1/2 − z] and the closest interactions within the layers of Re2-containing molecules are of the type dithiocarbamate-morpholine-C—H⋯O(carbonyl) [C17—H17b⋯O7i: H17b⋯O7i = 2.18 Å, C17⋯O7i = 2.980(11) Å with angle at H17b = 137°]. The C—H⋯O contacts between layers involve dithiocarbamate-morpholine-C—H as the donors and occur between the independent molecules [C2—H2b⋯O8iv: H2b⋯O8iv = 2.50 Å, C2⋯O8iv = 3.423(6) Å with angle at H2b = 155° for (iv) 1 + x, 3/2 − y, −1/2 + z and C15—H15a⋯O2v: H15a⋯O2v = 2.52 Å, C15⋯O2v 3.422(10) Å with angle at H15a = 152° for (v) 1 − x, −1/2 + y, 3/2 − z].

The molecular packing was further analysed in terms of the calculation of the Hirshfeld surfaces as well the full and delineated two-dimensional fingerprint plots employing Crystal Explorer 17 [10] using established procedures [11]. This methodology has proved most successful in distinguishing the surface contributions in circumstances where multiple molecules comprise the asymmetric unit [12]. Entirely consistent with both hydrogen- and oxygen-rich regions in the molecules, as well as intermolecular N—H⋯O and C—H⋯O contacts less than the sum of the respective van der Waals radii, the most significant contributions to the Hirshfeld surfaces of the Re1- and Re2-containing molecules come from H⋯O/O⋯H contacts at 40.9 and 43.2%, respectively. Next most significant are H⋯H contacts at 30.2 and 30.7%, respectively, with some contacts also within the sum of the van der Waals radii. The other major contributions to the Hirshfeld surfaces are from H⋯C/C⋯H [11.7 and 10.1%, respectively] and H⋯S/S⋯H [8.8 and 8.9%, respectively] contacts which, with the former occurring at distances at or beyond the respective sums of the van der Waals radii, respectively. The small but, different differences in the percentage contributions from the aforementioned contacts clearly differentiate between the independent molecules [12].

Funding source: Sunway University Sdn Bhd

Award Identifier / Grant number: STR-RCTR-RCCM-001–2019

Funding statement: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001–2019.

References

1. Rigaku Oxford Diffraction. CrysAlisPRO. Rigaku Corporation, Oxford, UK (2018).Search in Google Scholar

2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.10.1107/S0021889812029111Search in Google Scholar

5. Lee, S. M.; Lo, K. M.; Heard, P. J.; Tiekink, E. R. T.: Redetermination of the crystal structure of bis(μ2-di-ethyldithiocarbamato-κ3S,S′:S3S:S:S′)-hexacarbonyl-di-rhenium(I), C16H20N2O6Re2S4. Z. Kristallogr. NCS 234 (2019) 719–721.10.1515/ncrs-2019-0070Search in Google Scholar

6. Lo, K. M.; Lee, S. M.; Heard, P. J.; Tiekink, E. R. T.: Crystal structure of bis(μ2-di-n-propyldithiocarbamato-κ3S,S′:S3S:S:S′)-hexacarbonyl-di-rhenium(I), C20H28N2O6Re2S4. Z. Kristallogr. NCS 234 (2019) doi: 10.1515/ncrs-2019-0489.10.1515/ncrs-2019-0489Search in Google Scholar

7. Heard, P. J.; Halcovitch, N. R.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of bis(μ2-di-n-butyldithiocarbamato-κ3S,S′:S3S:S:S′)-hexacarbonyl-di-rhenium(I), C24H36N2O6Re2. Z. Kristallogr. NCS 233 (2018) 485–487.10.1515/ncrs-2017-0370Search in Google Scholar

8. Tan, S. L.; Lee, S. M.; Heard, P. J.; Halcovitch, N. R.; Tiekink, E. R. T.: fac-Acetonitriletricarbonyl(dimethylcarbamodithioato-κ2S,S′)rhenium(I): crystal structure and Hirshfeld surface analysis. Acta Crystallogr. E73 (2017) 213–218.10.1107/S2056989017000755Search in Google Scholar PubMed PubMed Central

9. Herrick, R. S.; Ziegler, C. J.; Sripothongnak, S.; Barone, N.; Costa, R.; Cupelo, W.; Gambella, A.: Preparation and characterization of rhenium(I) tricarbonyl dithiocarbamate compounds; Re(CO)3(S2CNMe2)(L). J. Organomet. Chem. 694 (2009) 3929–3934.10.1016/j.jorganchem.2009.08.008Search in Google Scholar

10. Turner, M. J.; Mckinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).Search in Google Scholar

11. Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. E75 (2019) 308–318.10.1107/S2056989019001129Search in Google Scholar PubMed PubMed Central

12. Jotani, M. M.; Wardell, J. L.; Tiekink, E. R. T.: Supramolecular association in the triclinic (Z′ = 1) and monoclinic (Z′ = 4) polymorphs of 4-(4-acetylphenyl)piperazin-1-ium 2-amino-4-nitrobenzoate. Z. Kristallogr. – Cryst. Mater. 234 (2019) 43–57.10.1515/zkri-2018-2101Search in Google Scholar

Received: 2019-07-14
Accepted: 2019-08-06
Published Online: 2019-08-17
Published in Print: 2019-09-25

©2019 See Mun Lee et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Articles in the same Issue

  1. Frontmatter
  2. Crystal structure of poly[diaqua-(μ8-1,1′:2′,1′′-terphenyl-3,3′′,4′,5′-tetracarboxylato-κ8O1:O2:O3:O4:O5:O6:O7:O8)dicopper(II)], C22H14Cu2O10
  3. Crystal structure of 2-((1H-benzo[d]imidazol-2-ylimino)methyl)-4,6-di-tert-butylphenol, C22H27N3O
  4. Crystal structure of (4-ethoxynaphthalen-1-yl)(furan-2-yl)methanone, C17H14O3
  5. Crystal structure of 1-nonylpyridazin-1-ium iodide, C13H23N2I
  6. Crystal structure of bis[diaqua(1,10-phenanthroline-κ2N, N′)-copper(II)]diphenylphosphopentamolybdate dihydrate, C36H38Cu2Mo5N4O27P2
  7. The crystal structure of tetrakis(imidazole)-copper(I) hexafluorophosphate, C12H16CuF6PN8
  8. The crystal structure of dimethyl ((3,5-di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)phosphonate, C23H33O4P
  9. Crystal structure of diaqua-bis(1,10-phenanthroline κ2N,N′)nickel(II) trifluoroacetate- trifluoroacetic acid (1/1), C30H21F9N4NiO8
  10. Crystal structure of 2-(naphthalen-2-yl)-1,8-naphthyridine, C18H12N2
  11. Synthesis and crystal structure of a new polymorph of diisopropylammonium trichloroacetate, C8H16Cl3NO2
  12. Crystal structure of dimethanol-bis(1-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κN)-bis(thiocyanato-κN)cadmium(II) C34H34CdN12O2S2
  13. Crystal structure of ethyl 2,2-difluoro-2-(7-methoxy-2-oxo-2H-chromen-3-yl)acetate, C14H12F2O5
  14. The crystal structure of bis[μ2-(N,N-diethylcarbamodithioato-κSSS′)] bis[1′-(diphenylphosphino-κP)-1-cyanoferrocene]disilver(I), C56H56Ag2Fe2N4P2S4
  15. Crystal structure of bis(di-n-butylammonium) tetrachloridodiphenylstannate(IV), C28H50Cl4N2Sn
  16. The crystal structure of poly[(μ5-2-((5-bromo-3-formyl-2-hydroxybenzylidene)amino)benzenesulfonato-κ6O:O:O,O′:O′:O′′)sodium(I)], C13H9O4NSBrNa
  17. Crystal structure of catena-{poly[bis(O,O′-diethyldithiophosphato-S)-(μ2-1,2-bis(4-pyridylmethylene)hydrazine-N,N′)-zinc(II)] di-acetonitrile solvate}, {C20H30N4O4P2S4Zn ⋅ 2 C2H3N}n
  18. Halogen and hydrogen bonding in the layered crystal structure of 2-iodoanilinium triiodide, C6H7I4N
  19. Crystal structure of cyclohexane-1,4-diammonium 2-[(2-carboxylatophenyl)disulfanyl]benzoate — dimethylformamide — monohydrate (1/1/1), [C6H16N2][C14H8O4S2] ⋅ C3H7NO⋅H2O
  20. The synthesis and crystal structure of isobutyl 5-amino-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)sulfinyl)-1H-pyrazole-3-carboxylate, C16H13Cl2F6N3O3S
  21. Isolation and crystal structure of bufotalinin — methanol (1/1), C25H34O7
  22. Crystal structure of benzylbis(1,3-diphenylpropane-1,3-dionato-κ2O,O′) chloridotin(IV), C37H29ClO4Sn
  23. Crystal structure of Bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-methyl-imidazol)}diiodidocadmium(II), [Cd(C11H11N5)2I2], C22H22N10I2Cd
  24. Crystal structure of 4-isobutoxybenzaldehyde oxime, C11H15NO2
  25. The crystal structure of bis(acetato-κ1O)-bis(N′-hydroxypyrimidine-2-carboximidamide-κ2N,N′)manganese(II) — methanol (1/2), C14H18MnN8O6, 2(CH3OH)′
  26. Crystal structure of poly[bis(μ2-bis(4-(1H-imidazol-1-yl)phenyl)amine-κ2N:N′)-bis(nitrato-κO)cadmium(II)], C36H30CdN12O6
  27. Crystal structure and optical properties of 1,6-bis(methylthio)pyrene, C18H14S2
  28. The crystal structure of hexaquamagnesium(II) bis(3,4-dinitropyrazol-1-ide), C6H14MgN8O14
  29. Halogen bonds in the crystal structure of 4,3:5,4-terpyridine – 1,4-diiodotetrafluorobenzene (1/1), C21H11F4I2N3
  30. Crystal structure and photochromic properties of a novel photochromic perfluordiarylethene containing a triazole bridged pyridine group moiety, C24H18F6N4S2
  31. Crystal structure of bis[(μ3-oxido)-(μ2-(N,N-diisopropylthiocarbamoylthio) acetato-κ2O,O′)-((N,N-diisopropylthiocarbamoylthio)acetato-κO)-bis(di-4-methylbenzyl-tin(IV))], C100H136N4O10S8Sn4
  32. Crystal structure of dibromidobis(4-bromobenzyl)tin(IV), C14H12Br4Sn
  33. The crystal structure of (4Z)-2-[(E)-(1-ethyl-3,3-dimethyl-1,3-dihydro-2H-indol-2-ylidene)methyl]-4-[(1-ethyl-3,3-dimethyl-3H-indolium-2-yl)methylidene]-3-oxocyclobut-1-en-1-olate, C30H32N2O2
  34. The crystal structure of (E)-3-(4-(dimethylamino)styryl)-5,5-dimethylcyclohex-2-en-1-one, C18H23NO
  35. Crystal structure of dihydrazinium 1H-pyrazole-3,5-dicarboxylate, C5H12N6O4
  36. Crystal structure of poly[μ2-1,4-bis((1H-imidazol-1-yl)methyl)benzene-κ2N:N′)-(μ2-4-sulfidobenzoate-κ2O:S)cobalt(II)] dihydrate, C42H44Co2N8O7S2
  37. Crystal structure of 8-(3,4-dimethylbenzylidene)-6,10-dioxaspiro[4.5]decane-7,9-dione, C17H18O4
  38. Crystal structure of 4-(2-bromo-4-(6-morpholino-3-phenyl-3H-benzo[f]chromen-3-yl) cyclohexa-2,5-dien-1-yl)morpholine, C33H31BrN2O
  39. Synthesis and crystal structure of 2-((1-phenyl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)methylene)-2,3-dihydro-1H-inden-1-one, C23H16N2OS
  40. Crystal structure of poly[(μ2-1,1′-(oxybis(4,1-phenylene)bis(1H-imidazole)-κ2N,N′)(μ2-1,3-benzenecarboxylato-κ3O,O′:O′′)zinc(II)] dihydrate, C26H22N4O7Zn
  41. Crystal structure of diaqua-bis(cinnamato-κ2O,O′)zinc(II), C18H18ZnO6
  42. Crystal structure of 2-(prop-2-yn-1-yloxy)-1-naphthaldehyde, C14H10O2
  43. Crystal structure and photochromic properties of 1-(2-methyl-5-phenyl-3-thienyl)-2-{2-methyl-5-[4-(9-fluorenone hydrazone)-phenyl]-3-thienyl}perfluorocyclopentene, C41H26F6N2S2
  44. Hydrothermal synthesis and crystal structure of cylo[tetraaqua-bis(μ2-1,4-bis(1H-benzo[d]imidazol-1-yl)but-2-ene-κ2N:N′)-bis(μ2-4-nitro-phthalate-κ2O,O′)dinickel(II)], C26H23N5O8Ni
  45. Crystal structure of 3-[methyl(phenyl)amino]-1-phenylthiourea, C14H15N3S
  46. Crystal structure of 1-(4-chlorophenyl)-3-[methyl(phenyl)amino]thiourea, C14H14ClN3S
  47. Crystal structure of 2-tert-butyl-1H-imidazo[4,5-b]pyridine, C10H13N3
  48. Crystal structure of 5-carboxy-2-(2-carboxyphenyl)-1H-imidazol-3-ium-4-carboxylate dihydrate, C12H8N2O6⋅2(H2O)
  49. The crystal structure of dichlorido-μ2-dichlorido-(η2-1,4-bis(4-vinylbenzyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium)dicopper(I), C24H30N2Cu2Cl4
  50. Crystal structure of 4-bromobenzyl (Z)-N-(adamantan-1-yl)morpholine-4-carbothioimidate, C22H29BrN2OS
  51. Crystal structure of (4S,4aS,6aR,6bR,12aS,12bR,14aS,14bR)-3,3,6a,6b,9,9,12a-heptamethyloctadecahydro-1H,3H-4,14b-ethanophenanthro[1,2-h]isochromene-1(6bH)-one, C30H48O2
  52. Crystal structure of 3,5-bis(trifluoromethyl)benzyl (Z)-N′-(adamantan-1-yl)-4-phenylpiperazine-1-carbothioimidate, C30H33F6N3S
  53. The crystal structure of 3-methoxyphenanthridin-6(5H)-one, C14H11NO2
  54. Crystal structure of 4-(5,5-difluoro-1,3,7,9-tetramethyl-3H,5H-5λ4-dipyrrolo[1,2-c:2′,1′-f][1,3,2]diazaborinin-10-yl)pyridin-1-ium tetraiodidoferrate(III), C18H19BF2FeI4N3
  55. Crystal structure of 2-(3-methoxyphenyl)-3-((phenylsulfonyl)methyl)imidazo[1,2-a]pyridine, C21H18N2O3S
  56. Crystal structure of [(2-(2-chlorophenyl)-5-ethyl-1,3-dioxane-5-carboxylato-κ2O,O′) (5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)]nickel(II) perchlorate, C29H50Cl2N4NiO8
  57. Crystal structure of (Z)-6-(dimethylamino)-3,3-bis(4-(dimethylamino)phenyl)-2-(2-(quinoxalin-2-ylmethylene)hydrazinyl)-2,3-dihydroinden-1-one, C35H35N7O
  58. 5-Methyl-N′-[5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazole-4-carbonyl]-1-(4-methylphenyl)-1H-1,2,3-triazole-4-carbohydrazide, C22H22N8O2
  59. Crystal structure of 2,3-dichloro-6-methoxyquinoxaline, C9H6Cl2N2O
  60. Synthesis and crystal structure of 7-chloro-2-(ethylsulfinyl)-6-fluoro-3-(1H-pyrazole-1-yl)-4H-thiochromen-4-one, C13H10FN3OS2
  61. Crystal structure of 4-ethylpiperazine-1-carbothioic dithioperoxyanhydride, C14H26N4S4
  62. Crystal structure of 2-(2-(6-methylpyridin-2-yl)naphthalen-1-yl)pyrimidine, C20H15N3
  63. The crystal structure of N′-((1E,2E)-4-(7-methoxy-2-oxo-2H-chromen-8-yl)-2-methylbut-2-en-1-ylidene)-3-methylbenzohydrazide, C23H22N2O4
  64. Crystal structure of catena-poly[(μ2-isophthalato-κ2O:O′)-(2,5-di(pyrazin-2-yl)-4,4′-bipyridine-κ3N,N′,N′′)zinc(II)] — water (2/5), C26H21N6O6.5Zn
  65. Crystal structure of (3E,5E)-3,5-bis(3-nitrobenzylidene)-1-((4-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-one — dichloromethane (2/1), C53H38Cl2F6N6O14S2
  66. Crystal structure of (μ2-oxido)-bis(N,N′-o-phenylenebis(salicylideneiminato))diiron(III) — N,N′-dimethylformamide, C47H43Fe2N4O9
  67. Crystal structure of N1,N3-bis(2-hydroxyethyl)-N1, N1,N3,N3-tetramethylpropane-1,3-diaminium dibromide, C11H28Br2N2O2
  68. Crystal structure of (E)-N-(4-chlorophenyl)-1-(pyridin-2-yl)methanimine, C12H9ClN2
  69. Crystal structure of 8-bromo-6-oxo-2-phenyl-6H-pyrrolo[3,2,1-ij]quinoline-5-carbaldehyde, C18H11BrNO2
  70. Crystal structure of 1,4-bis(2-azidoethyl)piperazine-1,4-diium dichloride trihydrate, C8H18N8Cl2 ⋅ 3 H2O
  71. Crystal structure of (E)-4-bromo-N-(pyridin-2-ylmethylene)aniline, C12H9BrN2
  72. Crystal structure of bis[(2-(3-bromophenyl)-5-methyl-1,3-dioxane-5-carboxylato-κ-O)-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)]nickel(II), C40H60Br2N4NiO8
  73. The crystal structure of (1E,2E)-2-methyl-4-((7-oxo-7H-furo[3,2-g]chromen-9-yl)oxy)but-2-enal O-isonicotinoyl oxime–trichloromethane (3/1), C67H49Cl3N6O18
  74. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-methyl-1H-imidazol-3-ium hexafluoridophosphate(V), C8H13F6N2O2P
  75. Crystal structure of bis[(2-(2-bromophenyl)-5-ethyl-1,3-dioxane-5-carboxylato-κO)-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)]nickel(II) hemihydrate C42H65Br2N4NiO8.5
  76. The crystal structure of N-(7-(4-fluorobenzylidene)-3-(4-fluorophenyl)-3,3a,4,5,6,7-hexahydro-2H-indazole-2-carbonothioyl)benzamide, C28H23F2N3OS
  77. The crystal structure of N1,N4-bis(pyridin-3-yl)cyclohexane-1,4-dicarboxamide, C18H20N4O2
  78. Crystal structure of (E)-2-(3,6-bis(ethylamino)-2,7-dimethyl-9H-xanthen-9-yl)-N′-((6-methylpyridin-2-yl)methylene)benzohydrazide – methanol (1/1), C34H37N5O3
  79. Crystal structure of 2-oxo-1-(pyrimidin-5-ylmethyl)-3-(3-(trifluoromethyl)phenyl)-1,2-dihydro-5l4-pyrido[1,2-a]pyrimidin-4-olate, C20H13F3N4O2
  80. Crystal structure of poly[(μ3-9H-carbazole-3,6-dicarboxylato-κ3O1: O2: O3)(μ2-4-(pyridin-4-yl)pyridine-κ2N1:N1′)zinc(II)], C19H11N2O4Zn
  81. Crystal structure of (E)-N′-((1,8-dihydropyren-1-yl)-methylene)picolinohydrazide, C23H15N3O
  82. Crystal structure of catena-poly{[μ2-1,2-bis(diphenylphosphino)ethane]dichloridocadmium(II)}, C26H24CdCl2P2
  83. Crystal structure of the 1:2 co-crystal between N,N′-bis(4-pyridylmethyl)oxalamide and acetic acid as a dihydrate, C14H14N4O2⋅2 C2H4O2⋅2 H2O
  84. Crystal structure of the co-crystal N,N′-bis(3-pyridylmethyl)oxalamide acetic acid (1/2), C14H14N4O2⋅2C2H4O2
  85. Crystal structure of the co-crystal N,N′-bis(4-pyridylmethyl)oxalamide and 2,3,5,6-tetrafluoro-1,4-di-iodobenzene (1/1), C14H14N4O2⋅C6F4I2
  86. Crystal structure of the co-crystal 4-[(4-carboxyphenyl)disulfanyl]benzoic acid–(1E,4E)-1-N,4-N-bis(pyridin-4-ylmethylidene)cyclohexane-1,4-diamine (1/1), C14H10O4S2⋅C18H20N4
  87. Crystal structure of hexacarbonyl-bis(μ2-di-n-propyldithiocarbamato-κ3S,S′:S3S:S:S′)-di-rhenium(I), C20H28N2O6Re2S4
  88. Crystal structure of fac-tricarbonyl-morpholine-κN-(morpholinocarbamodithioato-κ2S,S′)rhenium(I), C12H17N2O5ReS2
Downloaded on 18.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2019-0495/html?lang=en
Scroll to top button